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ABSTRACT
Deep neural networks have proved hugely successful, achieving
human-like performance on a variety of tasks. However, they are
also computationally expensive, which has motivated the develop-
ment of model compression techniques which reduce the resource
consumption associated with deep learning models. Nevertheless,
recent studies have suggested that model compression can have an
adverse effect on algorithmic fairness, amplifying existing biases in
machine learning models. With this project we aim to extend those
studies to the context of facial expression recognition. To do that,
we set up a neural network classifier to perform facial expression
recognition and implement several model compression techniques
on top of it. We then run experiments on two facial expression
datasets, namely the Extended Cohn-Kanade Dataset (CK+DB) and
the Real-World Affective Faces Database (RAF-DB), to examine the
individual and combined effect that compression techniques have
on the model size, accuracy and fairness. Our experimental results
show that: (i) Compression and quantisation achieve significant
reduction in model size with minimal impact on overall accuracy
for both CK+DB and RAF-DB; (ii) in terms of model accuracy, the
classifier trained and tested on RAF-DB seems more robust to com-
pression compared to the CK+ DB; (iii) for RAF-DB, the different
compression strategies do not seem to increase the gap in predictive
performance across the sensitive attributes of gender, race and age
which is in contrast with the results on the CK+DB, where com-
pression seems to amplify existing biases for gender. We analyse
the results and discuss the potential reasons for our findings.
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1 INTRODUCTION
Recent years have seen deep neural networks (DNNs) achieve state-
of-the-art performance on a variety of problems including face
recognition [38], cancer detection [27], natural language process-
ing [27], etc. Deep learning has proved particularly effective at
extracting meaningful representations from raw data [42].

However, as the predictive performance of deep neural networks
has increased, so has the size of deep learning architectures: Mod-
ern DNNs can consist of hundreds of millions of parameters [11],

making them slow to train and hard to store. Deep learning’s grow-
ing computational cost has made it hard to deploy deep learning
models on resource-constrained devices (e.g. mobile phones, robots,
microcontrollers) which often lack the storage, memory or process-
ing power to support large DNNs [23, 28, 45]. The high resource
consumption associated with deep learning models has also been
problematic in the light of initiatives such as the “Green-AI” [41, 46]
movement advocating for a reduction in the carbon emissions and
the environmental impact associated with artificial intelligence.

This has given rise to the development of model compression
strategies, which aim to reduce the size of deep learning models.
Examples of model compression techniques include pruning [57],
quantisation [23], weight clustering [20], etc. We provide a more
detailed overview of the compression strategies considered in this
project in Section 2.2.

However, a couple of recent studies have suggested that, by
reducing the network capacity of the DNNs, model compression
can amplify existing biases: Hooker et al. [22] demonstrate that
pruning and post-training quantisation can amplify biases when
classifying hair colour on CelebA. This issue is also raised in a study
by Paganini [37] who discusses the effect of pruning on algorithmic
fairness and proposes a framework for fair model pruning.

With this work, we aim to extend the aforementioned studies by
Paganini and Hooker et al. to the context of affective computing. In
particular, we consider the task of facial expression recognition (FER)
where the model has to classify expressions based on images of
human faces. To this end, we train FERmodels using the CK+DB and
the RAF-DB, and implement three compression strategies (pruning,
weight clustering and post-training quantisation) on top of them.
We then evaluate and compare the performance of the baseline
models against the performance of the compressed models, and
analyse the results to address three research questions:

• RQ1: “How effective is model compression in the context
of FER?” That is, can compression techniques achieve a
considerable reduction in the model size, while preserving a
high level of predictive accuracy?

• RQ2: “Domodel compression techniques amplify biases?”
Here we seek to verify the claims by Paganini and Hooker
et al. across a wider variety of compression techniques and
in the context of FER.

• RQ3: “Is the impact on fairness identical across differ-
ent compression techniques?” We are interested to know
whether all compression strategies amplify biases to the
same extent.

This study extends the previous works by Paganini and Hooker
et al. in three directions:
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• Extending the problem to affective computing:We con-
sider the problem of compression’s effect on fairness in the
context of affective computing and, in particular, facial ex-
pression recognition. By comparison, the study by Hooker
et al. is based on classifying hair colour on CelebA [33], and
the study by Paganini considers object recognition and digit
classification tasks.
The topic of model compression is particularly relevant to
the field of affective computing as affective computation
is increasingly performed on constrained devices such as
robots [43] and mobile phones [19].

• Consideringmoremodel compression techniques:Our
study involves three compression strategies (pruning, weight
clustering and post-training quantisation) – one more by
Hooker et al. (who consider pruning and post-training quan-
tisation), and two more by the study by Paganini, which
focuses solely on pruning.

• Considering the combined effect of compression tech-
niques: In practice, compression techniques are often com-
bined together to form so called “compression pipelines” [20].
That is why, we also consider two combinations of compres-
sion strategies (pruning with quantisation and weight clus-
tering with quantisation). The previous studies have only ex-
amined the individual behaviour of compression techniques.

2 BACKGROUND
2.1 Algorithmic Fairness
Nowadays, machine learning algorithms are used to inform or au-
tomate decision-making across various fields of high social impor-
tance. Machine learning approaches have been used for automating
recruitment in large companies [53], assigning credit scores [30, 54]
and anticipating criminal activity [21] to name a few.

The increasing impact of machine learning on our society has
highlighted the importance of algorithmic fairness. An algorithm is
considered to be fair if its behaviour is not improperly influenced
by sensitive attributes (e.g., a person’s gender or race) [36].

Nevertheless, recent studies have exposed the propensity of al-
gorithms to be unfair and exhibit dangerous biases , potentially
“reinforcing the discriminatory practices in society” [6]. For example,
Amazon’s AI recruitment tool has been reported to favour male
applicants over female applicants [15]. Apple’s credit score has also
been shown to systematically disadvantage women [1]. A study by
Joy Buolamwini has demonstrated that popular facial analysis ser-
vices perform disproportionately poorly on dark-skinned females
[10].

