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Abstract

The aim of the dispersion problem is to place a set of k(≤ n) mo-
bile robots in the nodes of an unknown graph consisting of n nodes
such that in the final configuration each node contains at most one
robot, starting from any arbitrary initial configuration of the robots
on the graph. In this work we propose a variant of the dispersion prob-
lem where we start with any number of robots, and put an additional
constraint that no two adjacent nodes contain robots in the final con-
figuration. That is, the distance between any two nodes with robots
must be at least 2. We name this problem as Distance-2-Dispersion,
in short, D-2-D. However, even if the number of robots k is less than
n, it might be the case that it is not possible for each robot to find
a distinct node to reside, maintaining our added constraint. To be
more specific, if a maximal independent set is already formed by the
nodes which contain a robot each, then other robots, if any, who are
searching for a node to seat, will not find one to seat. Hence we allow
multiple robots to seat on some nodes only if there is no place to seat.
If k ≥ n, it is guaranteed that the nodes with robots form a maximal
independent set of the underlying network.

The graph G = (V,E) has n nodes and m edges, where nodes
are anonymous. It is a port labelled graph, i.e., each node u assigns a
distinct port number to each of its incident edges from a range [0, δ−1]
where δ is the degree of the node u. The robots have unique ids in the
range [1, L], where L ≥ k. Co-located robots can communicate among
themselves. We provide an algorithm that solves D-2-D starting from
a rooted configuration (i.e., initially all the robots are co-located) and
terminate after 2∆(8m − 3n + 3) synchronous rounds using O(log∆)
memory per robot without using any global knowledge of the graph
parameters m, n and ∆, the maximum degree of the graph. We also
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provide Ω(m∆) lower bound on the number of rounds for the D-2-D
problem.

Keywords— Mobile robots, Anonymous graphs, Dispersion, Deterministic al-
gorithm.

1 Introduction

The aim of the dispersion problem is to place a set of k(≤ n) mobile robots in the
nodes of an unknown graph consisting of n nodes such that in the final configu-
ration each node contains at most one robot, starting from any arbitrary initial
configuration of the robots on the graph. This problem was introduced in the year
2018 by Augustine et al.[2]. Later, this problem is studied under various models
and with different assumptions in the literature[4, 16, 14, 17, 20, 12, 8, 15, 10, 1].
The main tool used for dispersion is Depth-First-Search traversal and since the
robots are equipped with memory, they store the important information required
to complete dispersion without getting stuck in a cycle. A natural question arises
what will happen if there are some extra constraints imposed on the dispersion
problem? As an example, no robot can settle in the one-hop neighborhood of an
already settled robot. This led to the generation of Distance-2-Dispersion problem.
In this problem, k robots arbitrarily placed on the graph need to attain a config-
uration such that no two adjacent nodes are occupied by the settled robots. Also,
an unsettled robot can settle at node that already contains a settled robot, only if
for the unsettled robot there is no other node to settle maintaining the added con-
straint. With this, there can be many nodes without a settled robot, i.e., no robot
to store any information at those nodes, and the graph is a zero storage one, thus
the problem becomes interesting if one aims to solve with less memory requirement
at each robot.

1.1 Model and the problem

Let G be an arbitrary connected undirected graph with n nodes, m edges and
maximum degree ∆. The nodes are anonymous, i.e., they have no id. It is a port
labelled graph, i.e., each node u assigns a distinct port number to each of its edges
from a range [0, δ(u) − 1] where δ(u) is degree of node u. Port numbers that are
assigned at the two ends of any edge are independent of each other. Nodes do not
have any memory and hence G is a zero storage graph.

A total of k movable entities are present in the system, which are called robots.
Each robot has a unique id from the range [1, L] and each robot knows its id. In
some round, if two or more robots are at a single node, we call them co-located
and such robots can share information via message passing. ∗Any robot present on

∗This is known as the Face-to-Face communication model and has already been con-
sidered while studying problems related to mobile robots including exploration [5, 6] and
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some node knows the degree of that node as well as the port-numbers associated
with each of the edges corresponding to that node. So, if some robot needs to leave
its current node through any particular port number, it can do that. Besides this,
whenever any robot moves from a node u to another node v, it learns the port
number through which it enters the node v.

Our algorithm proceeds in synchronous rounds where in each round robots per-
form the following steps in order: (i) co-located robots may exchange messages (ii)
robots may compute based on available information (iii) robots may move through
an edge to some adjacent node from the current node based on its computation in
step (ii). We further assume that all the robots start the algorithm at the same
time, i.e., from the same round. The time complexity of the algorithm is measured
as the number of synchronous rounds required by the robots to complete the task.
We also study the amount of memory required per robot to run the algorithm.
The problem: Distance-2-Dispersion(D-2-D): Given a set of k ≥ 1 robots
placed arbitrarily in a port labelled graph G with n nodes and m edges, the robots
need to achieve a configuration by the end of the algorithm where each robot needs
to settle at some node satisfying the following two conditions: (i) no two adjacent
nodes can be occupied by settled robots, and (ii) a robot can settle in a node where
there is already a settled robot only if no more unoccupied node is present for the
robot to settle satisfying condition (i)

The conditions ensure that the distance between any pair of settled robots is
at least 2 unless both are settled at the same node. Hence, the nodes with settled
robots form an independent set of the graph. And with enough robots, we get a
maximal independent set.
Our contribution: We solve the D-2-D problem for rooted† initial configuration
on arbitrary graphs in 2∆(8m−3n+3) rounds using O(log∆) memory per robot in
Section 3. All the settled robots terminate even without any global knowledge re-
garding any of the graph parameters m, n or ∆. In Section 4, we provide a Ω(m∆)
lower bound of the D-2-D problem on the number of rounds considering robots
do not have more than O(log∆) memory. Also, if k ≥ n, it is guaranteed that the
nodes with settled robots form a maximal independent set, which can itself be an in-
teresting topic to study in the domain of distributed computing with mobile robots.

1.2 Related work

Dispersion is the most related problem to our problem as we consider similar model
that is considered to solve the dispersion problem. Augustine et al introduced the
dispersion problem in [2] for the rooted configuration. They proved the memory
requirement by the robots for any deterministic algorithm to achieve dispersion
on a graph is Ω(log n). The lower bound for any algorithm to perform dispersion

dispersion [2, 13]
†The configuration where all the robots are initially placed on a single node of the

graph
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on any graph is Ω(D), where D is the diameter of the graph. For rooted graphs,
with the knowledge of m, n, they gave an algorithm that requires O(log n) memory
by the robots to complete dispersion in O(m) rounds[2]. Kshemkalyani et al.[11]
improved the lower bound of running time to Ω(k) where k ≤ n. They developed
an algorithm for synchronous system which solves dispersion in O(m) rounds using
O(k log ∆) bits at each robot. However, for an asynchronous system they developed
an algorithm which requires O(max(log k, log ∆)) bits of memory with the time
complexity O((m − n)k). Later Kshemkalyani et al.[9] significantly improved the
result and provided a deterministic algorithm for dispersion in arbitrary graphs
in synchronous setting that runs in O(min(m, k∆) · log l) rounds, where l ≤ k

2 ,
using O(log n) bits of memory at each robot. Their intuitive idea was to run DFS
traversals in parallel to minimize time. The robots required the knowledge of m,
n, k and ∆. Shintaku et al. then presented a dispersion algorithm that does not
require such global knowledge [20]. Their algorithm solves the dispersion problem
on arbitrary graphs in O(min(m, k∆) · log l) rounds using Θ(log(k + ∆)) bits of
memory at each robot. Recently, Kshemkalyani et al.[13] provided an algorithm
that is optimal in both time and memory in arbitrary anonymous graphs of constant
degree. They presented an algorithm which solves dispersion in O(min(m, k∆))
time with Θ(log(k + ∆)) bits at each robot improving the time bound of the best
previously known algorithm by O(log l) where l ≤ k

2 and matching asymptotically
the single-source DFS traversal bounds[9]. They extend the idea of [9] by making
the larger size DFS traversal to subsume the smaller size DFS thus avoiding the
need of revisiting the nodes of subsumed traversal more than once.

