
Pebble guided Treasure Hunt in Plane?

Adri Bhattacharya1[0000−0003−1517−8779], Barun Gorain2, and Partha Sarathi
Mandal1[0000−0002−8632−5767]

1 Indian Institute of Technology Guwahati, India
{a.bhattacharya, psm}@iitg.ac.in

2 Indian Institute of Technology Bhilai, India
barun@iitbhilai.ac.in

Abstract. We study the problem of treasure hunt in a Euclidean plane
by a mobile agent with the guidance of pebbles. The initial position
of the agent and position of the treasure are modeled as special points
in the Euclidean plane. The treasure is situated at a distance at most
D > 0 from the initial position of the agent. The agent has a perfect
compass, but an adversary controls the speed of the agent. Hence, the
agent can not measure how much distance it traveled for a given time.
The agent can find the treasure only when it reaches the exact position
of the treasure. The cost of the treasure hunt is defined as the total
distance traveled by the agent before it finds the treasure. The agent
has no prior knowledge of the position of the treasure or the value of D.
An Oracle, which knows the treasure’s position and the agent’s initial
location, places some pebbles to guide the agent towards the treasure.
Once decided to move along some specified angular direction, the agent
can decide to change its direction only when it encounters a pebble or a
special point.
We ask the following central question in this paper:
“For given k ≥ 0, What is cheapest treasure hunt algorithm if at most k
pebbles are placed by the Oracle?”
We show that for k = 1, there does not exist any treasure hunt algo-
rithm that finds the treasure with finite cost. We show the existence of
an algorithm with cost O(D) for k = 2. For k > 8 we have designed
an algorithm that uses k many pebbles to find the treasure with cost
O(k2) +D(sin θ′+ cos θ′), where θ′ = π

2k−8 . The second result shows the
existence of an algorithm with cost arbitrarily close to D for sufficiently
large values of D.
Keywords Treasure Hunt, Mobile agent, Pebbles, Euclidean plane, De-
terministic algorithms.

1 Introduction

Treasure Hunt problem is the task of finding an inert target by a mobile agent
in an unknown environment. The unknown environment can be modeled as a

? The authors of the paper are thankful to Dr. Yoann Dieudonné for his valuable
inputs and suggestions.

ar
X

iv
:2

30
5.

06
06

7v
1

 [
cs

.D
C

]
 1

0
M

ay
 2

02
3

2 Bhattacharya et al.

network or a plane. Initially placed at a point in the unknown environment, a
mobile agent has to find an inert target, called the treasure. The target or the
treasure can be a miner lost in a cave. The cave can be uninhabitable for humans
to search for the lost miner, or it can be inundated with toxic waters henceforth,
the person should be found as fast as possible. In computer science applications,
a software agent must visit the computers connected by a local area network to
find the computer affected by malware.

In this paper, we study the problem of treasure hunt in the Euclidean plane
under a very weak scenario which assumes very little knowledge and control
power of the mobile agent. Specifically, the agent does not have any prior knowl-
edge about the position of the treasure or its distance from the treasure. More-
over, the agent has no control over the speed of its movement, and it is assumed
that an adversary completely controls the speed of the agent. In practice, for
software agents in a network, the movement speed of the agent depends on var-
ious factors, such as congestion in the network. In the case of hardware mobile
robots, their speeds depend on many mechanical characteristics as well as envi-
ronmental factors. The agent is equipped with a perfect compass, which helps
the agent to rotate and move in a prescribed direction. The agent is initially
placed at a point P in the plane. The treasure T is located at most D > 0 dis-
tance (unknown to the agent) from P . The agent finds the treasure only when
it reaches the exact position of the treasure. The agent’s initial position is con-
sidered a special point, and the agent can detect this point whenever it visits
P .

In the absence of control over its movement speed, once the agent decides to
move along a particular angle, it is very important for the agent to learn when to
stop its movement. Otherwise, the adversary can increase the speed arbitrarily
high, and the agent ends up traversing an arbitrarily large distance. In order to
enable the agent to have some control over its movement, an Oracle, knowing
the position of the treasure, and the initial position of the agent, places some
stationary pebbles on the plane. We assume a restriction on the pebble placement
by the Oracle: any two pebbles must separated by a constant distance, i.e., no
two pebbles are placed arbitrarily close 3.. For simplicity, we assume that any
two pebbles must be placed at least 1 distance apart. The agent can detect the
existence of a pebble only when it reaches the position of the pebble where its
placed by the Oracle.

These pebbles placement helps the agent control its movement and rule out
the possibility of traversing arbitrarily large distances. Starting from some posi-
tion of the plane, the agent, moving along a specific direction, stops or changes
its direction once it encounters a pebble along the path of its movement. Thus,
the movement algorithm of the agent gives instruction to move along a specific
angle α until it encounters a special point (i.e., the initial position P or the
position of the treasure T) or it hits a pebble.

3 This is required if the sensing capability of the agent is weak, two pebbles placed
very close to each other may not be distinguished by the agent.

Pebble guided Treasure Hunt in Plane 3

Formally, for a given positive integer k ≥ 0, the Oracle is a function fk :
(E × E) → Ek, where E is the set of of all the points in the Euclidean Plane.
The function takes two points as the input, the first one is the initial position of
the agent, and the second one is the position of the treasure, and gives k points
in the plane as output which represents the placement of a pebble at each of
these k points.

The central question studied in this paper is: “For given k ≥ 0, what is the
minimum cost of treasure hunt if at most k pebbles are placed in the plane?”

1.1 Contribution

Our contributions in this paper are summarized below.

– For k = 1 pebbles, we have shown that it is not possible to design a treasure
hunt algorithm that finds the treasure with finite cost.

– For k = 2 pebbles, we propose an algorithm that finds the treasure with cost
at most 4.5D, where D is the distance between the initial position of the
agent and the treasure.

– For k > 8, we design an algorithm that finds the treasure using k pebbles
with cost O(k2) + D (sin θ′ + cos θ′), where θ′ = π

2k−8 . For sufficiently large

values of D and k ∈ o(
√
D), the cost of this algorithm is arbitrarily close

to D, the cost of the optimal solution in case the position of the treasure is
known to the agent.

1.2 Related Work

The task of searching for an inert target by a mobile agent has been rigorously
studied in the literature under various scenarios. The underlying environment or
the topology may be either a discrete or continuous domain, i.e., a graph or a
plane. The search strategy can be either deterministic or randomized. The book
by Alpern et al. [2] discusses the randomized algorithms based on searching for
an inert target as well as the rendezvous problem, where the target and the agent
are both dynamic, and they cooperate to meet. The papers by Miller et al.[19],
and Ta-Shma et al.[22] relate the correlation between rendezvous and treasure
hunt problem in graph.

The problem of searching on a line for an inert target was first initiated by
Beck et al. [3]. They gave an optimal competitive ratio of 9. Further, Demaine et
al. [7] modified the problem, in which there is a cost involved for each change in
the direction of the searcher. In [17], the author surveys the searching problem
in terms of search games where the target is either static or mobile. The search
domain is either a graph, a bounded domain, or an unbounded set. Fricke et al.
[15], generalized the search problem in a plane with multiple searchers.