The increasing awareness of algorithmic biases has given rise
to multiple fairness initiatives such the Algorithmic Justice League
[24], IBM’s AI Fairness 360 [2] and Google’s ML Fairness [44].
Research into fairness in facial expression recognition has also
started gaining momentum. Xu et al. [50] compared three different
bias-mitigation approaches, namely, a baseline, an attribute-aware,
and a disentangled approach on two well-known data sets, Real-
World Affected Faces-Database and CelebFaces Attributes. Cheong
et al. in [13] provided an overview and techniques that can be used
for achieving fairness in facial affect recognition.

Figure 1: A DNN before and after pruning has been applied.
The network has been stripped down to a subset of its orig-
inal weights and the overall density has decreased. Illustra-
tion adapted from [47].

Despite the large body of research which has studied the prob-
lem, though, there is still no consensus in the scientific community
on what the precise definition of fairness should be. Multiple defi-
nitions of fairness have been proposed but none of them is a “silver
bullet” that fits all use cases. Instead, the “right” choice of a fairness
metric often depends on the specific context in which the algorithm
is used [7].

For this work, and in the context of facial expression recognition,
we adopt the fairness definition of overall accuracy equality [48].
The definition is akin to the concepts of predictive parity [39]
and disparate mistreatment [55], and states that a fair algorithm
should have the same predictive accuracy regardless of any underlying
sensitive attributes.

To express this formally, assume we have a facial expression
recognition model that aims to predict a subject’s true expression
𝑌 by producing a prediction 𝑌 . Let the subject’s gender be denoted
by 𝐺 and be equal to either𝑚 (male) or 𝑓 (female)1. In that case,
we expect that a fair model would have the following property:

𝑃 (𝑌 = 𝑌 |𝐺 =𝑚) = 𝑃 (𝑌 = 𝑌 |𝐺 = 𝑓 ) (1)
That is, we expect that a fair FER model would classify the

expressions of male and female subjects with the same accuracy.

2.2 Model Compression Techniques
2.2.1 Quantisation. Quantisation is a popular compressionmethod
which can significantly reduce the size of the model, leading to
savings in storage and memory [12]. The key idea behind quanti-
sation is sacrificing precision for efficiency – while most standard
DNN implementations represent weights and activations using the
float32 datatype, quantisation allows to represent those values
using a smaller data type – normally float16 or int8 [32]. Quan-
tisation can either be introduced during training (also known as
quantisation-aware training), or it can be applied to a pre-trained
model, which is known as post-training quantisation [35]. In our
experiments, we consider post-training quantisation to the int8
type.

1Scheuerman et al. [40] have noted that in the context of facial analysis, it is useful to
differentiate gender appearance (whether a subject appears feminine or masculine) from
gender self-identification (whether a subject identifies as male or female). Throughout
this report, we use the terms “male” and “female” to refer only to gender appearance
and make no assumptions about the gender self-identification of the subjects.
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Figure 2: Diagram depicting the process of weight clustering.
Similar weights get grouped together into the same cluster
(step 1○), after which weights are replaced with pull indices
(step 2○). Figure adapted from [3]

2.2.2 Pruning. Weight pruning is another compression strategy
which can greatly reduce the size of a DNN [32]. It does so by
eliminating redundant weights which contribute little to the be-
haviour of the model. As illustrated in Figure 1, pruning reduces
the density of the neural network, making it more lightweight and
easier to compress by traditional compression tools such as zip2.
Which weights get pruned is dictated by the pruning strategy. The
most popular approach, which we focus on in this project, is called
magnitude-based pruning [9] and eliminates the weights with the
lowest absolute value – i.e., the ones whose values are the closest
to zero. The proportion of weights that need to be pruned is called
the pruning sparsity – for example, pruning at 90% sparsity would
remove 90% of the connections in a given network.

2.2.3 Weight Clustering. Weight clustering (also known as weight
sharing [20]) reduces the size of the model by grouping together
weight of similar values. This process is illustrated in Figure 2: Dur-
ing step 1○, weight matrices are processed by a clustering algorithm,
which maps each weight to one of 𝑛 clusters (where 𝑛 is the number
of clusters specified by the user). Each cluster consists of an index
(one of 0, 1, ..., 𝑛 − 1) and a centroid value which is representative
of the values of the weights mapped to that cluster. During step
2○, the weight matrices of the DNN are replaced with pull indices
– instead of containing the values of the corresponding weights,
each pull index contains the index of the cluster containing the
respective weight. During inference, the DNN model can use the
pull indices to obtain the centroid values corresponding to each
weight.

Clustering reduces the model size for two reasons: First, float
values only need to be stored to represent the 𝑛 centroid values.
Meanwhile, the entire weight matrix is replaced with pull indices,
each index represented by the smaller integer type. And second,

2https://www.tensorflow.org/model_optimization/guide/pruning

(a) Train dataset.

(b) Test dataset.

Figure 3: Distribution of emotions across the train and test
split of the CK+ dataset.

Figure 4: Images from the CK+ [34] dataset after cropping.

the resulting pull indices are more likely to contain repeating val-
ues, making standard compression tools (e.g., zip) more effective,
similar to pruning.

3 IMPLEMENTATION
In this chapter, we summarise the implementation steps which the
project has involved. A more detailed description of the techni-
cal implementation is available in the README.md file of the code
repository provided with the submission.

3.1 Data
To perform facial expression recognition, we make use of two pop-
ular datasets of human faces - CK+ [34] and RAF-DB [31], which
we describe below.

3.1.1 Extended Cohn-Kanade Dataset. The Extended Cohn-Kanade
Dataset (CK+) has been widely used in the context of facial expres-
sion recognition [8, 52]. It contains 327 labelled image sequences
across 123 unique subjects, expressing one of 8 basic emotions -
“neutral”, “anger”, “contempt”, “disgust”, “fear”, “happy”, “sadness”

https://www.tensorflow.org/model_optimization/guide/pruning
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Figure 5: Images from the RAF-DB [31] dataset.

and “surprise”. Images have been obtained in a controlled lab en-
vironment with subjects facing the camera as illustrated in Figure
4.