D-2-D, in some sense, is also related to the problem of scattering or uniform
distribution. Scattering has been worked mainly for grids[3] and rings[7, 19] though
with anonymous robots. Finally, as in some cases, our algorithm forms a maximal
independent set, we cite the following study on forming maximal independent set
with movable entities, though it is done with stronger model assumptions. Vamshi
et al. presented the problem of finding maximal independent set(MIS) using my-
opic luminous robots[18] of an arbitrary connected graph where the robots have
prior knowledge of ∆, O(log ∆) bits of persistent memory and at least 3 hops vis-
ibility. Authors also used colors to represent different states and worked under
semi-synchronous as well as asynchronous schedulers.

1.3 D-2-D vs dispersion: the challenges

In the previous works on the dispersion problem, the algorithms use the depth-
first search (DFS) traversal with limited memory of the robots [2, 4, 13]. The
key idea to achieve dispersion from any rooted configuration is the following. At
the starting node, i.e., the root, the robot with the lowest id settles down and
the remaining unsettled robots leave the root to visit one of its neighbors. The
minimum id robot from this group of unsettled robots settles here. In any round,
whenever an unoccupied node is visited by the group of robots for the first time,
the minimum id robot settles there. A settled robot on a node represents that the
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node has already been visited by the group. Using this key idea, DFS traversal for
anonymous graphs is feasible by robots since settled nodes help to track cycles and
already visited nodes thus ensuring the safe dispersion of the anonymous graph by
the robots. For instance, if the group of robots visit a node v from a node u during
exploration, and find out that a settled robot is already present at v then as per DFS
the group must backtrack to u and explore other unexplored neighbors of u if any.
Whenever it finds an empty node, the smallest id robot of the group settles down.
The remaining unsettled robots continue the DFS traversal. However, to do the
backtracking successfully, the robots need to remember the path they have already
explored and this needs high memory requirement. To avoid this, the algorithm
instructs each settled robot to store the information required to backtrack from
the respective node where the robot is settled. Observe that, the group never
backtracks from a node where no robot is settled. To be more specific, each settled
robot remembers the parent pointer as the port number it used while entering into
the node it is settled at. The group of backtracking robots can use this parent
pointer and can successfully backtrack from this node. Thus dispersion can be
achieved with O(log ∆) memory per robot.

In D-2-D, the main motive is to achieve dispersion such that no two adjacent
nodes have settled robots. In other words, the distance between any two settled
robots must be at least two. To do so, we may face the following challenges.

• Since there is no settled robot present in the one-hop neighborhood of any
settled robot, the information regarding the parent pointer of those neighbor-
ing nodes is difficult to be stored and subsequently used while backtracking.
This may lead to high memory requirements.

• The robots can settle at a node u if and only if there are no settled robots
at any of the neighbors of u. As the maximum degree ∆ can be large, this
may lead to high time complexity.

2 Warm-Up: D-2-D with O(∆ log ∆) Memory per
Robot

In this section, we provide an informal discussion on a straightforward solution of
the rooted D-2-D without bothering about the memory requirement per robot or
the time complexity. Our algorithm is based on the depth-first search traversal
(albeit with some modification) that solves the dispersion problem as we discussed
above in Section 1. Later in Section 3, we improve over this solution.

While solving the dispersion problem, encountering a settled robot while doing
forward exploration, implies the presence of cycle to the moving group of unsettled
robots and then backtracking is done with the help of stored parent pointers at
the settled robots. We do the following modification to solve our problem. As the
group may need to backtrack from an unoccupied node in our D-2-D problem, it
is required to store the parent pointers of the unoccupied nodes too. Note that
all the neighboring nodes of any occupied node must be unoccupied. We instruct
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each settled robot to remember the parent ports of all its neighbors including itself.
Basically each settled robots work as virtuallysettled robot at its neighbors. The
notion of virtually settled means that although there is no settled robot present at
that node, yet no robot from the visiting group can occupy it. However, to store
as well as to provide the stored parent pointers, each settled robot must meet the
moving group of robots whenever the group reaches one of its neighboring nodes.

To achieve this, each settle robot does a back and forth movement from its
position to its neighboring nodes. To be more specific, let a robot r settles in round
T at a node u of degree δ. It visits u(0) in round T + 1, comes back to u in round
T + 2, visits u(1) in round T + 3, and so on. It visits u(0) again after u(δ − 1) is
visited. The settled robot r stops only when it meets the group of unsettled robots
at some node, say v = u(p), and at some round say T ′. It stays with the group at
u(p) till the group leaves u(p), say in round T ′′. Then r comes back to u in round
T ′′ + 1 and again starts visiting its neighbors one by one as described earlier.

Note that only this does not solve the problem as the group of moving robots
may reach a neighboring node of some occupied node but at that time the respective
settled robot may visit its another neighbor. To solve this issue, the algorithm
instructs the moving group to wait for 2∆ rounds at each node v which ensures
that the moving settled robot must meet the group within this time period. For
simplicity, let us assume that all robots know ∆.‡ If v is occupied, then the settled
robot must meet the group within 2 rounds; else if v is a neighbor of an occupied
node, then the settled robot that is working as a virtually settled robot must meet
the group within the 2∆ waiting time.

Now we provide the algorithm. If the group is in forward exploration phase,
the following are the possibilities.

• The group meets at least one virtually settled robot and finds that none of
the virtually settled robots who meet the group has the parent pointer for
this node, the group understands that it is visiting this node for the first
time and continues the DFS traversal in the forward exploration phase after
providing the parent pointer to each of the virtually settled robots. This is
possible as all the settled robots that meet this group wait with this group
till the group leaves.

• The group meets at least one virtually settled robot and finds that at least
one of the virtually settled robots comes with the parent pointer for this
node, the group understands that this node is already explored earlier, and
subsequently backtracks.

• The group finds that the node is occupied, it goes to backtrack phase, and
backtracks with the help of the parent pointer stored at the settled robot.

• The group sees no settled or virtually settled robots, then the minimum id
robot from the group settles there.

‡In the next section we remove this assumption in our main algorithm using the idea
that whenever the group of unsettled robots visits a new node, each unsettled robot
updates the value of maximum degree seen by itself till now, as the value of ∆.
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If the group is in backtracking phase, it must meet at least one virtually settled
robot or a settled robot at the node. The group checks if all the ports associated
to this node is already explored or not, by looking at the parent pointer and the
port though which it just backtracks to this node. The following are the decisions.

• If all ports are explored, it continues the backtracking.

• If some port remains to be explored, it changes to forward exploration phase.

Figure 1 represents the implementation of the algorithm on an example.

(a) (b)

(c) (d)

Figure 1: (a) The initial configuration with four robots at v1. (b) One robot
settles at v1 while the remaining unsettled robots do the DFS traversal
through v2, v3, v4. None of them settles at any of these nodes as the robot
settled at v1 works as the virtually settled robot at these nodes. The settled
robot at v1 maintains the parent pointer for the group at all its neighboring
nodes. From v1 the robots backtrack due to the presence of a settled robot
on that node. (c) The unsettled robots continue the DFS traversal and
when the group reaches v5, a robot settles there. (d) The remaining robots
continue the traversal, finish the traversal at v1, then do it again and finally
achieve the desired configuration.