Now, the paradigm of algorithm with advice has been introduced mainly in
networks. These advice enhances the efficiency of the problems as discussed in
[1,4,5,6,8,10,11,12,13,14,16,18,20]. In this paradigm, the authors [13,14] mainly
studied the minimum amount of advice required in order to solve the problem

4 Bhattacharya et al.

efficiently. In [9,11], the online version of the problems with advice was studied.
The authors [5], considered the treasure hunt problem, in which they gave an
optimal cost algorithm where the agent gets a hint after each movement. Pelc
et al. [21], gave an insight into the amount of information required to solve the
treasure hunt in geometric terrain at O(L)- time, where L is the shortest path
of the treasure from the initial point. Bouchard et al. [6], studied how different
kinds of initial knowledge impact the cost of treasure hunt in a tree network.

The two papers closest to the present work are [18,20]. Pelc et al. [20], pro-
vided a trade-off between cost and information of solving the treasure hunt
problem in the plane. They showed optimal and almost optimal results for dif-
ferent ranges of vision radius. Gorain et al. [18], gave an optimal treasure hunt
algorithm in graphs with pebbles, termed as advice. In [4], the authors stud-
ied a trade-off between the number of pebbles vs. the cost of the treasure hunt
algorithm in an undirected port-labeled graph.
Organization: The paper is organized in the following manner. Section 2 gives
a brief idea about the feasibility of the treasure hunt problem when a certain
number of pebbles are placed. Section 3 is subdivided into three subsections,
in subsection 3.1, the high-level idea of the algorithm is described, in subsec-
tion 3.2, the pebble placement strategy is described, and in subsection 3.3 the
treasure hunt algorithm is discussed. In section 4, correctness and complexity
are discussed. Further, in section 5, possible future work and conclusion are
explained.

2 Feasibility of Treasure hunt

In this section, we discuss the feasibility of the treasure hunt problem, when the
oracle places one and two pebbles, respectively.

Theorem 1. It is not possible to design a treasure hunt algorithm using at most
one pebble that finds the treasure at a finite cost.

Proof. The agent initially placed at P and the pebble is placed somewhere in the
plane by the oracle. Since the agent has no prior information about the location
of the treasure, the treasure can be positioned anywhere in the plane by the
adversary. The only possible initial instruction for the agent is to move along a
certain angle from P . The agent along its movement, must encounter a pebble
otherwise, it will continue to move in this direction for an infinite distance,
as it has no sense of distance. After encountering the pebble, there are three
possibilities: either it may return back to P and move at a certain angle from
P or it may return back to P and move along the same path traversed by the
agent previously to reach the pebble or it may move at a certain angle from the
pebble itself. The adversary may place the treasure at a location different from
the possible path to be traversed by the agent. Hence, it is not possible to find
the treasure at a finite cost.

ut

Pebble guided Treasure Hunt in Plane 5

In this part, we discuss the strategy of pebble placement and respective
traversal of the agent toward the treasure when two pebbles are placed by the
oracle.
Pebble Placement: Based on the location of the treasure, two pebbles are
placed as follows. Let the coordinates of the treasure T be (xT , yT). If either of
xT or yT is positive, place one pebble at (z+1, z+1), where z = max{|xT |, |yT |}.
Place another pebble at (xT , z + 1). Otherwise, if both xT and yT are negative,
place one pebble at (1, 1) and another pebble at (xT , 1).
Treasure Hunt by the agent: The agent initially at P , moves at an angle π

4
with the positive x axis until it encounters treasure or a pebble (i.e., p1). If a
pebble is encountered, then from this position the agent moves along an angle
π − π

4 until it encounters the treasure or reaches a pebble (i.e., p2). If a pebble
is encountered (i.e., from p2), the agent further moves along an angle π

2 until it
reaches the treasure T .

Theorem 2. The agent finds the treasure with cost O(D) using the above algo-
rithm.

Proof. According to the proposed algorithm, the cost of finding the treasure is
the path Pp1 + p1p2 + p2T (refer Fig. 1), where p1 and p2 are the positions of
the first and second pebbles, respectively. Let fi : θ −→ R, where i = 1, · · · , 5,
be the set of cost functions for each of the following cases, we analyze them as
follows:

1: If the treasure is on the first quadrant, then let A and B be the foot of the
perpendicular drawn from T and p1, respectively. Let ∠TPA = θ (refer Fig.
1(a)). So, PA = D cos θ and AT = D sin θ. Now we have the following cases:

p1(z + 1, z + 1)
p2(xT , z + 1)

T (xT , yT)

P A B x

y′

y

x′ θ
45◦

(a) Treasure in 1st Quadrant

p1(z + 1, z + 1)
p2(xT , z + 1)

C(−xT , yT)

P A B x

y′

y

x′ θ
45◦T (xT , yT)

θ

D

(b) Treasure in 2nd Quadrant

Fig. 1: Movement of the agent when the treasure is located in the upper half of
the plane

1(a): When xT ≥ yT , then the pebbles p1 and p2 are placed at (xT +1, xT +1)
and (xT , xT+1), respectively. So, PB = D cos θ+1 and PB = Bp1 (since

6 Bhattacharya et al.

∆p1PB is an isosceles triangle), this implies Pp1 =
√

2(D cos θ + 1).
Moreover in this case, p1p2 = 1 and p2T = p2A − TA = D cos θ + 1 −
D sin θ. So, the total cost is:

√
2(D cos θ+ 1) + 1 + (D cos θ+ 1−D sin θ)

which is linear in terms of D.
1(b): When yT > xT , then the pebbles p1 and p2 are placed at (yT +1, yT +1)

and (xT , yT + 1), respectively. So, Bp1 = D sin θ + 1 and PB = Bp1
(since∆p1PB is an isosceles triangle), this implies Pp1 =

√
2(D sin θ+1).

Moreover in this case p1p2 = (D sin θ+1)−D cos θ and p2T = p2A−TA =
D sin θ+1−D sin θ = 1. So, the total cost is:

√
2(D sin θ+1)+(D sin θ+

1)−D cos θ + 1 which is again linear in terms of D.

So, f1(θ) = max{min∀θ∈[0,2π]{
√

2(D cos θ + 1) + 1 + (D cos θ + 1−D sin θ),√
2(D sin θ + 1) + (D sin θ + 1)−D cos θ + 1}}

2: If the treasure is on the second quadrant, let C be the mirror image of T
on first quadrant (refer Fig. 1(b)) then consider A and B be the foot of
the perpendicular drawn from C and p1, respectively. Let ∠TPD = θ, and
hence ∠CPA = θ. So, we have PA = D cos θ and AC = D sin θ. We have
the following cases:

2(a): When |xT | ≥ yT , then the pebbles p1 and p2 are placed at (−xT +
1,−xT + 1) and (xT ,−xT + 1), respectively. So, PB = D cos θ + 1 and
PB = Bp1 (since ∆p1PB is an isosceles triangle), this implies Pp1 =√

2(D cos θ + 1). Moreover in this case, p1p2 = D cos θ + 1 + D cos θ
and p2T = p2A − TA = D cos θ + 1 − D sin θ. So, the total cost is:√

2(D cos θ+ 1) + (D cos θ+ 1−D sin θ) + (2D cos θ+ 1) which is linear
in terms of D.