In order to examine bias, we need annotations of demographic
attributes. CK+ does not provide any annotations in that respect, so
we manually annotate all 123 subjects based on their gender appear-
ance. We assign a value “male” if the subject looks masculine, and a
value “female” if they look feminine. The annotations are provided
in the project repository under ckplus_labels.csv. According to
our annotation, the dataset consists of 84 female subjects and 39
male subjects.

We then apply several pre-processing steps to the CK+ dataset:
For each sequence in the dataset, we take the first frame to rep-
resent a neutral emotion, and the last 3 frames to represent the
emotion which the sequence was annotated with (e.g. “happy”,
“sad”, etc.). That is a common pre-processing step since CK+ se-
quences “are from the neutral face to the peak expression” according
to the dataset’s documentation. We then use the dlib3 library to
detect the faces of the subjects and crop the images around them
(allowing an extra 10% on each side to avoid cropping out parts of
the chin, forehead or ears).

For validation purposes, we split the original CK+ dataset into a
train and test dataset. We use cross-subject validation, allocating 86
subjects to the train dataset and the other 37 to the test dataset. That
gives us 924 images in total in the train dataset and 384 images in the
test dataset. The train and test dataset follow a similar distribution
with respect to the emotion labels as shown in Figure 3.

Finally, several data transformations are applied to the images us-
ing TensorFlow’s ImageDataGenerator4: Images are scaled down
to 48 × 48 pixels and converted to grayscale (since CK+ contains
some RGB images). Finally, to compensate for the relatively small
size of the dataset, we augment the data by applying random hori-
zontal flipping and random rotation in the range [−10◦, 10◦].

3.1.2 Real-World Affective Faces Database. The Real-World Affec-
tive Faces Database (RAF-DB) [31] is another dataset of human
faces which has been commonly used in the field of FER [49, 51]. It
provides 15,339 RGB images of human faces, aligned into squares
of 100 × 100 pixels. Each image depicts one of seven basic emo-
tions: “surprise”, “fear”, “disgust”, “happiness”, “sadness”, “anger” and
“neutral”.

Unlike CK+ images, RAF-DB images are “in-the-wild” - they have
not been recorded in a controlled environment, so emotions are

3http://dlib.net/
4https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/
ImageDataGenerator

(a) Train dataset.

(b) Test dataset.

Figure 6: Distribution of emotions across the train and test
split of the RAF-DB dataset.

(a) Accuracy during training (b) Loss during training

Figure 7: Accuracy and loss during training the baseline CK+
classifier.

often expressed more subtly, lighting can vary and faces may be
obfuscated as illustrated in Figure 5.

Additionally, the RAF-DB dataset provides labels across three
demographic categories - gender (with subjects labelled as one of
“male”, “female” or “unsure” ), race (“Caucasian”, “African-American”
or “Asian”) and age (with subjects being assigned to one of 5 age
groups - 0-3, 4-19, 20-39, 40-69 and 70+). We form the train and test
dataset preserving the original split defined by the authors [31].
This gives us 12271 training images and 3068 test images, with
emotions distributed as shown in Figure 6.

3.2 Baseline Models
We use the CK+ and RAF-DB datasets to implement two FER classi-
fiers to serve as baselines to which we will apply the compression
strategies. We follow an FER tutorial by S. Kekre [25] to set up a
DNN classifier in Keras [14]. The architecture for the CK+ baseline

http://dlib.net/
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator
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(a) Accuracy during training (b) Loss during training

Figure 8: Accuracy and loss during training the baseline
RAF-DB classifier.

is shown in Table 1, and the RAF-DB architecture can be found in
Table 2 - the two are almost identical except for minor differences
to account for the different input size and the different number of
classes. The neural architecture is inspired by a study by Goodfel-
low et al. [17] and contains 4 convolutional layers, followed by 2
hidden fully-connected layers (with pooling and dropout layers in-
between). At the time of its publication, the architecture achieved
a then state-of-the-art performance of around 65% on the FER-2013
dataset [4, 17].

We compile the baseline models using an Adam optimiser [26]
and a categorical cross-entropy loss [18]. We train each model for
20 iterations keeping track of training and validation accuracy,
and training and validation loss (where training is performed only
on the train dataset and validation is performed only on the test
dataset). At every iteration, we store the “best” weights observed so
far (i.e., the ones associated with the highest validation accuracy).

The process of obtaining the CK+ and the RAF-DB baseline
is illustrated in Figure 7 and Figure 8 respectively. The optimal
weights are obtained after the 10th iteration for CK+ and after the
19th iteration for RAF-DB when the two models report respectively
67.96% and 82.46% validation accuracy.

3.3 Model Compression Implementation
We implement three model compression strategies – magnitude-
based weight pruning, post-training quantisation and weight clus-
tering. To do this, we make use of TensorFlow’sModel Optimization
Toolkit5, part of the TFLite framework [28].

3.3.1 Quantisation. To quantise the model, we convert the pre-
trained Keras baseline described in the last section to a TFLite model
and apply the default TFLite optimisation strategy6 which reduces
the model representation to 8 bits. Finally, we store the quantised
model on disk and compress it using the zip compression tool, so
that we are able to observe the change in size that quantisation has
introduced.

5https://www.tensorflow.org/model_optimization/guide
6https://www.tensorflow.org/api_docs/python/tf/lite/Optimize

Table 1: Summary of the architecture of the CK+ baseline
model generated using Keras’s model.summary(). The None
values indicate the batch size is flexible.