To store the parent pointer for each of the neighbors, each settled robot requires
O(∆ log ∆) memory i.e., log ∆ memory per port number. This leads to high mem-
ory requirements and waiting for 2∆ rounds for the moving group at each newly
explored node leads to a high run time of the algorithm. Both of these issues are
mentioned when we discussed about the challenges in Section 1. The run time of
this algorithm becomes 2∆(4m − 2n + 2). This is because we just run the DFS
traversal for dispersion that takes 4m − 2n + 2 time as done in [2, 9] assuming
all the unoccupied neighbors of each occupied node are virtually occupied. Also,
we keep all the necessary information with the settled robots. After completing
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the DFS traversal once, if some robots are left unsettled then they settles at the
root node. Note that as the settled robots keep moving, it is desirable that the
robots can terminate. However, here we do not discuss about the termination of
the algorithm, but it can be achieved in a similar way we do in Section 3 in our
main algorithm.

3 D-2-D with Termination: O(log ∆) Memory per
Robot

In this section, we present an algorithm that improves the memory requirement
of the algorithm discussed in section 2 as well as we include termination of the
robots without any global knowledge. First we provide a high level idea. The
idea is not to do the usual DFS traversal and in turn, no settled robot needs to
maintain parent pointers for all its unoccupied neighbors. Each settled robot stores
the parent pointer corresponding to only one of its neighboring nodes along with
the parent pointer corresponding to the node where it is settled. This bounds the
path from the last settled robot to the node where the unsettled group is currently
present. If the length of this path is high, then in the worst case, all the nodes in this
path may remain unoccupied as all of them can be the neighbor of some particular
occupied node v, and in this case the robot that is settled at v, needs to remember
all the parent pointer of the unoccupied nodes present in that path. We restrict the
depth of the traversal during forward exploration by 2 from the node where a robot
settled last. Now, the question is how does the information corresponding to only
one neighbor suffice? Similar to the previous algorithm, each settled robot visits
each of its neighbors one by one in the subsequent rounds once it is settled while
the group of unsettled robots waits for 2φ rounds, where φ is the maximum degree
observed by the group of unsettled robots till reaching the current node, in order to
check the presence of any settled robot in its one-hop neighborhood. Similar to the
algorithm described in the Section 2, the group of unsettled robots update the value
of φ when they reach a new node u by max{φ, δu} as they have no prior knowledge
of the maximum degree of the graph. The group of unsettled robots maintains a
counter ri.dist from the last encountered settled robot which stores the distance
from the settled robot. The variable ri.dist can take values 0, 1 or 2. The group of
unsettled robots decides to do forward exploration or backtrack based on the value
of ri.dist, the number of settled robots visiting this group during the waiting period
and the ids of these visiting settled robots. Thus, the state of any robot can be
explore or backtrack. The robots maintain another variable ri.stage which takes
the value 2 when the D-2-D configuration is achieved and the termination stage has
started. In order to terminate the algorithm, the settled robots maintain variables
ri.count, ri.count

′, and ri.act settled whose description is given in the table 1.
Whenever the group of unsettled robots moves from a node u containing a

settled robot rj with the lowest id to one of its neighbors, say u(p) i.e. the unsettled
group of robots have ri.dist = 1 at u(p), the state is explore and no other settled
robot visits the group at u(p) except rj , then the parent pointer of u(p) is required
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to be stored by the settled robot rj (rj .virtualparent as defined in Table 1) and
the group explores further. From the settled robot’s point of view, it stores its
parent pointer (rj .parent as defined in Table 1) along with the parent pointer of
only one neighbor u(p). The idea is rj may store the parent pointer corresponding
to another neighbor u(q), say, when q is the last port that was explored from the
node where rj is settled. Else, if one or more settled robots with id lower than
rj .id meet the group at u(p), then the group backtracks to the node u along with
the settled robot rj and rj does not need to store the parent pointer of u(p) in
this case. All the settled robots including rj which meet the group of unsettled
robots will increment their value of count variable each time. Note that, to avoid
needless increments in the value of the count variable by the settled robots, when
the settled robots encounter the group of unsettled robots at a node during their
back and forth movement, they wait with the group until it leaves that node.

When ri.dist = 2 as the group reaches a node say v after exiting u(p) where
rj is settled, a robot settles there only if there are no neighboring settled robots.
In this case, the newly settled robot keeps the parent pointer as the group moves
forward. Else, if at the node v, one or more settled robots are visiting, then the
group backtracks as there are options to explore this node later through some other
already settled robots with possibly lower id than ri. For instance, if the unsettled
group of robots at dist = 2 from the node u are witnessing their waiting period
of 2φ rounds and during this waiting period, a robot rm visits. The group not
only understands that no robot can settle at this node, but also, this node can be
explored from the node that has the settled robot rm. In other words, if the group
of unsettled robots are at dist = 2 from a node with a settled robot and are in the
explore state, and some settled robot rm visits the group during the waiting period
then this implies a direct link to this node from rm. This means the current node
can be explored from the node where rm is settled. So, in no circumstances, any
settled robot, here rj , is keeping parent pointers of a node that is at least two hops
away. All the settled robots rj which meet the group of unsettled robots increment
the value of rj .count each time they meet the group of unsettled robots. These
set of steps comprise the stage 1 of the algorithm. After the last robot settles, it
begins the next stage, namely, the termination stage. The last settled robot starts
from the root node and follows similar path as described in the above paragraph.
In this termination stage, the last robot rL acts as the group of unsettled robots
in the stage 1 while the robot rj which originally settled during the Distance-2-
Dispersion, set rj .act settled = 1 in the same order as it settled in the previous
stage. Thus, the termination stage is a replica of stage 1. Each time the act settled
robot rj meets the last settled robot rL during its traversal, rj increments the value
of rj .count

′. As and when the value of rj .count becomes equal to rj .count
′, the

robot rj terminates. In this way the robots terminate and Distance-2-Dispersion
with termination is achieved.
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Variables Descriptions

ri.parent This variable contains the parent port of the node u
where ri is settled in stage 1 or act settled in stage 2.
Else, ri.parent = −1.

ri.portentered The port through which robot ri enters the current
node. Initially ri.portentered = −1 for all the robots.

ri.virtualparent The parent port of u(p) where p be the last port that
was explored from the node where ri is settled.
Initially ri.virtualparent = −1 for all the robots.

ri.dist Each unsettled robot ri maintains the distance from
the settled robot it last encountered during its
traversal. According to our algorithm, ri.dist ≤ 2. For
each settled robot, ri.dist = 0 if it is at the node
where it is settled, else ri.dist = 1.

ri.special A robot ri settled at some node u, say, updates
ri.special = 1 only when the group of unsettled
robots is at u with ri and will move through one
of the adjacent edges of u in the explore state.
For other settled robots, ri.special = 0 and for any
unsettled robot, ri.special = −1.

ri.settled Takes value 1 if ri is a settled robot in stage 1, else
takes 0.

ri.count If ri is a settled robot in stage 1, this variable
counts the number of times ri meets the group
of unsettled robots.

ri.stage This variable can take values 1 or 2 where
ri.stage = 1 indicates stage 1 of the algorithm
whereas ri.stage = 2 indicates the stage 2.

ri.act settled Takes value 1 if ri settles in the stage 2, else
takes value 0.

ri.count
′ In the stage 2, if ri is an act settled robot, this

variable counts the number of times ri meets
the robot rL with rL.terminate = 1.