2(b): When yT > |xT |, then the pebbles p1 and p2 are placed at (yT +1, yT +1)
and (xT , yT+1), respectively. So, Bp1 = D sin θ+1 and PB = Bp1 (since
∆p1PB is an isosceles triangle), this implies Pp1 =

√
2(D sin θ+ 1). We

have p1p2 = (D sin θ+ 1) +D cos θ and p2T = p2A−TA = D sin θ+ 1−
D sin θ = 1. So, the total cost is

√
2(D sin θ+1)+(D sin θ+1)+D cos θ+1,

which is again linear in terms of D.

So, f2(θ) = max{min∀θ∈[0,2π]{
√

2(D cos θ + 1) + (D cos θ + 1 − D sin θ) +

(2D cos θ + 1),
√

2(D sin θ + 1) + (D sin θ + 1) +D cos θ + 1}}.
3: If the treasure is on the third quadrant, let A and B be the foot of the

perpendicular drawn from p2 and p1. Let ∠TPA = θ (refer Fig. 2(a)) and the
pebbles p1 and p2 are placed at (1, 1) and (xT , 1), respectively. So, Pp1 =

√
2,

p1p2 = 1 + D cos θ and p2T = p2A + AT = 1 + D sin θ. So, the total cost
is:
√

2 + 1 + D cos θ + D sin θ, which is again linear in terms of D. Hence,
f3(θ) = min∀θ∈[0,2π]{

√
2 + 1 +D cos θ +D sin θ}.

4: If the treasure is on the fourth quadrant, then let A and B be the foot of
the perpendicular drawn from T and p1, respectively. Let ∠TPA = θ (refer
Fig. 2(b)). So, PA = D cos θ and AT = D sin θ. Now we have the following
cases:

4(a): When xT ≥ |yT |, then the pebbles p1 and p2 are placed at (xT +1, xT +1)
and (xT , xT+1), respectively. So, PB = D cos θ+1 and PB = Bp1 (since
∆p1PB is an isosceles triangle), this implies Pp1 =

√
2(D cos θ+ 1). So,

Pebble guided Treasure Hunt in Plane 7

p1(1, 1)
p2(xT , 1)

P
A x

y′

y

x′
θ

45◦

T (xT , yT)

B

(a) Treasure in 3rd Quadrant

p1(z + 1, z + 1)
p2(xT , z + 1)

T (xT , yT)

P A B x

y′

y

x′

θ

45◦

(b) Treasure in 4th Quadrant

Fig. 2: Movement of the agent when the treasure is located at the lower half of
the plane

we have p1p2 = 1 and p2T = p2A+ TA = D cos θ + 1 +D sin θ. So, the
total cost is:

√
2(D cos θ+ 1) + 1 + (D cos θ+ 1 +D sin θ), which is linear

in terms of D.
4(b): When |yT | > xT , then the pebbles p1 and p2 are placed at (−yT +

1,−yT + 1) and (xT ,−yT + 1), respectively. So, Bp1 = D sin θ + 1 and
PB = Bp1 (since ∆p1PB is an isosceles triangle), this implies Pp1 =√

2(D sin θ+1). Hence, we have p1p2 = (D sin θ+1)−D cos θ and p2T =
p2A + TA = D sin θ + 1 + D sin θ = 2D sin θ + 1. So, the total cost is:√

2(D sin θ + 1) + (D sin θ + 1) − D cos θ + 2D sin θ + 1, which is again
linear in terms of D.

So, we have f4(θ) = max{min∀θ∈[0,2π]{
√

2(D cos θ + 1) + 1 + (D cos θ + 1 +

D sin θ),
√

2(D sin θ + 1) + (D sin θ + 1)−D cos θ + 2D sin θ + 1}}

Further, the cumulative cost is f5(θ) = max∀i∈{1,··· ,5}{fi(θ)}, which is ap-

proximately 4.5D+ (
√

2 + 2). Hence, from all the above cases, we conclude that
the cost complexity is linear in D.

ut

3 Improved solution for treasure hunt

In this section, we propose faster algorithm which requires at least 9 pebbles to
perform the treasure hunt.

3.1 High level idea

Before we give the details of the pebble placement algorithm, we describe the
high-level idea of the same. Intuitively, depending on the number of pebbles
available, the Oracle divides the plane into multiple sectors as described in Sec-
tion 3.2. Then it identifies the sector number m in which the treasure is located

8 Bhattacharya et al.

and ‘encode’ this number by placing the pebbles. The agent, looking at the peb-
ble placements, ‘decode’ this encoding, and move along the particular sector
to find the treasure. There are certain challenges that need to be overcome to
implement this idea.

Sector Detection: The first difficulty is how different placements of pebbles
enable the agent to differentiate between the bit 0 and the bit 1. Since the
agent has no sense of time and distance, two different pebble placements may
look identical to the agent. On the other hand, since the agent has no prior
information about the encoded integer, its movement should also be planned in
a way that using the same movement strategy will detect the bit zero for some
instances and the bit 1 for other instances. The capability of detecting the initial
point P as special point is used to overcome this difficulty.

First, we place a pebble p1 at the point (1,0) and two additional fixed pebbles
p2 at (1,1) and p3 at (2,1) are placed. The rest of the pebbles are placed based on
the fact whether a particular bit of the encoding is a 0 or 1. Initially, consider the
specific scenario of encoding only one bit 0 or 1. The idea is to place a particular
pebble p in two possible positions on the x-axis such that the agent, starting
from P , reach p, then moving at a certain fix angle α from p will reach p2 for
one position and p3 for the other. The agent can not distinguish between p2 and
p3 but moving in a particular angle β from p2 will reach P and from p3 will
reach p1. These two different scenarios are distinguished as 0 and 1, respectively.
In order to achieve and implement the idea, the pebble p is placed at the point
(3,0) in case of encoding 1 and (4,0) in case of encoding 0. The advantage of this
specific placement is that in case of placing p at (3,0) that moving from P to p,
and then moving at an angle arctan (−12), the agent reaches p2 and then moving
at an angle arctan (3), it reaches P . On the other hand, in the case of placing
p at (4,0), using the same movement, the agent arrives at p1. Hence, it detects
these two different observations as two different bits 1 and 0, respectively. (See
Fig. 3).

P

p3

y

x
y′

x′ pb1
p1

p2

T

Fig. 3: Placement of pebble by oracle
when first bit is 1

Q1

Q2

s = (q1, q2)

P

T

p2

p1

p3

x′ x

y

y′

B

s′ = (q′1, q2 + 1)

Q′
2

h

Fig. 4: Pebble placement when treasure
inside B

Pebble guided Treasure Hunt in Plane 9

We extend the above idea for encoding any binary string µ as follows. In
addition to the pebbles p1, p2, and p3, one additional pebble for each of the
bits of µ are placed. To be specific, for 1 ≤ i ≤ |µ|, a pebble pbi is placed at
(2i+ 1, 0) if the i-th bit is 1, else pbi is placed at (2i+ 2, 0). Starting from P to
pbi , moving at an angle arctan

(−1
2i

)
until a pebble is reached, then moving at

an angle arctan
(

2i+1
2i−1

)
, the agent reaches either P or p1 depending on the i-th

bit is 1 or 0 respectively.