Layer Output Shape

conv2d (None, 48, 48, 64)
batch_normalization (None, 48, 48, 64)

activation (None, 48, 48, 64)
max_pooling2d (None, 24, 24, 64)

dropout (None, 24, 24, 64)
conv2d_1 (None, 24, 24, 128)

batch_normalization_1 (None, 24, 24, 128)
activation_1 (None, 24, 24, 128)

max_pooling2d_1 (None, 12, 12, 128)
dropout_1 (None, 12, 12, 128)
conv2d_2 (None, 12, 12, 512)

batch_normalization_2 (None, 12, 12, 512)
activation_2 (None, 12, 12, 512)

max_pooling2d_2 (None, 6, 6, 512)
dropout_2 (None, 6, 6, 512)
conv2d_3 (None, 6, 6, 512)

batch_normalization_3 (None, 6, 6, 512)
activation_3 (None, 6, 6, 512)

max_pooling2d_3 (None, 3, 3, 512)
dropout_3 (None, 3, 3, 512)
flatten (None, 4608)
dense (None, 256)

batch_normalization_4 (None, 256)
activation_4 (None, 256)
dropout_4 (None, 256)
dense_1 (None, 512)

batch_normalization_5 (None, 512)
activation_5 (None, 512)
dropout_5 (None, 512)
dense_2 (None, 8)

Total trainable parameters: 4,479,240

3.3.2 Pruning. Weapply pruning using TFLite’s ConstantSparsity7
prnuing schedule. Our implementation is parameterised by the
pruning sparsity – we observe the effect of this parameter on com-
pression in Section 4. After pruning has been applied, we fine-tune
the pruned model for 2 iterations as suggested by the TFLite docu-
mentation. Similarly to quantisation, we store the model on disk
and compress it to evaluate the reduction in size.

3.3.3 Weight Clustering. We implement weight clustering using
TFLite’s cluster_weights8 module and parameterise it by the
number of clusters. Similar to pruning, we fine-tune the clustered
model, store it on disk and compress it with zip.

3.3.4 Combined Compression. Additionally, our implementation
allows applying quantisation on top of a pruned or a weight clus-
tered model. This gives us two additional “hybrid” compression
strategies - pruning with quantisation, and weight clustering with

7https://www.tensorflow.org/model_optimization/api_docs/python/tfmot/sparsity/
keras/ConstantSparsity
8https://www.tensorflow.org/model_optimization/api_docs/python/tfmot/
clustering/keras/cluster_weights

https://www.tensorflow.org/model_optimization/guide
https://www.tensorflow.org/api_docs/python/tf/lite/Optimize
https://www.tensorflow.org/model_optimization/api_docs/python/tfmot/sparsity/keras/ConstantSparsity
https://www.tensorflow.org/model_optimization/api_docs/python/tfmot/sparsity/keras/ConstantSparsity
https://www.tensorflow.org/model_optimization/api_docs/python/tfmot/clustering/keras/cluster_weights
https://www.tensorflow.org/model_optimization/api_docs/python/tfmot/clustering/keras/cluster_weights
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quantisation. We use those in our evaluation to explore the com-
bined effect of compression techniques.

4 EXPERIMENTS
In this section we introduce the metrics we have considered during
our experiments, and present the results we have obtained. We
focus on the more interesting results from the study, however a
more detailed breakdown of results is provided in the appendix as
Table 6 and Table 7.

4.1 Metrics
In our experiments, we compare the uncompressed baseline model
against compressed versions of it across 3 metrics:

• Model size – that is the size of themodel on disk inmegabytes.
This metric measures how effective a compression strategy
is in reducing the storage requirement of the model. While
some of the compression strategies could also reduce other
system metrics such as latency, we focus on model size since
all three compression techniques are primarily used to re-
duce storage consumption.

Table 2: Summary of the architecture of the RAF-DB base-
line model generated using Keras’s model.summary(). The
None values indicate the batch size is flexible.

Layer Output Shape

conv2d (None, 100, 100, 64)
batch_normalization (None, 100, 100, 64)

activation (None, 100, 100, 64)
max_pooling2d (None, 50, 50, 64)

dropout (None, 50, 50, 64)
conv2d_1 (None, 50, 50, 128)

batch_normalization_1 (None, 50, 50, 128)
activation_1 (None, 50, 50, 128)

max_pooling2d_1 (None, 25, 25, 128)
dropout_1 (None, 25, 25, 128)
conv2d_2 (None, 25, 25, 512)

batch_normalization_2 (None, 25, 25, 512)
activation_2 (None, 25, 25, 512)

max_pooling2d_2 (None, 12, 12, 512)
dropout_2 (None, 12, 12, 512)
conv2d_3 (None, 12, 12, 512)

batch_normalization_3 (None, 12, 12, 512)
activation_3 (None, 12, 12, 512)

max_pooling2d_3 (None, 6, 6, 512)
dropout_3 (None, 6, 6, 512)
flatten (None, 18432)
dense (None, 256)

batch_normalization_4 (None, 256)
activation_4 (None, 256)
dropout_4 (None, 256)
dense_1 (None, 512)

batch_normalization_5 (None, 512)
activation_5 (None, 512)
dropout_5 (None, 512)
dense_2 (None, 7)

Total trainable parameters: 8,013,703

• Accuracy – this is the overall accuracy a model achieves on
the test dataset. We use this metric as an indicator of how
compression has impacted predictive accuracy.

• Gender accuracy – to examine the fairness of the models,
we also introduce the measure of gender accuracy, specifi-
cally as female vs. male accuracy. We define female accuracy
as the number of correctly classified images containing a
female subject over the total number of images containing
a female subject. Similarly, male accuracy is the number
of correctly classified images where the subject was male
over the total number of images where the subject was male.
Under the overall accuracy equality formulation of fairness,
which we defined in section 2.1, an unbiased model should
have equal or similar female and male accuracy metrics. Con-
versely, a large discrepancy between the model’s accuracy
for males and females would be a strong indicator of algorith-
mic bias. Just like overall accuracy, male and female accuracy
are measured on the test dataset.

• Race accuracy – this is similar to the gender accuracy, but
this time we aim to examine the fairness of the models for
different race groups as defined in the corresponding dataset.
An unbiased model should have equal or similar accuracy
for different race groups. Conversely, a large discrepancy be-
tween the model’s accuracy for different race groups would
be a strong indicator of algorithmic bias. These are measured
on the test dataset.