Table 1: Description of variables

3.1 The Algorithm

In this section, we describe our algorithm that can be run by the robots with
O(log∆) memory per robot to achieve rooted D-2-D and terminate in 2∆(8m −
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3n+ 3) rounds.
Consider an arbitrary graph G and let k robots be initially placed on a single

node, say u, of G. Each robot ri maintains variables ri.parent, ri.settled, ri.dist,
ri.special, ri.portentered, ri.virtualparent, ri.count, ri.stage, ri.act settled and
ri.count

′. We have defined the variables in detail in Table 1. Apart from that,
each unsettled robot maintains its state, which can be either explore or backtrack.
In explore state, it does forward exploration by moving through a computed port
number from the current node, whereas in backtrack state, it learns the parent
pointer from a settled robot and backtracks through that port. Robots also main-
tain a variable φ which is initialized to δ(u), where u is the root. Each unsettle
robot updates φ as and when they see some node with degree more than the cur-
rent value of φ. However, settled robots do not modify φ once they are settled.
Note that the each robot in the group of unsettled robots has the same value of φ;
also φ ≤ ∆, the maximum degree of the graph. More specifically, when the group
of unsettled robots reach a new node, say v, each robot in the group updates the
value of φ with max{δ(v), φ}. Our algorithm works in two stages, stage 1 and stage
2. In stage 1, robots achieve D-2-D and in stage 2, robots terminate. The group
of unsettled robots run the algorithm in phases, where each phase consists of 2φ
rounds. Since each unsettled robot agrees on their φ value, the group starts and
ends each phase at the same round.

Our algorithm starts by settling the minimum id unsettled robot, say r1, at
the root node u at the end of phase 1. The settled robot r1 updates r1.parent ←
−1, r1.settled ← 1 and r1.dist ← 0. The remaining unsettled robots update
their state to explore and since they are present with the settled robot r1, the
variable r1.special is updated to 1. The unsettled robots update the port number
as ri.portentered = (ri.portentered + 1)modδ, where δ is the degree of the node
u. The unsettled robots move along the incremented port number, which in this
case will be port 0, to the neighboring node u(0), and update ri.dist = 1. With
this, the phase 1 ends for the unsettled robots. After reaching this node, the
unsettled robots update φ and wait for 2φ rounds. As this is a rooted configuration
and r1 is the first robot to settle(which is currently present along with the group
of unsettled robots), no other settled robot visits this group during the wait of
2φ rounds. This implies that the current node can be further explored if there
are unexplored edges, i.e., degree of u(0) is more than one. The settled robot r1

updates r1.count ← 1. Let p1 be the port through which robots entered u(0).
The settled robot r1 updates r1.virtualparent← p1, return through port p1 to the
root u and updates r1.special = 0. The unsettled robots update ri.portentered =
(p1 + 1)mod(δ(u(0))), where δ(u(0)) is the degree of node u(0). The unsettled
robots move through the updated value of portentered in the explore mode and
update ri.dist = 2 if ri.portentered 6= r1.virtualparent. Else, the unsettled robots
move through the updated value of portentered in the backtrack mode and update
ri.dist = 0. This ends phase 2 for the group of unsettled robots. Basically, the
group of unsettled robots move only at the end of each phase.

After the group of unsettled robots reaches a new node at distance 2 apart
from u, they update φ and wait for 2φ rounds while the settled robot r1 now has
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r1.special = 0, and it continuously traverses through each of the ports of u one by
one. During this waiting period, if any settled robot rj visits the group of unsettled
robots, they backtrack to the previous node using the ri.portentered. However, the
settled robot rj which meets this group of unsettled robots, waits with the group
of unsettled robots unless the group leaves that node and increments the value of
rj .count. However, if no settled robot visits this group then the minimum id robot
from the group of unsettled robot settles at this node.

So each phase of unsettled robots corresponds to one edge traversal and each
phase requires 2φ rounds. Settled robots do not bother with phases, they either
wait with the group of unsettled robots or continue back and forth traversal. So,
the time complexity of stage 1 of our algorithm depends on how many phases the
group of unsettled robots works before the last robot, i.e., the largest id robot,
say rL, settles. The settled and unsettled robots decide what to do based on the
following cases. First we write what settled robots do.

• If a settled robot rj has the value special = 0, then it continues its visit to
each of its neighbors one by one and keeps modifying ri.dist accordingly. As
and when the settled robot meets the group of unsettled robots, it increments
the value of rj .count and waits with the group unless it leaves that node. Post
that, the settled robot resumes its visit to each of its neighbors one by one.

• If a settled robot rj has the value special = 1, then it moves along with the
group of unsettled robots in the next round to the neighboring node and waits
along with the group of unsettled robots. The settled robot rj increments
the value of rj .count. During this waiting period, if any settled robot with id
lower than rj .id visits then rj does not store the parent pointer for this node
and return back to its original position after the group leaves. However, if no
settled robot with id smaller than rj .id visits the group of unsettled robots
then the settled robot rj updates rj .virtualparent = rj .portentered.

The pseudo-code for the settled robots is given in Algorithm 1.
Now we see how the unsettled robots work. When the group of unsettled robots

reach a node at the end of some phase, then the decision of what to do at the end
of the next phase is made based on the following cases:

• When ri.dist = 1 and state = explore at the beginning of a phase

– If no settled robot with special = 0 visits the group of unsettled
robots such that the visiting settled robot’s id is lesser than the id
of rj with rj .special = 1, then the group updates ri.portentered =
(ri.portentered + 1)modδ. Note that whenever the group of unset-
tled robots have ri.dist = 1 and state = explore, there is definitely
a settled robot rj present with the group having rj .special = 1. If
ri.portentered = rj .virtualparent, then the group of unsettled robots
backtracks to the previous node. Else if ri.portentered 6= rj .virtualparent
then the group of unsettled robots leaves the current node via the up-
dated port number in the explore state.

12



Algorithm 1: Algorithm for each settled robot rj
1 if rj .id is the largest among the group from which it settled then
2 set rj .terminate = 1
3 else
4 if rj .special = 0 then
5 do the back and forth movement through all its ports and updates rj .dist

value to 0 or 1 according to its position.
6 if the settled robot rj meets the group of unsettled robots then
7 wait with the group of unsettled robots till the group leaves that node
8 increment the value of rj .count
9 move to the original position where it was settled, if not already there,

and resume the back and forth movement
10 else if rj meets any robot ri with ri.stage = 2 then
11 move to its original position where it was settled, if not already there, and

wait until it meets the robot rL with rL.terminate = 1
12 do not increment the value of rj .count
13 set rj .stage = 2
14 if the robot rL with rL.terminate = 1 visits this node where rj is waiting

then
15 set rj .act settled = 1, rj .parent = rL.portentered, rj .special = 1

16 if rj .special = 1 then
17 move along with the group of unsettled robots through updated value of

ri.portentered and wait till the group leaves.
18 increment the value of rj .count
19 if no settled robot visits with id lower than rj .id then
20 set rj .virtualparent = ri.portentered
21 move to the original position via rj .portentered

22 else
23 move to the original position via rj .portentered
24 update rj .special = 0

– If at least one settled robot, with special = 0 and having id lesser than
id of rj with rj .special = 1, visits the group of unsettled robots, then
the group backtracks via ri.portentered.