A difficulty that remains to be overcome is how the agent detects the end of
the encoding. This is important because if the termination is not indicated, then
there is a possibility that the agent moves to find more pebbles pbj , j > |µ|, and
continues its movement for an infinite distance. We use two additional pebbles
named pt1 and pt2 for the specific requirement of termination detection. The
position of these two pebbles pt1 and pt2 are as follows. If the 1st bit of the
binary string µ is 1, i.e., pb1 is placed at (3, 0) then the pebbles pt1 and pt2
are placed at (4, 1) and (2|µ| + 6, 0), respectively. Otherwise, if the 1st bit is
0 then these two pebbles are placed at (5, 1) and (2|µ| + 7, 0), respectively.
After visiting the pebble p|µ| for the last bit of µ, the agent returns to P , and
moves as usual to find a pebble expecting to learn more bits of the binary

string. From P , once it reaches pt2 , it moves at an angle arctan
(

−1
2(|µ|+1)

)
until

a pebble is reached. Note that the two pebbles pt1 and pt2 are placed in such

a way that the angle ∠Ppt2pt1 = arctan
(

−1
2(|µ|+1)

)
. Hence using the movement

from pt2 at angle arctan
(

−1
2(|µ|+1)

)
the agent reaches pt1 and from pt1 moving at

angle arctan
(

2(|µ|+1)+1
2(|µ|+1)−1

)
, it reaches to pb1 . Since the following specific movement

mentioned above, the agent reaches to a pebble, it initially assumed that it
learned the bit zero. But moving west from pb1 , it reaches another pebble (i.e., the
pebble p1), instead of origin. This special occurrence indicates the termination of
the encoding to the agent. Hence in this way, the agent learns the binary string
µ, and the integer ∆ whose binary representation is µ.

Finding the treasure inside the sector: One more pebble pT is placed on
the foot of the perpendicular drawn from T on Lj+1 (refer Fig.5). After learning
the encoding of µj , the agent decodes the integer j, and correctly identifies the
two lines Lj and Lj+1 inside the sector to help the agent in locating the exact
location of the treasure.

A difficulty arises here while placing the pebble pT inside the sector as some
pebbles that are already placed while the encoding of the sector number may be
very close (at distance < 1) from the possible position of pT . To resolve this, we
do the placement of the pebbles for encoding on positive x-axis if the position of
the treasure is at the left half plane, and the placement of the pebbles are done
on the negative x-axis, if the position of the treasure is at the right half plane.
To instruct the agent which way it must move to find the pebbles for learning
the encoding, one additional pebble p0 is placed at P .

Some specific cases need to be separately handled: If the treasure is in a
position (x, y), such that −1 ≤ x ≤ 1 and y ≥ −1, as this again may create

10 Bhattacharya et al.

a problem in placing pT inside the prescribed position inside the sector. The
details of these cases will be discussed while explaining the pebble placement
strategy in the section 3.2.

3.2 Pebble placement

The agent is initially placed at P , and the treasure is placed at T . The oracle,
knowing the initial position P of the agent and the position T = (xT , yT) of the
treasure, places k pebbles in the Euclidean plane. Let B be the square region
bounded by the lines x = 1, x = −1, y = 1, and y = −1.

Based on the position of the treasure, the pebble placement is described using
two different cases.
Case 1: If xT > 0 and T 6∈ B, then the placements of the pebbles are done as
follows.

1. Place a pebble p0 at P .
2. Draw 2k−8 half-lines L0, · · · , L2k−8−1, starting at the initial position P of

the agent, such that L0 goes North and the angle between consecutive half-
lines is π/2k−8 for i = 0, · · · , 2k−8 − 1. The sector Si is defined as the set
of points in the plane between Li and L(i+1) mod 2k−8 , including the points
on Li and excluding the points on L(i+1) mod 2k−8 . If T ∈ Sj , for some

j ∈ {0, 1, · · · , 2k−8 − 1} then place pebbles as follows.

– Place the pebbles p1 at (-1,0), p2 at (-1,-1) and p3 at (-2,-1).
– Let µj be the binary representation of the integer j with leading blog kc−
blog jc many zeros. If 0 ≤ xT ≤ 1 and yT > 1, then µj = 0 · µj , else
µj = 1 ·µj . For 1 ≤ ` ≤ |µj |, if the `-th bit of µj is 1, then place a pebble
at (−2`− 1, 0), else place a pebble at (−2`− 2, 0).

– If the 1st bit of µj is 1, then place a pebble pt1 at (-4,-1), else place pt1
at (-5,-1).

– If the 1st bit of µj is 1, then place a pebble pt2 at (−2|µj | − 6, 0), else
place pt2 at (−2|µj | − 7, 0).

3. If xT < 0 and T 6∈ B, then the placements of the pebbles are done as follows.
For each pebble placed at (m,n), where m 6= 0 or n 6= 0 in the above case,
place the corresponding pebble at (−m,−n) in this case. Also, place no
pebble at P .

4. If the first bit of µj is 0, then let F be the foot of the perpendicular drawn
from T to Lj , else let F be the foot of the perpendicular drawn from T to
Lj+1. Place a pebble pT at F (Lemma 1 ensures that the pebbles are placed
at a distance of at least 1 in this scenario).
Case 2: If xT > 0 and T ∈ B, then the pebbles are placed as follows.

– Place a pebble p1 at (1,0) (refer Fig. 4).
– Let m1 = tan

(
π − arctan(−12)− arctan(3)

)
and m2 = tan(π − arctan(−1

2

)
). Draw a line Q1 through T with slope m1 and draw a line Q2

through the point (2, 0) with slope m2. Let s = (q1, q2) be the point of
intersection between these two lines. Let s′ be the point on the line Q1

Pebble guided Treasure Hunt in Plane 11

whose y coordinate is q2 + 1. Draw the lines Q′2 parallel to Q2 and go
through s′. Let h be the points of intersection of the lines Q′2 with x-axis.
Two additional pebbles p2 and p3 are placed as follows.

• If q2 < 1, then place p2 at h and p3 at s′.
• Otherwise, place p2 at (2, 0) and p3 at s.

If xT < 0 and T ∈ B, then placement of the pebbles are done as follows.
– Place the pebbles p0 at P and p1 at (-1,0).
– Let m1 = − tan

(
π − arctan(−12)− arctan(3)

)
and m2 = − tan(π −

arctan
(−1

2

)
). Draw a line Q1 through T with slope m1 and draw a

line Q2 through the point (−2, 0) with slope m2. Let r = (r1, r2) be the
point of intersection between these two lines. Let r′ be the point on the
line Q1 whose y coordinate is r2 + 1. Draw the lines Q′2 parallel to Q2

and go through r′. Let n be the points of intersection of the lines Q′2
with x-axis.
Two additional pebbles p2 and p3 are placed as follows.

• If r2 < 1, then place p2 at n and p3 at r′.
• Otherwise, place p2 at (−2, 0) and p3 at r.

3.3 Treasure hunt

Starting from P , the agent finds the treasure with the help of the pebble placed
at different points on the plane. On a high level, the agent performs three major
tasks: (1) Learn the direction of its initial movement (2) Learn the encoding
of the sector number in which the treasure is located, and (3) Move inside the
designated sector and find the treasure.

The agent learns the direction of its initial movement by observing whether a
pebble is placed at P or not. If a pebble is placed, then it learns that the direction
of its initial movement is west and pebble placement is done for the encoding of
the sector number on the negative x axis. Otherwise, it learns that the direction
of its initial movement is east and pebble placement is done for the encoding of
the sector number on the positive x axis. Then for each j = 1, 2, · · · , it continues
its movement in a specific path (depending on the value of j) and learns the
j-th bit of the encoding until it detects the termination of the encoding. To be
specific, the j-th bit of the encoding is learned by the agent using the movements
in the following order from P .

