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Abstract. Process calculi such as CCS or the π-calculus provide speci-
fication languages for the study and correctness of communication proto-
cols. They also served in detailing subtle differences between formalisms
to represent infinite behaviors, notably in expressiveness [4,14]. To our
knowledge, such results were never investigated from a reversible perspec-
tive. One question we would like to answer is how recursion, replication
and iteration compare in the reversible setting. Of course, comparing
them requires to define them first, and this short note draws possible
paths toward a definition of replication for reversible concurrent calculi.
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1 What Makes a Good Reversible Calculi?

A specification language for protocols should itself has strong, desirable prop-
erties, and presenting it as a labeled transition system (LTS) often makes it
amenable to mathematical reasoning. Thanks to the axiomatic approach to re-
versible computation [12], it is known that most of the desirable properties for
reversible LTSes can be derived from three axioms: the square property (SP),
the fact that backward transitions are independent (BTI), and well-foundedness
(WF). We recently offered to extend the square property with what we called
“the diamonds” [2], but this does not change the fact that there is a general
consensus in the community that a LTS not respecting those properties will not
characterize faithfully (causal consistent) reversible communications.

As a consequence, endowing reversible LTSes with infinite behaviors requires
to check that those axioms are preserved. Representing infinite behaviors is of
interest for multiple reasons: in addition to mathematical curiosity (what is
infinity when you can go back at any time?), it is a staple element of any good
specification language, since it allows to represent the spawning of new threads.

This short note offers to look at the reference process calculus for reversible
systems—CCSK [11,15]—endowed with an original definition of concurrency [1,2],
and to highlight some of the difficulties arising from the addition of a replication
operator to the LTS.

mailto:caubert@augusta.edu
https://spots.augusta.edu/caubert/


2 Clément Aubert

2 Reminders on Reversible Concurrent Calculi

We very briefly restate the syntax and semantics of CCSK, using the definition
of concurrency inspired by proved transition systems [5,6,7]–a variation on LTSes
that eases the syntactical definition of concurrency.

Definition 1 ((Co-)names, labels and keys). Let N = {a, b, c, . . .} be a
set of names and N = {a, b, c, . . . } its set of co-names. The set of labels L is
N∪N∪{τ}, and we use α, β (resp. λ) to range over L (resp. L\{τ}). A bijection
· : N → N, whose inverse is written ·, gives the complement of a name, and we
let τ = τ . Finally, we let K = {m,n, . . . } be a set of keys, and let k range over
them.

Definition 2 (Operators). CCSK processes are defined as usual:

X,Y :=0 (Inactive process)

α.X (Prefix)

α[k].X (Keyed prefix)

X\α (Restriction)

X + Y (Sum)

X | Y (Parallel composition)

The inactive process 0 is omitted when preceded by a (keyed) prefix, we write
key(X) for the set of keys in X, and std(X) iff key(X) = ∅, i.e., if X is standard.

Definition 3 (Enhanced keyed labels). Let υ, υL and υR range over strings
in {|L, |R,+L,+R}∗, enhanced keyed labels are defined as

θ := υα[k] ‖ υ〈|LυLα[k], |RυRα[k]〉

We write E the set of enhanced keyed labels, and define ℓ : E → L and k : E → K:

ℓ(υα[k]) = α ℓ(υ〈|LυLα[k], |RυRα[k]〉) = τ

k(υα[k]) = k k(υ〈|LυLα[k], |RυRα[k]〉) = k

We present in Fig. 1 the rules for the proved forward and backward LTS for
CCSK, let →=→ ∪ , and ·∗ be the transitive closure of any of those three
relations. The rules |R, |•R, +R and +•

R are omitted but can easily be inferred.

Definition 4 (Dependency and concurrency). The dependency relation
⋖ on enhanced keyed labels is induced by the axioms below:

Action

α[k]⋖ θ ∀α, k, θ

Sum Group

+Lθ ⋖+Rθ
′

+Rθ ⋖+Lθ
′

+dθ ⋖+dθ
′ if θ ⋖ θ′
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Action, Prefix and Restriction

Forward
std(X) act.

α.X
α[k]
−−→ α[k].X

X
θ
−→ X ′

k(θ) 6= k pre.

α[k].X
θ
−→ α[k].X ′

X
θ
−→ X ′

ℓ(θ) /∈ {a, a} res.