• Age accuracy – this is similar to the gender and ethnicity
accuracy, but this time we aim to examine the fairness of the
models for different age groups as defined in the correspond-
ing dataset. An unbiased model should have equal or similar
accuracy for different age groups. These again are measured
on the test dataset.

4.2 CK+ Experiments
4.2.1 Baseline Performance. We first report the baseline perfor-
mance against which we compare the performance of the com-
pressed models. As mentioned previously, the baseline model re-
ports an overall accuracy of 67.96% on the test dataset. We measure
the baseline’s size in the same way we measure the size of the com-
pressed models – we save the model as a file on disk and apply zip
compression to the file. After doing that, we find that the baseline’s
model size on disk is 16,512,048 bytes or around 16.51 megabytes.

We find that the female accuracy of the baseline model is 67.08%
and the male accuracy is 69.44%. This is interesting because as we
mentioned in Section 3.1, the CK+ dataset is imbalanced in favour of
female subjects and therefore we would expect the baseline model
to classify females more accurately.

One reason why the classifier might perform slightly better on
male faces is the slight difference in the distribution of emotions
across males and females in CK+ – for instance, only 2.1% of male
subjects have expressed “contempt” while female subjects have
expressed this emotion more than twice more frequently (5.02%). If
contempt is an emotion that is inherently harder to classify, then
this difference could translate into a minor advantage for classifying
male subjects. In any case, though, the gap betweenmale and female
accuracy is too minor to conclude the baseline model is biased.
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Figure 9: Size of the CK+ classifier before (top) and after (bot-
tom) applying quantisation.

4.2.2 Quantisation Results. We evaluate quantisation by quantis-
ing the baseline model 3 times and reporting the mean values for
each metric.

After applying quantisation to the baseline model, we observe a
4× reduction in the model size as illustrated in Figure 9. Moreover,
this compression comes at no cost – there is no change in the pre-
dictive accuracy or fairness whatsoever: Overall accuracy, female
accuracy and male accuracy have all remained completely identical
to those of the baseline model. Quantisation therefore preserves the
fairness and predictive accuracy of the model, while introducing a
significant reduction in its size.

4.2.3 Pruning Results. We evaluate the pruning strategy at 6 dif-
ferent levels of sparsity: 10%, 20%, 30%, 40%, 50% and 60%. For each
level of sparsity, we prune the baseline model three times and report
the mean values for each metric.

We can observe the trade-off that pruning sparsity introduces in
Figure 10: As sparsity increases, the model size decreases linearly,
reducing the model size by a half at 60% sparsity. However, high
sparsity also reduces the network capacity which can impact the
accuracy of the model [37]. We can see in Figure 10 (b) that overall
accuracy steadily starts to decrease at 40% and 50% sparsity before
plummeting at 60%.

Except for the considerable drop of accuracy at 60% sparsity,
though, we can conclude that pruning has had little impact on
overall accuracy: At 50% pruning, accuracy has only dropped from
67.96% down to 64.06%.

However, despite the minor drop in overall accuracy, we find that
pruning has dramatically increased the discrepancy between female
and male accuracy: Table 3 shows that pruning the model tends to
keep male accuracy high (in fact, male accuracy has increased for
all sparsities up to 50%) while deteriorating female accuracy (which
has dropped by 7.22% at 50% sparsity).9

Those results are in agreement with the study by Hooker et al.,
which finds that “minimal changes to overall accuracy hide dispro-
portionately high errors” [22] in subgroups. Pruning the baseline
model by up to 50% has led to a considerable reduction in size
with seemingly low impact on overall accuracy. However, while
overall accuracy has stayed reasonably high, the initial 2.36% gap
between male and female accuracy has grown to 15.6%, amplifying
the minimal bias in the baseline model.

As mentioned previously, we are also interested in the “com-
bined” effect of compression techniques. To this end, we apply
quantisation on top of the pruned models. We find that quantisation
9Interestingly, pruning at 60% actually reports better female than male accuracy.
However, at 60% sparsity both male and female accuracy are too low for such a model
to be of practical interest.

(a) Model size after pruning.

(b) Model accuracy after pruning. Standard deviation is
shaded in gray.

Figure 10: Pruning’s effect on model size and accuracy for
CK+ DB.

Table 3: Pruning’s effect on fairness for CK+ DB.

Sparsity Female accuracy Male accuracy Gap

0% (baseline) 67.08% 69.44% 2.36%
10% 59.86% 75.46% 15.60%
20% 62.77% 75.69% 12.92%
30% 62.36% 75.69% 13.33%
40% 63.47% 69.67% 6.20%
50% 59.86% 71.06% 11.20%
60% 44.02% 36.34% 7.68%

can greatly enhance the compression effect of pruning: Quantising
the pruned models has decreased their size by a further 3.5 times
on average (exact results reported in Table 6 in the appendix).

Meanwhile, quantisation has not changed the overall accuracy,
male accuracy or female accuracy of the pruned models by more
than 1%. Again, applying quantisation is “for free” since no signifi-
cant impact on predictive performance or fairness is observed.

4.2.4 Weight Clustering Results. We evaluate weight clustering
with 4, 8, 16, 32, 64 and 128 clusters. For each number of clusters,
we run weight clustering 3 times and report the mean values for
each metric.

Similar to pruning, the “number of clusters” parameter intro-
duces a size-accuracy trade-off illustrated in Figure 11. Decreasing
the number of clusters rapidly decreases the baseline model size
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(a) Model size after clustering.

(b)Model accuracy after weight clustering. Standard deviation
is shaded in gray.

Figure 11: Weight clustering’s effect on size and overall ac-
curacy for CK+ DB.

(shrinking it by almost 14 times at 4 clusters). However, an exces-
sively low number of clusters can decrease accuracy dramatically
(with overall accuracy dropping below 45% at 4 clusters).

Despite that, we can see that keeping the number of clusters
sufficiently high (between 8 and 128) preserves overall accuracy
close to the baseline accuracy of 67.96%, while offering a lucrative
reduction in model size.