– Starting from P , move along x-axis until the (j + 1)-th pebble is reached,
– Move at angle arctan(−12j), and continue moving in this direction until a

pebble is reached
– Move at an angle arctan(2j+1

2j−1) until P or a pebble is found.
– If P is found in the previous step, then the bit is 1.
– If a pebble is found, then move along x axis towards P . If P is encountered,

then the bit is 0.
– If a pebble is encountered instead of P in the previous step, then the agent

learns that the encoding is completed.

12 Bhattacharya et al.

Algorithm 1: PebblePlacement

1 Draw 2k−8 half lines L0, · · · , L2k−8−1 starting from P , where angle between
two consecutive half-lines is π

2k−8 . Let Sector Si be the sector bounded by the

half lines Li and Li+1 and let T ∈ S∆, ∆ ∈ {0, 1, · · · , 2k−8 − 1}
2 if xT ≥ 0 then
3 if 0 ≤ xT ≤ 1 and −1 ≤ yT ≤ 1 then
4 SquarePlacement(2)

5 else
6 Place a pebble p0 at P
7 if xT ≤ 1 and yT > 1 then
8 NonSquarePlacement(1, 0)
9 Place a pebble pT at the foot of the perpendicular drawn from T

on L∆.

10 else
11 NonSquarePlacement(1, 1)
12 Place a pebble pT at the foot of the perpendicular drawn from T

on L∆+1.

13 else
14 if −1 ≤ xT ≤ 0 and −1 ≤ yT ≤ 1 then
15 Place a pebble p0 at P .
16 SquarePlacement(1)

17 else
18 if −1 ≤ xT ≤ 0 and yT > 1 then
19 NonSquarePlacement(2,0)
20 Place a pebble pT at the foot of the perpendicular drawn from T

on L∆.

21 else
22 NonSquarePlacement(2,1)
23 Place a pebble pT at the foot of the perpendicular drawn from T

on L∆+1.

Algorithm 2: SquarePlacement(count)

1 Place a pebble p1 at ((−1)count, 0).
2 if q2 < 1 then
3 Place the pebbles p2 at h and p3 at s′, respectively.

4 else
5 Place a pebble p2 at ((−1)count · 2, 0) and p3 at s, respectively.

Pebble guided Treasure Hunt in Plane 13

Algorithm 3: NonSquarePlacement(count, bit)

1 Initially l = 2.
2 Place the pebbles p1 at ((−1)count, 0), p2 at ((−1)count, (−1)count) and p3 at

((−1)count · 2, (−1)count), respectively.
3 µj be the binary representation of the integer j with leading blog kc − blog jc

many zeroes.
4 µj = bit.µj . Represents the concatenation of bit value with µj
5 if bit = 1 then
6 Place a pebble at ((−1)count · 3, 0).

7 else
8 Place a pebble at ((−1)count · 4, 0).

9 while l ≤ k + 1 do
10 if `-th bit of µj is 1 then
11 Place a pebble at ((−1)count · (2`+ 1), 0).

12 else
13 Place a pebble at ((−1)count · (2`+ 2), 0).

14 l = l + 1

15 if 1st bit of µj is 1 then
16 Place the pebbles pt1 at ((−1)count · 4, (−1)count) and pt2 at

((−1)count · (2|µj |+ 6), 0), respectively.

17 else
18 Place the pebbles pt1 at ((−1)count · 5, (−1)count) and pt2 at

((−1)count · (2|µj |+ 7), 0), respectively.

Algorithm 4: AgentMovement

1 If a pebble is found at P then set angle = π otherwise set angle = 0.
2 t = 2, µ = ε
3 Start moving at an angle angle with the positive x axis.
4 if treasure is found then
5 Terminate

6 else
7 Continue moving in the same direction until the t-th pebble or the

treasure is found.
8 if treasure found then
9 Terminate

10 else
11 `=FindBit(t, angle)
12 if ` ∈ {0, 1} then
13 µ = µ · `.
14 t = t+ 1.
15 Go to Step 3

16 else
17 FindTreasure(µ, angle)

14 Bhattacharya et al.

Algorithm 5: FindBit(t, angle)

1 Move at an angle π − θt, where θt = arctan(−1
2t

) until the treasure or a pebble
is found.

2 if treasure found then
3 Terminate

4 else
5 Move at an angle π − βt, where βt = arctan(2t+1

2t−1
).

6 if treasure found then
7 Terminate

8 else if P is found then
9 return 1

10 else if a pebble is found at a point other than P then
11 if angle = 0 then
12 Move at an angle π + π

4
.

13 else
14 Move at an angle π − π

4
.

15 if P is found then
16 return 0

17 else
18 Continue its movement until P is reached.
19 return 2

Algorithm 6: FindTreasure(µ, angle)

1 Let ∆ be the integer whose binary representation is µ
2 if angle = π then
3 if µ1 = 0 then
4 val = ∆
5 SectorTravel(val, 1, 2)

6 else
7 val = ∆+ 1
8 SectorTravel(val, 1, 1)

9 else
10 if µ1 = 0 then
11 val = ∆
12 SectorTravel(val, 2, 1)

13 else
14 val = ∆+ 1
15 SectorTravel(val, 2, 2)

Pebble guided Treasure Hunt in Plane 15

Algorithm 7: SectorTravel(val, count, num)

1 Move at an angle π
2

+ (−1)count
(
π·val
2k−8

)
until a pebble or treasure is found.

2 if Treasure found then
3 Terminate.

4 else
5 Move at an angle π + (−1)num π

2
until treasure is found.

6 Terminate.

Let µ be the binary string learned by the agent in the above process and let ∆
be the integer whose binary representation of µ. If the first bit of µ is 1, then
the agent starts moving along L∆+1 from P until it hits a pebble or reaches the
treasure. Once the pebble is reached, the agent changes its direction at angle π

2
if its initial direction of movement was west, else the agent changes its direction
at angle 3π

2 . It continues its movement in the current direction until the treasure
is reached.

The following lemma ensures that the pebbles are placed at a distance of at
least 1 in step 4 of Case 1 in the above pebble placement strategy.

Lemma 1. If T = (xT , yT) ∈ B′, where B′ = {(x, y)| 0 ≤ x ≤ 1 and yT > 1},
the location of the foot of the perpendicular F on Lj is outside the square B.

Proof. Let the position of F be (h, k). Let m1 be the slope of the line PF
and m2 be the slope of the line FT (See Fig. 7). Now as PF ⊥ FT , therefore
m1 ·m2 = −1. The slope m1 = k

h is positive as k > 0 and h > 0, so m2 = yT−k
xT−h

must be negative to satisfy the above condition. Now, m2 can be negative if one
of the following cases is true.

– Case-1: yT > k and xT < h,
– Case-2: if yT < k and xT > h,

If Case 1 is true, then the point F must be on the right side of the line x = XT ,
which is not possible. Therefore, Case 2 must be true, i.e., 1 < yT < k and
xT > h. This implies that F is outside B.

ut
The execution of the algorithm is explained with the help of a example.