X\a
θ
−→ X ′\a

Backward
std(X) act.•

α[k].X
α[k]

α.X

X ′ θ
X

k(θ) 6= k pre.•

α[k].X ′ θ
α[k].X

X ′ θ
X

ℓ(θ) /∈ {a, a} res.•

X ′\a
θ

X\a

Parallel Group

Forward

X
θ
−→ X ′

k(θ) /∈ key(Y ) |L

X | Y
|Lθ
−−→ X ′ | Y

X
υLλ[k]
−−−−→ X ′ Y

υRλ[k]
−−−−→ Y ′

syn.

X | Y
〈|LυLλ[k],|RυRλ[k]〉
−−−−−−−−−−−−−→ X ′ | Y ′

Backward

X ′ θ
X

k(θ) /∈ key(Y ) |•L

X ′ | Y
|Lθ

X | Y

X ′ υLλ[k]
X Y ′ υRλ[k]

Y
syn.•

X ′ | Y ′ 〈|LυLλ[k], |RυRλ[k]〉
X | Y

Sum Group

Forward

X
θ
−→ X ′

std(Y ) +L

X + Y
+Lθ
−−−→ X ′ + Y

Backward

X ′ θ
X

std(Y ) +•
L

X ′ + Y
+Lθ

X + Y

Fig. 1. Rules of the proved LTS for CCSK

Parallel Group

|dθ ⋖ |dθ
′ if θ ⋖ θ′

〈θL, θR〉⋖ θ if ∃d s.t.θd ⋖ θ

θ ⋖ 〈θL, θR〉 if ∃d s.t.θ ⋖ θd

〈θL, θR〉⋖ 〈θ′L, θ
′
R〉 if ∃d s.t.θd ⋖ θ′d

For d ∈ {L,R}.

Two enhanced keyed labels θ1 and θ2 are concurrent, θ1 ⌣ θ2, iff neither
θ1 ⋖ θ2 nor θ2 ⋖ θ1.

Definition 5 (Concurrencies). A transition t1 : X
θ1−→ Y1 is concurrent with

t2 : Y1
θ2−→ Y2 or with t2 : X

θ2−→ Y3, t1 ⌣ t2, iff θ1 ⌣ θ2.
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We refer the reader to our pre-print [2] for an in-depth discussion of the
benefits and correctness of this definition.

3 Replication and Reversibility

Two different sets of rules for replications have been considered for CCS and π-
calculus. Their benefits and drawbacks have been discussed in detail [16, pp. 42–
43] for forward-only systems, but, to our knowledge, never in a reversible setting.
We briefly discuss the elements needed to define them, and then how they behave.

3.1 Preamble – How to Make My LTS Infinite?

Adding replication to CCSK requires to

1. Add !X to the set of operators (Definition 2),
2. Add ! to the set of strings over which υ, υL and υR can range in Definition 3,
3. Add rules for the ! operator in the proved LTS (Fig. 1),
4. Fine-tune the definition of the dependency relation (Definition 4).

Then, proving that it is “correct” requires to prove SP,1 BTI and WF:

∀t1 : X
θ1−→ X1, t2 : X

θ2−→ X2 with t1 ⌣ t2, ∃t
′
1 : X1

θ2−→ Y, t′2 : X2
θ1−→ Y (SP)

∀t1 : X
θ1

X1, t2 : X
θ2

X2, t1 6= t2 =⇒ t1 ⌣ t2 (BTI)

∀X, ∃X0, . . . , Xn with std(X0) s.t. X Xn · · · X1 X0 (WF)

Below, we will assume that the first and second steps described above have
been completed (they are straightforward), and compare two different sets of
rules for the semantics of the ! operator, and how they impact the possibility of
preserving those properties.

3.2 Replication – First Version

The first set of rules we consider is made of the following two and their reverses:

Infinite Group

X
θ
−→ X ′

repl.1
!X

!θ
−→!X | X ′

X
θLλ[k]
−−−−→ X ′ X

θRλ[k]
−−−−→ X ′′

repl.2

!X
!〈|LθLλ[k],|RθRλ[k]〉
−−−−−−−−−−−−−→!X | (X ′ | X ′′)

And the dependency relation (Definition 4) now includes

!θ⋖!θ′ if θ ⋖ θ′

!θ⋖ |L θ′
!θ⋖|Rθ

′ if











θ = 〈θL, θR〉 and θ′ =|L θ′′ or

θ = 〈θL, θR〉 and θ′ = |Rθ
′′ or

θ ⋖ θ′ otherwise.