• When ri.dist = 2 and state = explore at the beginning of a phase

– If no settled robot visits the group of unsettled robots in 2φ rounds,
then the lowest id robot from the group settles on this node.

– If one or more than one settled robot visits the group of unsettled
robots, then the group backtracks via the port entered.

However, when the group of unsettled robots is in state = backtrack, the
group of unsettled robots reaches a node which has been visited earlier. Thus, the
node which is visited in backtrack state has either a settled robot on it or any
settled robot in its one hop neighbor has stored the virtual parent for it. After
backtracking to the current node, the group of unsettled robots decides to further
explore or backtrack based on the following cases.

• When ri.state = backtrack at the beginning of a phase

13



– If all the ports are already explored i.e. (ri.portentered + 1)modδ is
equal to the rm.parentpointer where rm is the settled robot on that
node or rj .virtualparent where rj is the settled robot which has stored
the parent pointer for its neighbor. Recall that this information can be
exchanged during the waiting time. In this case, the group of unsettled
robots backtracks through rm.parentpointer or rj .virtualparent of the
node.

– If the (ri.portentered + 1)modδ is not equal to the ri.parentpointer
of the node then the unsettled group of robots change their state to
explore and move through ri.portentered.

The pseudo-code for the unsettled robots is given in Algorithm 2.
Using this we achieve D-2-D configuration and stage 1 completes. Now the

stage 2 begins. The robot with the largest id, say rL, is said to be the last settled
robot and after it settles it sets rL.stage = 2. In order to terminate the algorithm,
the rL restarts similar traversal as described in stage 1 from the root. Now two
cases arise. Either the robot rL settles at a node other than the root node (in this
case it goes to the root node as described below) or rL settles at the root itself.
In any case, while at the root, rL sets rL.terminate = 1. From root, rL starts
mimicking the stage 1 again by acting as the group of unsettled robots, to help the
remaining settled robots terminate. Finally, rL terminates after reaching the node
where it settled at the end of stage 1. Note that, if and when rL backtracks till
the root, as some settled robots may meet rL on the path since they are continuing
their back and forth movement, yet no settled robot increments their respective
count variable since rL is not an unsettled robot anymore.

• When the last robot rL settles at node ul other than the root

– The robot rL backtracks through rL.portentered. It continues back-
tracking through the parent pointer to reach the root node. After
reaching the root node, the robot rL begins mimicking stage 1 as the
group of unsettled robots.

• When the remaining robots settle at the root and rL is the largest id robot
among the group

– The robot rL begins mimicking stage 1 as the group of unsettled robots.

When a robot ri with r.settled = 1 meets rL with rL.terminate = 1 or any robot
rj with rj .stage = 2, it understands stage 2 is under progres, updates ri.stage = 2,
goes back to its original position and waits for rL with rL.terminate = 1 to arrive
there. When a robot rj other than rL meets rL with rL.terminate = 1 for the first
time, following two cases are possible. If this meeting is done at the node where rj
settled in phase 1, it understands it has to wait here till rL is here by acting as rj is
also an unsettled robot which is with rL. Then rj updates rj .act settled = 1 as if it
becomes settle by the end of this phase and start following the algorithm of a settled
robot of stage 1. The only difference is that, now it increments rj .count

′ instead
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Algorithm 2: Algorithm for each unsettled robot ri
1 initialise ri.portentered = −1, ri.dist = 0, ri.state = explore, ri.special = −1,
ri.settled = 0, ri.virtualparent = −1, φ = 0, ri.terminate = 0, ri.stage = 1

2 for phase = 0 do
3 the minimum id robot rj settles on the node after waiting for 2φ rounds
4 set rj .parent = −1
5 set φ = δ(u)
6 ri.portentered = (ri.portentered+ 1)modδ
7 move through ri.portentered
8 ri.dist=ri.dist+ 1

9 for phase > 0 do
10 if ri.dist = 0 then
11 ri.dist = ri.dist+ 1
12 if ri.dist = 1 and ri.state = explore then
13 wait for 2φ rounds
14 if any settled robot visits with rj .special = 0 and rj .id is smaller than the

settled robot already present with the group then
15 ri.state = backtrack
16 update φ = max{φ, δ(u)}
17 move through ri.portentered
18 decrement ri.dist value to 0

19 else
20 ri.state = explore
21 update φ = max{φ, δ(u)}
22 ri.portentered = (ri.portentered+ 1)modδ
23 if ri.portentered = rj .virtualparent then
24 ri.state = backtrack
25 move through ri.portentered

26 else
27 move through ri.portentered
28 increment ri.dist to 2

29 if ri.dist = 2 and ri.state = explore then
30 wait for 2φ rounds
31 update φ = max{φ, δ(u)}
32 if no settled robot visit the group of unsettled robots then
33 the robot ri with lowest id settles on that node and sets

ri.parent = ri.portentered and ri.special = 1
34 each unsettled robot makes ri.portentered = (ri.portentered+ 1)modδ

and ri.dist = 0
35 if ri.portentered = parent pointer of the settled robot at the current node

then
36 ri.state = backtrack
37 move through ri.portentered

38 else
39 ri.state = backtrack
40 move through ri.portentered

41 if ri.state = backtrack then
42 wait for 2φ rounds
43 decrement ri.dist by 1
44 ri.portentered = (ri.portentered+ 1)modδ
45 if the settled robot rj has rj .parent = −1 then
46 if ri.portentered = 0 then
47 the unsettled robots settle at the root
48 else
49 ri.state = explore
50 move through ri.portentered

51 else
52 if portentered = parent or virtualparent then
53 ri.state = backtrack
54 move through portentered

55 else
56 ri.state = explore
57 move through portentered
58 increment ri.dist by 1
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of rj .count. Else if this meeting is done at a neighboring node of the node where
rj settled in phase 1, it changes rj .stage = 2, goes back to its original position and
waits for rL with rL.terminate = 1 to arrive there.

The above description shows that, any settled robot r in phase 2 increments
their variable r.count′ only after becoming act settled, i.e., only after the corre-
sponding round of stage 1 when r became settled and started incrementing its
r.count. Since rL works as the unsettled robot by following the algorithm of unset-
tled robots in stage 1 and its id is the largest, rL will settle in phase 2 again at the
end and will terminate. By that time, all settled robots count value match with
their count′ value, and all terminate. With this, below we provide the algorithm of
stage 2 in a formal way.

When the robot rL with rL.terminate = 1 and rL.stage = 2 reaches the root
u, it initializes the value of φ = δ(u), and begins the traversal in order to terminate
the settled robots. Similar to the algorithm described above for the unsettled group
of robots in stage 1, every time rL reaches a node, say, v, it waits for 2φ rounds
at that node. Also, it updates the value of φ with max{φ, δ(v)}. After reaching a
new node, decisions are made based on the following cases:

• When rL.dist = 1 and rL.state = explore

– If any settled robot visits with rj .act settled = 1, rj .special = 0 and
rj .id is smaller than the id of act settled robot already present with rL
then rL backtracks via rL.portentered

– if any settled robot visits with rj .act settled = 1 and rj .special = 0
but rj .id > the id of act settled robot already present with rL or no
act settled = 1 robot visits then rL is set to explore and it moves
through the incremented value of portentered

• When rL.dist = 2 and rL.state = explore

– If no settled robot with rj .act settled = 1 visits then this indicates that
it is the original position where rL is settled and hence set rL.act settled =
1. Terminate rL.

– if any settled robot visits with rj .act settled = 1 then rL backtracks
through rL.portentered

– if there is a robot rj present at the node with rj .stage = 2 but rj .act settled =
0 then rj .parent is set to rL.portentered and rj .special = 1.