Just like with pruning, though, the overall accuracy of the clus-
tered models is deceptive as it hides an increasing gap between
male and female accuracy. Table 4 shows that the baseline 2.36%
gap has increased massively, reaching 19.77% in favour of male
subjects at 16 clusters.

Applying quantisation to the clustered models reduces their size
by a further 17% on average – a much smaller reduction than was
observed for pruning. Again, though, quantisation comes at no
cost for accuracy or fairness – overall accuracy, male accuracy and
female accuracy have all stayed within 1.5% of the values for the
clustered models.

4.3 RAF-DB Experiments
We now present the results obtained on the RAF-DB dataset. We
provide the full results in Table 7 in the appendix, and only sum-
marise the more interesting results below.

4.3.1 Baseline Performance. The performance of the baseline RAF-
DB classifier is summarised in Table 5. The baseline model has a size
of 29.80 MB and reports overall test accuracy of 82.46%, which

Table 4: Weight clustering’s effect on fairness for CK+ DB.

Number of clusters Female accuracy Male accuracy Gap

4 43.05% 47.22% 4.17%
8 59.30% 72.91% 13.61%
16 56.38% 76.15% 19.77%
32 60.55% 72.68% 12.13%
64 60.27% 78.47% 18.20%
128 59.16% 72.45% 13.29%

Table 5: Metrics for the baseline RAF-DB classifier.

Metric Value

Size 29.80 MB
Overall accuracy 82.46%

Female accuracy 83.33%
Male accuracy 80.54%

Caucasian accuracy 81.92%
African-American accuracy 86.75%

Asian accuracy 83.02%

A0 accuracy 89.96%
A1 accuracy 82.96%
A2 accuracy 80.44%
A3 accuracy 85.85%
A4 accuracy 70.78%

seems acceptable given that much larger, state-of-the-art architec-
tures have reported between 86% and 89% on this dataset [56]. In
terms of fairness, the classifier seems to classify female subjects
slightly more accurately than male subjects, and African-American
subjects better than Caucasian or Asian subjects. However, those
differences are minor. A more major classification gap is observed
with respect to the age attribute where there is a 19% classification
gap between the best classified age group (A0 or 0-3 years old) and
the worst classified age group (A4 or 70+ years old). This could be
due to younger subjects expressing emotions more explicitly, or a
different distribution of emotion labels across the two age groups.
Such a conclusion is supported by relevant works indicating that
the age of the face plays an important role for facial expression
decoding and factors such as lower expressivity and age-related
changes in the face may lower decoding accuracy for older faces
[16].

4.3.2 Quantisation Results. Figure 12 shows the size of the RAF-
DB classifier before (top) and after (bottom) applying quantisation.
We observe that applying quantisation to the baseline classifier
reduces the size of the model by around 4.5 times - from 29.80 MB
down to 6.56 MB. At the same time, similar to the CK+ experiments,
applying quantisation does not impact the predictive performance
of the classifier. The quantised model’s overall accuracy is identical
to the one reported by the baseline model (82.46%), and Table 7
shows that none of the per-class accuracies have changed by more
than 0.2%.
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Figure 12: Size of theRAF-DB classifier before (top) and after
(bottom) applying quantisation.

(a) Model size after pruning. (b) Model accuracy after
pruning. Standard deviation is
shaded in gray.

Figure 13: Pruning’s effect on model size and accuracy for
RAF-DB.

4.3.3 Pruning Results. Similar to the CK+ experiments, we observe
that applying pruning to the RAF-DB classifier translates to a linear
reduction in model size as illustrated in Figure 13. Unlike the CK+
classifier though, the accuracy of the RAF-DB model seems to be
much more robust to pruning. Even at 80% sparsity, the overall
accuracy has only dropped down to 81.73% compared to the baseline
(82.46%). Only when sparsity increases to 90% do we observe a more
significant drop in accuracy down to 77.23%. The RAF-DB model is
therefore more akin to models such as MNIST classifiers [5] where
near-optimal accuracy can be preserved even at 99% sparsity. We
analyse the difference in robustness between the CK+ and the RAF-
DB model, and discuss potential causes for this disparity in the
Discussion section.

As for gender fairness, the original 2.8% classification gap varies
between 0.2% and 2.7% depending on the level of sparsity, so there
is no evidence suggesting that sparsity has negatively impacted
fariness. Since RAF-DB also has race and age labels, we can analyse
fairness across those dimensions as well. The full fairness metrics
are presented in Table 7, which shows that applying pruning to
the RAF-DB classifier has little to no effect on model age and race
fairness too.

4.3.4 Weight Clustering Results. Figure 13 shows pruning’s effect
on model size and accuracy for RAF-DB. In terms of model accuracy,
the classifier trained and tested on RAF-DB seems more robust
to compression compared to the CK+ experiments. Regardless of
the level of sparsity or the number of clusters of the compression
strategy, the overall accuracy of the compressed model does not fall
below 77%, which is not significantly lower than the uncompressed
(or baseline) model, which has an accuracy of 82%.

5 DISCUSSION
In this study, we analysed and compared the effect of model com-
pression on model size, accuracy and fairness in the context of

(a) Model size after clustering.

(b)Model accuracy after weight clustering. Standard deviation
is shaded in gray.

Figure 14: Weight clustering’s effect on size and overall ac-
curacy for RAF DB.

Figure 15: Distribution of the kernel weights of the conv2d
layer of the CK+ classifier before (left) and after (right) prun-
ing at 60%.

facial expression recognition on two facial expression datasets. We
now revisit our research questions from Section ??:

• RQ1: “How effective is model compression in the context
of FER?” We saw that model compression can dramatically
reduce the storage requirements of both FER models. Quan-
tisation alone achieves around 4 − 4.5× reduction in model
sizes with minimal impact on overall accuracy for both CK+
and RAF-DB. Both pruning and clustering progressively de-
crease the model size on disk as sparsity increases (and the
number of clusters decrease). In terms of model accuracy, the
classifier trained and tested on RAF-DB seems more robust
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Figure 16: Distribution of the kernel weights of the conv2d
layer of the RAF-DB classifier before (left) and after (right)
pruning at 60%.

to compression compared to the CK+ DB one. Regardless of
the level of sparsity or the number of clusters of the com-
pression strategy, the overall accuracy of the compressed
model does not fall below 77%.