Example-1: Given 11 pebbles, the oracle divides the plane into 211−8 sectors.
Suppose the treasure is placed in the sector 5 (as depicted in Fig. 5). Moreover,
consider the position of the treasure is outside the square B. So, the oracle places
the pebbles by following the algorithm PebblePlacement 1, such that the agent,
after following the algorithm AgentMovement 4 learns the direction of its initial
movement and further learns the encoding of the sector number (i.e., 101 in this
case) in which the treasure is located in the following manner.

An iteration of the algorithm 4 is defined as a cycle which consists of the
agent’s movement starting from P and returning back to P . In the first iteration,
the agent initially at P , does not find a pebble at P . The algorithm 4 instructs

16 Bhattacharya et al.

P

p2 p3 pt1

p1

y

x

y′

x′
pb1 pb2 pb3 pb4

T

pt2α1

β1
γ

α1 = π − arctan(−12)

β1 = π − arctan(2+1
2−1)

γ = π + π
4

pT

L0L1
L2

L3

L4

L5

L6

L7 L8

Fig. 5: Figure showing demonstration of Example-1

the agent to move towards east until it encounters a second pebble pb1 along
positive x-axis. From pb1 the agent moves at an angle π − arctan(−12) until it

encounters a pebble p2. From p2 it further moves at an angle π − arctan
(

2+1
2−1

)
until it reaches the origin P . So, after completion of the first iteration (i.e., the
path traversed P → pb1 → p2 → P) the agent learns that the first bit is 1.
In the second iteration, the agent again moves towards east until it reaches the
third pebble pb2 . From pb2 , the agent moves at an angle π− arctan

(−1
2·2
)

until it

encounters a pebble p2, from p2 it further moves at an angle π− arctan
(

2·2+1
2·2−1

)
until it reaches the origin P . So, after completion of the second iteration (i.e., the
path traversed P → pb2 → p2 → P) the agent learns that the second bit is again
1. In the third iteration, the agent after a similar movement towards east reaches
the fourth pebble pb3 along the positive x-axis. From pb3 , it further moves at an
angle π − arctan(−12·3) until it reaches the pebble p3. From p3, it moves along

an angle π − arctan
(

2·3+1
2·3−1

)
until it reaches a pebble p1. From p1, the agent

finally moves at an angle π + π
4 until it reaches P . So, after completion of the

third iteration (i.e., the path traversed P → pb3 → p3 → p1 → P) the agent
learns that the third bit is 0. In the fourth iteration, with a similar movement
the agent reaches the pebble pb4 , and from this position the agent moves at an
angle π − arctan

(−1
2·4
)

until it reaches p2, from p2 it further moves at an angle

π − arctan
(

2·4+1
2·4−1

)
until it reaches P . So, in the fourth iteration (i.e., the path

traversed P → pb4 → p2 → P), the agent learns that the fourth bit is 1. In the
fifth iteration, the agent reaches the fifth pebble, i.e., pt2 (refer Fig. 5), from
pt2 it moves at an angle π − arctan

(−1
2·5
)

until it reaches a pebble pt1 , from this

position it further moves at an angle π−arctan
(

2·5+1
2·5−1

)
until it reaches a pebble

pb1 . Further from pb1 , the agent further moves at an angle π+ π
4 until it reaches

P . Since the agent encounters the pebble p1 after its last movement from pb1 ,
this gives the knowledge to the agent that termination is achieved. Hence the
binary string obtained by the agent is µ = 1101(say).

Pebble guided Treasure Hunt in Plane 17

Then, the agent by following the algorithm AgentMovement 4 decodes that
somewhere in sector 5 the treasure is located. Further, since µ1 = 1, the agent
then follows the algorithms FindTreasure 6 and SectorTravel 7 to finally reach
the treasure by traversing the half-line L6 and encountering the pebble pT , from
which moving at an angle π + π

2 the agent ultimately reaches the treasure T .

4 Complexity

In this section, we give the correctness and an upper bound on the cost of finding
treasure from the proposed algorithms.

The following two lemmas show the algorithm’s correctness when the treasure
is inside B and the upper bound of the cost of treasure hunt.

Lemma 2. With 3 pebbles and the treasure located inside B, the agent success-
fully finds the treasure.

Proof. When the treasure is present inside the square B, the oracle places a
pebble p0 at P , if the treasure is located in the left half of y-axis. Otherwise, no
pebble is placed at P as discussed in Case-2 of section 3.2 (also refer to lines 3
and 14 of algorithm 1). So, the agent starts its movement from P along an angle
π, i.e., along negative x-axis if it finds a pebble p0 at P (refer lines 1 and 2 of
algorithm 4) otherwise, the agent moves along an angle 0, i.e., positive x-axis if
no pebble is found at P (refer line 4 of algorithm 4). Now we have the following
cases depending on the presence of a pebble at P .

– Pebble not found at P : In this case, the agent while moving along positive
x-axis either finds the treasure and the algorithm terminates (refer to lines 7
and 8 of Algorithm 4). Otherwise, the agent finds a pebble p1 placed at (1, 0),
which it ignores as instructed in the algorithm FindBit 5 and continues to
move until it reaches the treasure or encounters a pebble. If the treasure is
not found, then the pebble p2 is placed by the oracle at either h or (2, 0)
(refer to lines 10 and 13 of algorithm 2). The agent, after encountering the
second pebble, moves along an angle π − θ1, where θ1 = arctan

(−1
2

)
until

the treasure or a pebble is found. If a pebble is found, then we have the
following cases:
• p2 placed at (2,0): In this case, the agent finds the pebble p3 at s (refer

to line 14 of algorithm 2), from which it further moves along an angle
π − β1, where β1 = arctan(3) and finds the treasure.

• p2 placed at h: In this case, the agent finds the pebble p3 at s′ (refer
to line 11 of algorithm 2), from which it further moves along an angle
π − β1, where β1 = arctan(3) and finds the treasure.

– Pebble found at P : In this case, the agent moves along negative x-axis and
performs the similar task as described above. The reason being, the pebbles
are placed in a similar manner, just on the adjacent half (i.e., left half of
y-axis) as discussed in the above case (refer to xT < 0 in case 2 of section
3.2).

18 Bhattacharya et al.

P

T

p1
x′ x

y

y′

B

s′ = (q′1, q2 + 1)

h (x′, 0)

(xT , yT)

Fig. 6: Traversal of an agent when the treasure is inside the square

ut

Lemma 3. When the treasure is located inside B, the agent starting from P
successfully finds the treasure at cost O(D).

Proof. The treasure is located at (xT , yT) and let the co-ordinates of h be (x′, 0).
The worst possible placement of pebbles p2 and p3 by the oracle are at h and
s′ (where s′ = (q′1, q2 + 1) refer Fig. 6 and refer to the lines 10 and 11 of algo-
rithm 2), respectively. So, the traversal of the agent to reach the treasure will
be along the path Ph → hs′ → s′T . The total cost of this traversal is as fol-
lows: x′+

√
(x′ − q′1)2 + (q2 + 1)2+

√
(q′1 − xT)2 + (q2 + 1− yT)2 (where |Ph| =

x′, |hs′| =
√

(x′ − q′1)2 + (q2 + 1)2 and |s′T | =
√

(q′1 − xT)2 + (q2 + 1− yT)2).
Now, since |PT | < |Ph| + |hs′| + |s′T |, i.e., D < |Ph| + |hs′| + |s′T | (since
|PT | = D). Hence, in this case, the cost of reaching the treasure is O(D). ut

Lemma 4, Lemma 5, Lemma 6 and Lemma 7 shows the correctness of the
algorithm when the treasure is located outside B.