• When rL.state = backtrack

– If the reached node is the root node and there are some ports to be
explored i.e. (rL.portentered + 1)modδ 6= 0 then rL.state is updated
to explore, else rL and the remaining settled robots are terminated at
this node.

– If the reached node is other than the root node then rL.portentered
is compared with the value of rj .parent or rj .virtualparent. If all the
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ports are explored then the state is changed to backtrack otherwise rL
explores through the incremented value of rL.portentered.

The pseudo-code of the algorithm for the last settled robot rL is given as Algo-
rithm 4. The Algorithm 4 uses the Algorithm 3 as a subroutine, where Algorithm
3 is the pseudo-code of what the last settled robot rL does after reaching the root.

The robots with rj .settled = 1 and rj .act settled = 0/1 proceeds based on the
following cases.

• If rj is a settled robot with rj .settled = 1 but rj .act settled = 0, when it
meets any robot ri with ri.stage = 2 then it returns to its original position
and waits there. It now becomes aware that the termination stage has started.
Thus, it does not increment the value of rj .count.

• If rj .act settled = 1 and rj .special = 0 then it continues the back and forth
movement through all its neighbors and increments the value of rj .count

′ by
1 as and when it meets rL. When rj .count becomes equal to rj .count

′, it
terminates at its original position where it was settled.

• If rj .act settled = 1 and rj .special = 1 then it moves with the robot rL to
the neighboring node through the updated value of rL.portentered and waits
with rL. It increments the value of rj .count

′ by 1. Now two cases arise:

– If no act settled robot visits with id lower than rj .id then rj sets
rj .virtualparent = rL.portentered

– Else move to the original settled position and set rj .special = 0

The pseudo-code of the algorithm for each settled robot rj with rj .act settled = 1
is given in the Algorithm 5.

The pseudo-code of the Distance-2-Dispersion with Termination is given in the
Algorithm 6. Figure 2 shows the run of stage 1 of our algorithm.

3.2 Analysis of the Algorithm

Definition 3.1. Tree Edge: An edge (u, v) is said to be a tree edge if the group of
unsettled robots in stage 1 reaches v through (u, v) such that either the settled robot
at node u (if exists) stores the parent pointer of the node v or the minimum id robot
among the group of unsettled robots settles at v.

Remark 3.1. A settled robot ri in stage 1 stores the parent pointer for its adjacent
node u at some round t only if ri.special = 1, rj .dist = 1 for any unsettled robot
rj at u and no settled robot with id lower than ri.id visits rj during the 2φ rounds
i.e., during the waiting period.

Theorem 3.1. By the end of the Algorithm 6, there are no two robots that are
settled at adjacent nodes.
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Algorithm 3: Help Termination(): Algorithm for the robot rL
1 set φ = δu, rL.state = explore and rL.portentered = 0
2 move through rL.portentered
3 rL.dist = rL.dist+ 1
4 for phase > 0 do
5 if rL.dist = 1 and rL.state = explore then
6 wait for 2φ rounds
7 if any settled robot visits with rj .act settled = 1, rj .special = 0, and rj .id <

id of act settled robot already present with rL then
8 rL.state = backtrack
9 update φ= max{φ, δ(u)}

10 move through rL.portentered
11 decrement rL.dist value to 0

12 if any settled robot visits with rj .act settled = 1, rj .special = 0, but rj .id > id
of act settled robot already present with rL or no rj .act settled = 1 robot
visits then

13 rL.state = explore
14 update φ = max{φ, δ(u)}
15 rL.portentered = (rL.portentered+ 1)modδ
16 if rL.portentered = rj .virtualparent then
17 rL.state = backtrack
18 move through rL.portentered

19 else
20 move through rL.portentered
21 increment rL.dist to 2

22 if rL.dist = 2 and rL.state = explore then
23 wait for 2φ rounds
24 update φ= max{φ, δ(u)}
25 if no settled robot with rj .act settled = 1 visits then
26 set rL.act settled = 1
27 terminate rL
28 if any settled robot visits with rj .act settled = 1 then
29 set rL.state = backtrack
30 move through rL.portentered
31 decrement the value of rL.dist

32 if there is a robot rj present at the node with rj .stage = 2 then
33 set rL.dist = 0
34 set rL.portentered = (rL.portentered+ 1)modδ
35 move through rL.portentered

36 if rL.state = backtrack then
37 wait for 2φ rounds
38 set rL.portentered = (rL.portentered+ 1)modδ
39 if the act settled robot rj has rj .parent = −1 then
40 if rL.portentered = 0 then
41 set rL.act settled = 1
42 terminate rL and all the remaining settled robots at this node

43 else
44 rL.state = explore
45 move through rL.portentered

46 else
47 if rL.portentered = rj .parent or rj .virtualparent then
48 set rL.state = backtrack
49 move through rL.portentered

50 else
51 rL.state = explore
52 move through rL.portentered
53 increment rL.dist by 1
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(a) (b)

(c) (d)

Figure 2: (a) The initial configuration with four robots at v1. (b) One robot,
say r, settles at v1 and updates r.special = 1. The remaining robots leave
through port 0 and the settled robot moves along with the group to the
neighboring node v2. The robot r updates the value r.count = 1. They wait
for 2φ rounds and since no settled robot visit the group, they move further
to node v3 and update ri.dist = 2 while r moves back to v1 after storing 0 as
the parent pointer of v2 in r.virtualparent and updates r.special = 0. The
group of unsettled robots wait for 2φ rounds at v3 and due to the visit by the
settled robot r they backtrack to the previous node v2 while r updates the
value of r.count = 2 From v2, it explores v5 and since no settled robot visit
v5 during the wait of 2φ rounds, one robot, say r′ settles there. The group
backtracks to v2. The settled robot r′ updates r′.count = 1. The settled
robot r increments the value of r.count as well. The group of unsettled
robots further backtracks to v1. (c) Now the group of unsettled robots as
well as r, move through port 1 and explore v3. From v3 it explores v2 while r
goes back to v1 after storing 2 as the parent pointer of v3 in r.virtualparent.
As and when the settled robots r and r′ meets the group of unsettled robots
at any node, they increment their value of count. During the wait of 2φ
rounds, r visits v2 and thus, the group backtracks to the node v3. Then the
group explores v4 and due similar reasons, the group backtracks to to v3.
After waiting 2φ rounds, it learns the parent pointer from r and backtracks
to v1. (d) Now the group moves through port 2 to explore v4 and it further
moves to explore v3. Due to the visit of settled robot at v1, the group
backtracks to v4 and then further backtracks to v1. As v1 is the root and
tall the ports of v1 are explored, the unsettled robots settle here at v1. At
the end of this stage 1, the value of r.count = 15 while r′.count = 2.
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Algorithm 4: Algorithm for the robot rL with rL.terminate = 1
to reach the root node
1 if rL.terminate = 1 and settled at a node other than the root node then
2 set rL.stage = 2, rL.state = backtrack
3 move through rL.parent
4 while reached node is not the root node do
5 wait for 2φ rounds to get the parent port information
6 move through the parent pointer of that node

7 call Help Termination()

8 else if rL.terminate = 1 and rL is settled at the root node then
9 call Help Termination()

Algorithm 5: Algorithm for each robot rj with rj .settled = 1 and
rj .act settled = 1 during the termination stage

1 if rj .act settled = 1 and rj .special = 0 then
2 do the back and forth movement through all its ports
3 if rj meets rL with rL.terminate = 1 then
4 wait with rL till it leaves that node
5 set rj .count

′ = rj .count
′ + 1

6 move to its original position and then resume the back and forth movement
7 if rj .count == rj .count

′ then
8 terminate rj
9 else if rj .act settled = 1 and rj .special = 1 then

10 move along with rL through the updated value of rL.portentered and wait till rL
leaves

11 increment the value of rj .count
′

12 if no act settled robot visits with id lower than rj .id then
13 Set rj .virtualparent = rL.portentered
14 move to the original position via rj .portentered

15 else
16 move to the original position via rj .portentered
17 update rj .special = 0

Proof. The Algorithm 1 for the settled robots in stage 1 guarantees that the settled
robots show their presence by back-and-forth movement to their one-hop neighbors.
Thus, when the group of unsettled robots visits a node and wait for 2φ rounds, then
they encounter the settled robot, if present, in its one-hop neighbor. And according
to the Algorithm 2 for unsettled robots in stage 1, no unsettled robot settles if some
settled robot meets the unsettled robot in some node. Also according to Algorithm
5, the settled robots in stage 2 settle at nodes where they get settled in stage 1.
This guarantees that no two adjacent nodes are occupied by the robots.