• RQ2: “Domodel compression techniques amplify biases?”
Our findings for CK+DB confirm the claims by previous stud-
ies that model compression can amplify existing biases for
gender for deep learning models trained for facial expression
recognition. However our findings for RAF-DB indicate that
sparsity does not impact fairness in terms of gender, race or
age negatively.

• RQ3: “Is the impact on fairness identical across differ-
ent compression techniques?” Our results for CK+ DB sug-
gest that different compression techniques tend to have a
highly distinct impact on fairness: Post-training quantisation
has no visible effect on baseline fairness. Meanwhile, pruning
and weight clustering can severely amplify biases, increasing
the initial 2.36% gap between male and female accuracy to
15.60% and 19.77% respectively. On the other hand for RAF-
DB we find that the different compression strategies do not
seem to increase the gap in predictive performance across
any of the three demographic attributes (gender, race and
age). That is in contrast with the CK+ experiment findings
where compression seems to amplify existing biases.

In order to understand the reasons for the different findings re-
lated to these datasets, we compare the weight distributions of CK+
and RAF-DB before pruning, and we see that the CK+ distribution
has a ‘wider’ shape compared to the RAF-DB one which is much
more ‘narrow’ and most of its values are located close to its mean
at 0.00. As a result, when we prune the two models, we get gaps of
different sizes. For the ‘wide’ CK+ distribution, when we prune at
60%, we need to set ‘crop’ or zero-out 60% of its weights. However,
the CK+ weights are relatively evenly distributed and most of them
are located at some (relative) distance from the 0.00 mean. As a
result, we need to ‘crop’ weights which are not located immediately
around the centre and that causes a wide gap in the middle. We
can expect that a large gap will have a bigger impact on predictive
performance since it means values which are further from 0.00
have been set to 0.00. Meanwhile, for the RAF-DB the resulting gap
is much smaller. This is because the original distribution is much

more ‘narrow’ in terms of shape with a big share of the weights
located at or close to 0.00. Therefore, when we prune at 60%, the
60% of the weights which we set to 0.00 are going to be already
equal to or close to 0.00 and therefore we can expect a minor impact
on predictive performance. This can explain why RAF-DB is much
more robust than CK+ to pruning. As a reminder, at 60% pruning,
CK+’s accuracy dropped from 68% down to 42%, and RAF-DB’s
accuracy only dropped from 82.4% down to 81.6%. While the plots
in this paper only show the weights from the first dense layer, we
observe a similar trend for the weights of the other dense layers,
as well as the weights of the convolutional layers. It is important
to note that the CK+DB is much more homogenous in terms of ac-
quisition setup and setting as compared to RAF-DB which contains
various facial images crawled from the internet, and the size of CK+
DB is significantly smaller than RAF-DB.

6 LIMITATIONS AND FUTUREWORK
We identify a couple of limitations of our study: First, the gender
annotation of the CK+ dataset was performed manually. While
the annotations were straightforward, labels could be obtained via
a crowdworking experiment or a user study to better ensure the
ground truth is reliable and unbiased.

Furthermore, our baseline model is not a state-of-the-art FER
classifier as of 2021. We deliberately selected a relatively small
architecture that could be trained, fine-tuned and evaluated locally,
but given more time and computational resources the study could
be extended to consider a larger and more modern architecture.

The work in this paper could be extended in several different
directions: More compression strategies (e.g., quantisation-aware
training and various forms of weight sharing [29]) could also be
evaluated. The study could also be extended to explore more system
metrics such as latency, memory consumption, etc.
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A FULL CK+ RESULTS

Table 6: Full results from the CK+ experiments.

Model Size (MB) Overall acc. Female acc. Male acc.

baseline 16.51 67.96% 67.08% 69.44%

quantised 4.04 67.96% 67.08% 69.44%

pruned (10%) 15.56 65.71% 59.86% 75.46%
pruned (20%) 14.31 67.62% 62.77% 75.69%
pruned (30%) 12.97 67.36% 62.36% 75.69%
pruned (40%) 11.55 65.79% 63.47% 69.67%
pruned (50%) 10.10 64.06% 59.86% 71.06%
pruned (60%) 8.58 41.11% 44.02% 36.34%

pruned (10%) + quant. 3.88 65.45% 59.58% 75.23%
pruned (20%) + quant. 3.73 67.53% 62.50% 75.92%
pruned (30%) + quant. 3.51 67.36% 62.36% 75.69%
pruned (40%) + quant. 3.21 66.05% 63.88% 69.67%
pruned (50%) + quant. 2.85 64.06% 59.86% 71.06%
pruned (60%) + quant. 2.44 40.88% 43.61% 36.34%

clustered (4 cl.) 1.18 44.61% 43.05% 47.22%
clustered (8 cl.) 2.11 64.40% 59.30% 72.91%
clustered (16 cl.) 2.88 63.80% 56.38% 76.15%
clustered (32 cl.) 3.65 65.10% 60.55% 72.68%
clustered (64 cl.) 4.34 67.10% 60.27% 78.47%
clustered (128 cl.) 5.26 64.14% 59.16% 72.45%

clust. (4 cl.) + quant. 0.91 43.57% 42.08% 46.06%
clust. (8 cl.) + quant. 1.81 64.49% 59.72% 72.45%
clust. (16 cl.) + quant. 2.57 64.49% 57.08% 76.85%
clust. (32 cl.) + quant. 3.22 65.71% 61.25% 73.14%
clust. (64 cl.) + quant. 3.63 66.75% 60.00% 78.00%
clust. (128 cl.) + quant. 3.79 64.49% 59.72% 72.45%
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B FULL RAF-DB RESULTS

Table 7: Full results from the RAF-DB experiments. “Female” and “Male” indicate accuracies for female and male subjects
respectively. “Cauc.”, “Af.-Am.” and “Asian” denote accuracies for subjects labelled as Caucasian, African-American and Asian
respectively. “A0” to “A4” indicate accuracies across the 5 age groups - 0-3, 4-19, 20-39, 40-69 and 70+.