Lemma 4. When the treasure is outside B, the agent successfully finds the j-th
bit of the binary string µ at cost O(j).

Proof. To obtain the j-th bit of µ the movement of the agent is as follows.
When the treasure is present outside the square B, the oracle places a pebble

p0 at P if the treasure is located in the right half of y-axis otherwise, there is
no pebble placed at P as discussed in case 1 of section 3.2 (refer to line 6 of
algorithm 1). The movement of the agent from P is as follows:

– p0 found at P : In this case the agent moves at an angle π, i.e., along
negative x-axis (refer to the lines 1, 2 and 6 of algorithm 4). Further, it

Pebble guided Treasure Hunt in Plane 19

ignores the first j many pebbles along the negative x-axis (refer to line 10 of
algorithm 4) and moves until it either finds the treasure or encounters the
(j + 1)-th pebble pbj or pt1 placed at either (−2j − 1, 0) or (−2j − 2, 0) or
(−2j− 6, 0) or (−2j− 7, 0). If the treasure is not found, the cost of reaching
this pebble is at most 2j + 7. Now, from the current position, the agent is
instructed to move at an angle π − θj (refer to line 1 of algorithm FindBit

5), where θj = arctan
(
−1
2j

)
until the treasure or a pebble p2 or p3 or pt2 is

encountered. If a pebble is found, then this pebble is either p2 placed at (-1,-
1) or p3 placed at (-2,-1) or pt2 placed at either (-4,-1) or (-5,-1), respectively.
So, the cost of this traversal from the (j + 1)-th pebble to either p2 or p3

or pt2 is at most

√
(2j + 2)

2
+ 1. From either of these pebbles, the agent is

further instructed to move along an angle π−βj , where βj = arctan
(

2j+1
2j−1

)
(refer to line 5 of algorithm 5) until it encounters the treasure or encounters
a pebble or reaches P with O(1) cost. Now we have the following cases:
• If treasure found : In this case, the agent has reached its goal, and the

whole process terminates.
• If pebble found : In this case, the pebble found is either p1 or pb1 . In either

of the case, the agent is further instructed to move along an angle π+ π
4

or π − π
4 (refer to the lines 12 and 14 of algorithm 5) until it reaches P

or a pebble is found. Hence we have two cases:
∗ If P reached : The agent gains the information that the j-th bit of µ

is 0 (refer to the lines 15 and 16 of algorithm 5 and lines 14, 15 and
16 of algorithm 4). So, the path traveled to gain this information is
P → pbj → p3 → p1 → P . So, the cost of this traversal is at most

(2j + 2) +

√
(2j)

2
+ 1 +O(1), which is O(j).

∗ If pebble found : In this case, the agent continues to move until P
is reached and in which case the agent gains the information that
termination is achieved, i.e., (j − 1)-th bit is the terminating bit of
µ. The agent further moves on to execute algorithm FindTreasure
(refer to line 18 of algorithm 5, and to lines 15 and 20 of algorithm
4). So, the path travelled to gain this information is P → pt1 →
pt2 → pb1 → p1 → P . So, the cost of this traversal is at most

(2j + 7) +

√
(2j + 2)

2
+ 1 +O(1), which is O(j).

• If P is reached : In this case the agent gains the information that the
j-th bit of µ is 1 (refer to the lines 8 and 9 of algorithm 5 and lines 14,
15 and 16 of algorithm 4). So, the path traveled to gain this information
is P → pbj → p2 → P . So, the cost of this traversal is at most (2j+ 1) +√

(2j)
2

+ 1 +O(1), which is again O(j).
– No pebble found at P : In this case, the agent moves in a similar manner

as the pebbles are placed in a similar way as for each pebble placed at
(m,n), where m 6= 0 and n 6= 0 for the above case, the oracle places the
corresponding pebble at (−m,−n). Similarly, the cost to obtain the j-th bit
of the binary string is O(j).

20 Bhattacharya et al.

Hence in each case, the cost of finding the j-th bit of µ is O(j).
ut

Lemma 5. Given k pebbles and the treasure located outside B, the agent suc-
cessfully finds the binary string µ at cost O(k2).

Proof. According to lemma 4, the agent successfully determines the j-th bit
value of µ at O(j) cost. Now as the binary string, µ is of length k this implies,

the total cost to obtain Γ is
∑k
j=1O(j), i.e., O(k2). ut

P
x′ x

y

y′

B

F = (h, k)

T = (xT , yT)

L∆+1

L∆

Fig. 7: To determine the location of
pebble pT

Treasure T

F

P

θ

x

y′

x′

y

L∆+1

L∆

Fig. 8: Traversal of the agent inside the
sector when µ1 = 1 of Γ

Lemma 6. When the treasure is located outside B, the agent after gaining the
binary string µ, successfully finds the treasure by executing the algorithm Find-
Treasure.

Proof. After termination of algorithm AgentMovement 4, the agent performs the
algorithm FindTreasure 6 with the already acquired binary string µ to finally
reach the treasure T if not already reached.

The treasure is either located somewhere on the region x ≥ 0 (i.e., right half
of y-axis) or x ≤ 0 (i.e., left half of y-axis) and accordingly, the oracle divides
the whole left half or right half of y-axis into 2k−8 sectors (refer to line 1 of
algorithm 1), where a sector Si is bounded by half-lines Li and Li+1 and angle
between consecutive half lines is π

2k−8 . Suppose the treasure is located somewhere
in sector S∆, so µ is the binary representation of ∆. The agent decodes this value
∆ after executing the algorithm AgentMovement 4. The whole aim of the oracle
is to align the agent either along the half-line L∆ or L∆+1. The alignment of the
agent along the half-lines L∆ or L∆+1 depends on the first bit value of µ, i.e.,
on µ1 (refer to line 3 in algorithm 6) in the following manner:

Pebble guided Treasure Hunt in Plane 21

– Case µ1 = 0: If a pebble is found at P (i.e., angle = π refer to line 2 of
algorithm 4) then the agent is instructed to move along an angle π

2 −
π∆
2k−8 ,

i.e., along the half-line L∆ until the treasure or a pebble is found (refer to
the lines 4 and 5 of algorithm 6 and line 1 of algorithm 7). Otherwise, if no
pebble is found at P (i.e., angle = 0 refer to line 4 of algorithm 4) then the
agent is instructed to move along an angle π

2 + π∆
2k−8 (refer to lines 11 and

12 of algorithm 6 and to line 1 of algorithm 7) until it finds the treasure or
a pebble.

• If treasure found : Then the algorithm terminates as we have reached our
goal (refer to the lines 2 and 3 of algorithm 7).

• If pebble found : The agent is further instructed to move along an angle
π+ π

2 or π− π
2 depending on the angle π or 0 (refer to line 5 of algorithm

7) until treasure is found.

– Case µ1 = 1: If a pebble is found at P (i.e., angle = π) then the agent is

instructed to move along an angle π
2 −

π(∆+1)
2k−8 , i.e., along the half-line L∆+1

until the treasure or a pebble is found (refer to the lines 7 and 8 of algorithm
6 and line 1 of Algorithm 7). Otherwise, if no pebble is found at P (i.e.,

angle = 0), then the agent is instructed to move along an angle π
2 + π(∆+1)

2k−8

(refer to the lines 14 and 15 of algorithm 6 and line 1 of algorithm 7) until
it finds the treasure or a pebble.