Lemma 3.1. Multiple robots can settle only at the root.

Proof. When the robots complete the traversal of the graph and do not find any
node to settle satisfying the conditions of the D-2-D problem, they finally reach
the root of the graph to continue Algorithm 2 and traverse through the root of
the graph. The robots can easily recognize the root as the parent pointer of the
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Algorithm 6: D-2-D with Termination
1 if ri.settle = 0 then
2 call Algorithm 2
3 else if ri.settle = 1 and ri.act settled = 0 then
4 call Algorithm 1
5 else if ri.settle = 1 and ri.terminate = 1 then
6 call Algorithm 4
7 else if ri.settle = 1 and ri.act settled = 1 then
8 call Algorithm 5

root is −1. After following the algorithm from the root and subsequently exploring
through all outgoing edges, robots backtrack to root only if they don’t find nodes
to settle. In this case, they settle at the root. Thus, algorithm 2 leads multiple
robots to settle only at the root.

Lemma 3.2. If multiple robots settle at the root in stage 1, then it is guaranteed
that each node is visited by a group of unsettled robots at least once.

Proof. Let us suppose there is a node u which is not visited at all but at least one
of its one-hop neighbors, say v, is visited. This implies, that every time the group
reached v, either it backtracked from v or it explored all the ports except the port
joining v with u. The latter case is not possible as the Algorithm 2 increments the
value of portentered unless its value is equal to the value of the parent pointer.

Now without loss of generality let us consider the case when v is visited by the
group from the node that contains the lowest id settled robot among the ids of the
settled robots at one-hop neighbors of v. The Algorithm 2 ensures that the group
of unsettled robots backtracks from v only when all the ports of v are explored.
And hence u must be explored and this is a contradiction to the existence of such
a node u.

Theorem 3.2. By the end of the Algorithm 6, multiple robots settled at the root
implies no vacant node left such that none of its neighbors contains a settled robot.

Proof. Let us suppose there is a vacant node u in the graph such that no settled
robot is present in any of its one-hop neighbors in the stage 1. Lemma 1 proves
that node u is visited at least once. According to our algorithm for unsettled robots
in stage 1, i.e. Algorithm 2, when the group visited u, each of the robots rj in the
group must set rj .dist = 2. During the waiting period, there were no settled robots
in the neighbors of u to visit u. Hence the minimum id robot must have settled
there. This contradicts the presence of such a node in the graph.

Observation 3.1. If multiple robots settle in the root, it follows from Theorem 3.1
and Theorem 3.2 that the nodes with settled robots form a maximal independent set.

Theorem 3.3. D-2-D with termination can be run by the robots with O(log ∆)
additional memory.
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Proof. The variables ri.state, ri.stage, ri.settled, ri.act settled and ri.special re-
quires 1 bit of memory while ri.dist requires 2 bits of memory. The variables
ri.parent, ri.portentered and ri.virtualparent requires O(log ∆) bits of memory.
The settled robot at a node v with δ(v) ≤ ∆ can meet the group of unsettled robots
at at most (∆ + 1) nodes including node v and there can be at most O(∆2) asso-
ciated edges with these nodes. Since the group of unsettled robots visits any edge
at most 4 times, the variable ri.count can take maximum value that is in O(∆2).
Similarly, in stage 2 the act settled robot at a node v with δ(v) ≤ ∆ can meet rL
at (∆ + 1) nodes and thus, ri.count

′ can take maximum value that is in O(∆2).
Therefore, O(log∆) is the amount of memory needed by the robots to store the
information relating to these variables. As a result, each robot only needs O(log ∆)
bits of additional memory to run the algorithm.

Lemma 3.3. When the group of unsettled robots in stage 1 are in explore state
and ri.dist = 1 then there is exactly one settled robot present along with the group
which has ri.special = 1.

Proof. It is easy to observe this from the description of ri.special variable of a
settled robot as mentioned in table 1. As no node except the root contains multiple
settled robots. Also the root contains multiple robots only when no robots are
left to settle, i.e. no robot is in the explore state in stage 1 anymore. Hence, the
statement follows.

Lemma 3.4. Every tree edge in stage 1 is traversed exactly twice by the group of
unsettled robots.

Proof. Without loss of generality, according to Definition 3.1, let u has a settled
robot. the tree edge (u, v) has either a settled robot at v, or a settled robot at
u that stores the parent pointer for node v during the exploration of edge (u, v).
This ensures that v is visited for the first time as we have its parent pointer stored.
Thus, the edge (u, v) is traversed twice once in the explore state and the next in
the backtrack state. As mentioned in Algorithm 1, the parent pointer of node v is
saved by robot ru settled at node u only when no robot visits v with id < ru.id.
Hence the robots do not backtrack from v with the objective of exploring node v
from another node with lower id robot settled on it. This proves the edge (u, v) is
traversed exactly two times.

Lemma 3.5. Every non-tree edge is traversed at most four times by the group of
unsettled robots.

Proof. Let (u, v) be a non-tree edge. According to Definition 3.1, the robots back-
track from node v and the parent pointer for v is not yet stored. Till this round,
the edge (u, v) has been traversed twice. The robots reach v from the smallest id
settled robot in its neighborhood to explore v later. At that time edge (v, u) is
traversed again. Hence, every non-tree edge is traversed at most four times.

Lemma 3.6. The graph induced by the tree edges is connected and cycle free.
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Proof. Consider a rooted configuration on a graph G with root u such that degree
of u is at least 2 and also k ≥ 1. First we show that the tree edges form a connected
component. It is easy to see that first two tree edges form a connected component.
Let e1, e2, ..., eh be the first h tree edges and they form a connected component. Let
there be still a group of unsettled robots that is doing the traversal. Let eh = uw for
some nodes u, w such that the tree edge was formed when the group of unsettled
robot visited w from u. If ww′ becomes a tree edge for some neighbor w′ of w
then we are done, i.e., the (h+ 1)th tree edge also remains in the same connected
component. Else, if no more associated edge of w becomes a tree edge, the group
backtracks from w via a tree edge and reaches a new node v, say. Again, either
an adjacent edge of v becomes a new tree edge (in which case we are done), or it
backtracks through another tree edge. And in this way the group continues to stay
on a path consisting of tree edges until if finds a new tree edge, or it completes the
exploration and all the robots of the group settles at the root. Whatever be the
case, the tree edges form a connected component.