Model Size (MB) Overall acc. Female Male Cauc. Af.-Am. Asian A0 A1 A2 A3 A4

baseline 29.80 82.46% 83.33% 80.54% 81.92% 86.75% 83.02% 89.96% 82.92% 80.44% 85.85% 70.78%

quantised 6.56 82.46% 83.20% 80.70% 81.92% 86.75% 83.02% 89.96% 82.92% 80.50% 85.65% 70.78%

pruned (10%) 28.15 79.51% 80.04% 78.64% 79.00% 81.90% 80.88% 82.57% 82.64% 78.53% 79.88% 67.41%
pruned (20%) 26.01 78.30% 78.72% 77.47% 78.10% 80.19% 78.32% 82.16% 79.35% 77.47% 79.34% 67.79%
pruned (30%) 23.65 80.84% 81.37% 79.69% 80.44% 84.33% 81.09% 85.51% 82.71% 78.90% 84.32% 70.03%
pruned (40%) 21.09 81.38% 81.95% 79.93% 80.97% 84.04% 82.10% 88.34% 82.78% 79.56% 83.79% 68.53%
pruned (50%) 18.41 81.11% 81.83% 79.47% 80.85% 84.33% 80.81% 87.03% 82.85% 79.18% 83.59% 71.91%
pruned (60%) 15.63 81.64% 82.53% 79.82% 81.18% 83.76% 82.88% 87.03% 82.57% 80.42% 82.73% 73.40%
pruned (70%) 12.62 82.02% 82.40% 80.62% 81.75% 84.90% 81.98% 87.84% 83.88% 80.22% 84.32% 71.16%
pruned (80%) 9.55 81.73% 82.26% 80.11% 81.35% 84.90% 82.05% 88.34% 83.19% 79.88% 83.86% 71.91%
pruned (90%) 6.21 77.23% 77.09% 76.83% 76.77% 78.20% 79.02% 82.26% 78.87% 75.35% 80.34% 67.41%

pruned (10%) + quant. 6.44 79.54% 80.06% 78.62% 79.05% 81.90% 80.74% 82.67% 82.57% 78.58% 79.94% 67.04%
pruned (20%) + quant. 6.29 78.32% 78.68% 77.58% 78.16% 80.19% 78.19% 82.06% 79.49% 77.45% 79.54% 67.41%
pruned (30%) + quant. 6.03 80.85% 81.44% 79.58% 80.50% 84.33% 80.88% 85.71% 82.78% 78.92% 84.19% 69.66%
pruned (40%) + quant. 5.55 81.46% 82.05% 79.98% 81.05% 84.04% 82.19% 88.34% 82.78% 79.68% 83.86% 68.53%
pruned (50%) + quant. 5.02 81.04% 81.83% 79.47% 80.78% 84.33% 80.67% 87.03% 82.71% 79.18% 83.20% 72.28%
pruned (60%) + quant. 4.38 81.64% 82.46% 79.90% 81.19% 83.76% 82.81% 86.93% 82.51% 80.42% 82.86% 73.40%
pruned (70%) + quant. 3.57 82.05% 82.42% 80.65% 81.79% 84.75% 81.98% 87.84% 84.01% 80.26% 84.19% 71.16%
pruned (80%) + quant. 2.73 81.70% 82.26% 80.11% 81.36% 84.75% 81.84% 88.14% 83.19% 79.76% 84.19% 71.91%
pruned (90%) + quant. 1.65 77.33% 77.26% 76.88% 76.88% 77.92% 79.22% 82.16% 78.94% 75.49% 80.47% 67.41%

clustered (4 cl.) 1.88 79.22% 79.71% 78.08% 79.05% 79.05% 80.12% 85.61% 81.55% 76.93% 81.80% 71.16%
clustered (8 cl.) 2.94 80.18% 80.39% 79.34% 79.75% 81.48% 81.64% 85.10% 81.61% 78.68% 82.27% 70.41%
clustered (16 cl.) 4.35 76.54% 77.44% 75.02% 75.92% 78.77% 78.46% 80.64% 79.21% 75.15% 78.55% 61.42%
clustered (32 cl.) 5.77 80.56% 80.94% 79.42% 80.13% 82.62% 81.64% 86.32% 82.30% 78.90% 82.60% 69.28%
clustered (64 cl.) 7.03 78.03% 78.00% 77.55% 77.38% 81.48% 79.50% 82.97% 79.90% 76.07% 80.94% 69.66%
clustered (128 cl.) 8.39 81.27% 81.83% 80.19% 80.77% 82.62% 83.09% 86.72% 82.85% 79.82% 83.06% 69.66%

clust. (4 cl.) + quant. 1.39 77.89% 78.76% 76.32% 77.62% 78.49% 78.88% 82.57% 79.56% 76.11% 81.07% 66.66%
clust. (8 cl.) + quant. 2.29 79.97% 80.02% 79.37% 79.46% 82.33% 81.29% 84.80% 81.41% 78.49% 82.33% 68.53%
clust. (16 cl.) + quant. 3.53 76.44% 77.22% 74.99% 75.86% 78.34% 78.32% 80.54% 79.35% 75.23% 77.49% 62.17%
clust. (32 cl.) + quant. 4.71 80.62% 81.13% 79.47% 80.15% 83.04% 81.78% 85.71% 82.57% 79.30% 81.80% 69.28%
clust. (64 cl.) + quant. 5.52 78.00% 78.02% 77.52% 77.37% 80.62% 79.84% 82.57% 79.83% 76.15% 81.07% 68.53%
clust. (128 cl.) + quant. 5.89 81.13% 81.68% 80.09% 80.74% 82.19% 82.53% 86.01% 82.71% 79.76% 83.20% 68.53%
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