• If treasure found: Then the algorithm terminates as we have reached our
goal (refer to the lines 2 and 3 of algorithm 7).

• If pebble found: The agent is further instructed to move along an angle
π− π

2 or π+ π
2 depending on the angle π or 0 (refer to line 5 of algorithm

7) until the treasure is found.

Hence in each case, the agent successfully finds the treasure after executing the
algorithm FindTreasure.

ut

Lemma 7. When the treasure is located outside B, the agent after gaining the
binary string µ finds the treasure at cost D(sin θ′ + cos θ′), where θ′ = π

2k′
and

k′ = k − 8.

Proof. The agent, after gaining the binary string µ, executes the algorithms
AgentMovement and FindTreasure, and successfully reaches the treasure by fol-
lowing the path PF → FT from P (refer Fig. 8). Since the angle between L∆
and L∆+1 is π

2k−8 . Hence, ∠FPT is at most π
2k−8 (refer Fig. 8(which is θ′ (say),

also ∠TFP = π
2 (as F is the foot of perpendicular of T to L∆+1 if µ1 = 1 oth-

erwise if µ1 = 0 then F is the foot of perpendicular of T to L∆) and |PT | ≤ D.
So we have PF = D cos θ′ and FT = D sin θ′. Hence, the cost of traveling along
the sector S∆ from P to reach T is PF + FT , i.e., D(sin θ′ + cos θ′). ut

Combining Lemma 6 to Lemma 7, we have the final result of this section
summarized by the following theorem.

22 Bhattacharya et al.

Fig. 9: The curve represents the ratio of f(k)
D for different values of D

Theorem 3. Given k pebbles, the agent starting from P successfully finds trea-
sure with O(k2) +D(sin θ′ + cos θ′)-cost, where θ′ = π

2k′
and k′ = k − 8.

Remark 1. Consider the function f(k) = O(k2) +D(sin θ′ + cos θ′), where θ′ =
π

2k−8 . Note that for D, k → ∞ and k ∈ o(
√
D), the value of f(k)

D → 1. In order

to demonstrate this fact, we plot the value of f(k)
D for increasing values of D in

the range [1000, 100000000] and for k = bD 1
3 c. Fig. 9 shows the values of f(k)

D
for different values of D in the above mentioned range and for the fix value of k

for each D. This figure shows that for large value of D, the value of f(k)
D is very

close to 1.

5 Conclusion

We propose an algorithm for the treasure hunt that finds the treasure in an
Euclidean plane using k ≥ 9 pebbles at cost O(k2) + D(sin θ′ + cos θ′), where
θ′ = π

2k−8 . Proving a matching lower bound remains an open problem to consider
in the future. It can be noted that if the agent has some visibility, the problem
becomes very trivial even with only one pebble: place a pebble on the line from
P to T within a distance of r from P , where r is the visibility radius of the
agent. Starting from P , the agent sees the position of the pebble, move to the
pebble, and then continue until it hits the treasure. But the problem becomes
challenging if the compass of the agent is not perfect: i.e., if the agent does not
have ability to measure an angle accurately. This seems a nice future problem
as an extension of the current work.

Pebble guided Treasure Hunt in Plane 23

References

1. Abiteboul, S., Alstrup, S., Kaplan, H., Milo, T., Rauhe, T.: Compact labeling
scheme for ancestor queries. SIAM Journal on Computing 35(6), 1295–1309 (2006)

2. Alpern, S., Gal, S.: The theory of search games and rendezvous, vol. 55. Springer
Science & Business Media (2006)

3. Beck, A., Newman, D.J.: Yet more on the linear search problem. Israel journal of
mathematics 8(4), 419–429 (1970)

4. Bhattacharya, A., Gorain, B., Mandal, P.S.: Treasure hunt in graph using pebbles.
In: Stabilization, Safety, and Security of Distributed Systems: 24th International
Symposium, SSS 2022, Clermont-Ferrand, France, November 15–17, 2022, Pro-
ceedings. pp. 99–113. Springer (2022)

5. Bouchard, S., Dieudonné, Y., Pelc, A., Petit, F.: Deterministic treasure hunt in
the plane with angular hints. Algorithmica 82, 3250–3281 (2020)

6. Bouchard, S., Labourel, A., Pelc, A.: Impact of knowledge on the cost of treasure
hunt in trees. Networks 80(1), 51–62 (2022)

7. Demaine, E.D., Fekete, S.P., Gal, S.: Online searching with turn cost. Theoretical
Computer Science 361(2-3), 342–355 (2006)

8. Dereniowski, D., Pelc, A.: Drawing maps with advice. Journal of Parallel and
Distributed Computing 72(2), 132–143 (2012)

9. Dobrev, S., Královič, R., Markou, E.: Online graph exploration with advice. In:
Structural Information and Communication Complexity: 19th International Collo-
quium, SIROCCO 2012, Reykjavik, Iceland, June 30-July 2, 2012, Revised Selected
Papers 19. pp. 267–278. Springer (2012)

10. Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice.
Theoretical Computer Science 412(24), 2642–2656 (2011)

11. Fraigniaud, P., Gavoille, C., Ilcinkas, D., Pelc, A.: Distributed computing with
advice: information sensitivity of graph coloring. Distributed Computing 21, 395–
403 (2009)

12. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Tree exploration with advice. Information
and Computation 206(11), 1276–1287 (2008)

13. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Communication algorithms with advice. Jour-
nal of Computer and System Sciences 76(3-4), 222–232 (2010)

14. Fraigniaud, P., Korman, A., Lebhar, E.: Local mst computation with short advice.
In: Proceedings of the nineteenth annual ACM symposium on Parallel algorithms
and architectures. pp. 154–160 (2007)

15. Fricke, G.M., Hecker, J.P., Griego, A.D., Tran, L.T., Moses, M.E.: A distributed
deterministic spiral search algorithm for swarms. In: 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). pp. 4430–4436. IEEE (2016)

16. Fusco, E.G., Pelc, A.: Trade-offs between the size of advice and broadcasting time
in trees. In: Proceedings of the twentieth annual symposium on Parallelism in
algorithms and architectures. pp. 77–84 (2008)

17. Gal, S.: Search games. Wiley encyclopedia of operations research and management
science (2010)

18. Gorain, B., Mondal, K., Nayak, H., Pandit, S.: Pebble guided optimal treasure
hunt in anonymous graphs. Theoretical Computer Science 922, 61–80 (2022)

19. Miller, A., Pelc, A.: Tradeoffs between cost and information for rendezvous and
treasure hunt. Journal of Parallel and Distributed Computing 83, 159–167 (2015)

20. Pelc, A., Yadav, R.N.: Cost vs. information tradeoffs for treasure hunt in the plane.
arXiv preprint arXiv:1902.06090 (2019)

24 Bhattacharya et al.

21. Pelc, A., Yadav, R.N.: Advice complexity of treasure hunt in geometric terrains.
Information and Computation 281, 104705 (2021)

22. Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts and strongly uni-
versal exploration sequences. In: Symposium on Discrete Algorithms: Proceedings
of the eighteenth annual ACM-SIAM symposium on Discrete algorithms. vol. 7,
pp. 599–608 (2007)

	Pebble guided Treasure Hunt in Plane