Now we prove that the induced graph is cycle free. Let us assume on contrary
that there is a cycle consisting of the tree edges. Let u1, u2, ..., up, u1 be the cycle
consisting of the tree edges. W.l.o.g., assume that uiui+1 be the last tree edge due
to which cycle is formed and group of unsettled robots moved from ui to ui+1.
Now we have two cases: either there is a settled robot at ui+1 or there is no settled
robot at ui+1. In case there is a settled robot at ui+1, then the group of unsettled
robots should have done a backtrack from ui+1 to ui and hence uiui+1 can not be a
tree edge. This is a contradiction to our assumption. So, let us assume there is no
settled robot at ui+1. Definition 3.1 implies there will be settled robots both at ui
and ui+2. Now, ui+1 is at one hop distance from these two settled robots and the
exploration is being done from ui to ui+1. Either of the two settled robots at ui and
ui+2 have smaller id. If the settled robot at ui+2 has smaller id then the robots will
backtrack from ui+1 to ui and thus uiui+1 will not be a tree edge. However, if the
settled robot at ui has smaller id then while exploring the node ui+2 and traversing
from ui+2 to ui+1, the group of unsettled robots must have backtracked due to
presence of a smaller id settled robot at ui thus forming ui+2ui+1 as the non tree
edge. Thus, we see that uiui+1 and ui+2ui+1 cannot be tree edges simultaneously.
Hence, our assumption of the presence of a cycle consisting of all the tree edges is
wrong and the graph induced by the tree edges is connected and cycle free.

Lemma 3.7. By the time stage 2 finishes, each robot terminates.

Proof. Since the robot rL with rL.terminate = 1 replicates the group of unsettled
robots in stage 1 and all the robots with rL.act settled = 1 replicates the settled
robots in stage 1, so, the number of times each settled robot meets with the group
of unsettled robots in stage 1 is same as the number of times each act settled robot
meets with rL. As mentioned in section 3.1, the stage 2 is replay of stage 1. So the
correctness of stage 1 implies the correctness of stage 2. And hence for each settled
robot ri except rL, ri.count = ri.count, and terminates. Finally, rL settles at the
node where it settled at the end of stage 1 and terminates.
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Theorem 3.4. The Algorithm 6 achieves D-2-D with termination in 2∆(8m−3n+
3) rounds on arbitrary rooted graphs.

Proof. It is clear from Lemma 3.4 and Lemma 3.5 that every edge is traversed
at most 4 times except the tree edges. Also from Lemma 3.6, there can be at
most (n − 1) tree edges. So the total number of edge traversal is no more than
4(m− (n− 1)) + 2(n− 1) = 4m− 2n+ 2. After each edge traversal, the robots wait
for 2φ rounds and φ ≤ ∆. So at most 2∆(4m − 2n + 2) rounds are required for
all the robots to settle. Thus Stage 1 is completed within 2∆(4m− 2n + 2) many
rounds. After the last robot settles, it may take at most 2∆(n− 1) rounds to reach
the root node in the worst-case. Now, the remaining part of stage 2 is replica of
the stage 1 of our algorithm. Thus, it takes 2∆(8m− 3n+ 3) many rounds in order
to achieve D-2-D with termination

4 Lower Bound

In this section we discuss the lower bound on number of rounds of D-2-D problem
considering robots do not have more than O(log ∆) additional memory. We start
by defining view of a node to a robot.

Definition 4.1. View: View of a node v to a robot is the information of whether
there is a settled robot at any of its one hop neighbor or not, including v.

Next we prove the theorem by constructing a class of graphs. The idea is that,
each graph in the class is a regular graph of degree n−1 and has 2n nodes. We start
with two robots, one of which settles first and the other looks for a node to settle.
The graphs are such that, unless the unsettled robot reaches two particular nodes,
it will not be able to differentiate the graph with a clique. So, before reaching one of
those nodes, if it decides to settle, that will lead to a wrong solution. We show that,
with limited memory, finding one of those nodes requires at least Ω(m∆) rounds.

Theorem 4.1. The lower bound on number of rounds of D-2-D problem on arbi-
trary graphs is Ω(m∆) considering robots have no more than O(log ∆) additional
memory.

Proof. We will prove this using a class of graphs where we show that there will be at
least one graph for which the robots require at least ∆m

12 many rounds to complete
D-2-D. Let us consider two cliques of n vertices but with one edge missing from
each of them. Let v1, v2, ..., vn be the vertices of the first clique Q1 and u1, u2,
..., un be the vertices of the second clique Q2. Let v1v2 be the missing edge from
the first clique and u1u2 be missing from the second clique. We join v1 with u1

and v2 with u2. Now, the graph G has 2n nodes with ∆ = n − 1. Considering all
possible different port-numbering of this graph gives us a graph class G which has
cardinality equal to [(n − 1)!]2n. Let two robots r1 and r2 are initially present at
vj where j 6= 1, 2. Let us assume that there exists an algorithm A which solves
D-2-D in time less than m∆

12 . Let r1 settles first and at node w. We can claim that
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there will be at least |G |2 graphs where, w /∈ {v1, v2, u1, u2}. W.l.o.g. let w = vi be

some vertex of Q1. Let us denote |G |2 by N .
As the robots have O(log ∆) memory, they can remember only a constant many

port numbers at a time. We provide r2 more power by letting it know that there
is a node to settle within two hop distance of vi. The robot r2 aims to explore all
the ∆(∆− 1) many two hop neighbors. There are enough graphs(in particular, N

4 )

wherein the robot r2 needs to explore at least ∆(∆−1)
2 many vertices before exploring

u1 or u2. Unless it reaches u1 or u2 and has the view, r2 can not distinguish any
graph of our graph class from a clique of n nodes.

Let the sequence in which the nodes are explored is as follows {vi1 , vi2 ,...,
vi∆(∆−1)

2

}. When r2 reaches vi1 , it needs to know the view of the graph. If vi1 is

reached from vi directly, then getting the view takes only one round as r2 under-
stands it is one hop away from vi. Else, if vi1 is not reached directly from vi, then
it is easy to see that, in at least half of the graphs, r2 needs at least ∆

2 rounds to

get the view. So, there exists enough instances(in particular at least N
4.2 ) where r2

requires ∆
2 rounds to find the view. Similarly, after reaching vi2 there exists at least

N
4.22 many graphs where ∆

2 many rounds will be required to find the view of that

node. In similar fashion, at vi∆(∆−1)
2

there exists at least N

4.2
∆(∆−1)

2

many graphs.

Now N

4.2
∆(∆−1)

2

is a function of n and the value becomes more than 1 for all n ≥ 3.

Hence, there is at least one graph where robot r2 needs to spend at least
∆(∆−1)

2 .∆2 rounds to settle. For n ≥ 3, ∆ ≥ M
3 where M = 2n. Thus, ∆(∆−1)

2 .∆2 ≥
M
3 .

(∆−1)
2 .∆2 = m.∆−1

6 ≥ m∆
12 . This proves there is at least one such instance in

the class G where the robot r2 requires m∆
12 many rounds to complete D-2-D, else

both r1 and r2 settles either on Q1 or on Q2 and this leads to wrong D-2-D. This
completes the proof.

5 Conclusion and Future Work

We propose a variant of the dispersion problem and provide an algorithm that
solves it for the rooted initial configuration with O(log ∆) additional memory per
robot and in 2∆(8m−3n+3) synchronous rounds. We also provide a Ω(m∆) lower
bound of the problem on number of rounds. In some cases, we guarantee forming
a maximal independent set by the robots which can be of independent interest. It
will be interesting to see how to solve the problem for arbitrary initial configuration
of the robots.
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