1 This version of SP is a slight generalization, as motivated in our related work [2].
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There are three issues with this version: 1. The dependency relation becomes
cumbersome to manipulate, 2. We are forced to treat as dependent transitions
that should be concurrent, 3. We cannot obtain (BTI). The details supporting
those claims are shared in Sect. A.

3.3 Replication – Second Version

The second set we consider is actually older [13], and made of the following rules:

Infinite Group

Forward

!X | X
θ
−→ X ′

rep.

!X
!θ
−→ X ′

Backward

X ′ θ
!X | X

rep.•

X ′ !θ
!X

We extend the dependency relation (Definition 4) with
!θ ⋖ |Lθ

′

!θ ⋖ |Rθ
′ if θ ⋖ θ′

.

This version seems to behave more nicely w.r.t. (BTI): e.g., we have

!a.X | a[m].P
|Ra[m]

!a.X | a.X and !a.X | a[m].P
!|Ra[m]

!a.X

but as |Ra[m] ⌣!|Ra[m], both transitions are independent. However, obtaining
(SP) would require to find backward transitions from !a.X | a.X and !a.X con-
verging to the same process, which is impossible since they are both standard.

In addition, this formalism “make[s] it difficult to obtain any result concerning
causality in our approach, which is based on enhanced labels, hence it relies
on proofs by structural induction” [6, p. 310]. Those types of proofs are really
difficult to carry on with the possibility offered by those rules to (des)activate
a copy of X at any depth, and all our attempts at proving (SP) have failed so
far (even setting aside the case we discussed earlier). The impossibility to carry
on proofs by induction with this rule has been known for a long time [16, p. 43],
and it does not seem that adding reversibility allows to sidestep any of it.

4 Concluding Notes

Two interesting features of those two versions are first that we do not need to
worry about memory duplication, since !X is reachable iff X is standard. Second,
we can note that every process reachable from !X has infinitely many origins: if
!X →∗ Y , then Y

∗!X , Y ∗!X | X , Y ∗ (!X | X) | X , etc. Obtaining
a well-behaved system with replication could require adopting a powerful struc-
tural equivalence, but this is a difficult task, both for proved transition systems
and for reversible systems. Indeed, the “usual” structural congruence is missing
from all the proved transition systems [5,7,9,10], or missing the associativity
and commutativity of the parallel composition [8, p. 242]. While adding such a
congruence would benefit the expressiveness, making it interact nicely with the
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derived proof system and the reversible features [11, Section 4][3] is a challenge
that may not even grant the required properties to define a replication satisfying
the desired properties we discussed in this short note.
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A Some of the Issues With Version 1

Adding five axioms to the dependency relation to handle one operator is clearly
not ideal. Some of that comes from the fact that we use the same relation for co-
initial and composable transitions, and we believe that all of them are necessary.
If we take the first one as an example (!θ⋖!θ′if θ ⋖ θ′), it is justified by the fact
that we want to see the following two co-initial transitions as dependent:

!(a+ b)
!+La[m]
−−−−−→!(a+ b) | (a[m] + b) !(a+ b)

!+Rb[m]
−−−−−→!(a+ b) | (a+ b[m]).

While this first condition seems to be fulfilling a useful purpose, the condi-
tions for !θ ⋖ |Rθ

′ are equally necessary, but force some transitions to be depen-
dent while the common sense would see them as concurrent. For instance, letting
X = a | (a+ b), we have

X
|La[m]
−−−−→ a[m] | (a+ b)

|R+Rb[n]
−−−−−−→ a[m] | (a+ b[n])

X
|R+La[m]
−−−−−−→ a | (a[m] + b)

and hence

!X
!〈|L|La[m],|R|R+La[m]〉
−−−−−−−−−−−−−−−→!X |

(

(a[m] | (a+ b)) | (a | (a[m] + b))
)

|R|L|R+Rb[n]
−−−−−−−−→!X |

(

(a[m] | (a+ b[n])) | (a | (a[m] + b))
)

It would seem intuitive to let those two transitions be concurrent, since !X
can decide to act on b first, and then synchronize a and a. Indeed, since we have

X
|R+Rb[n]
−−−−−−→ a | (a+ b[n])

|La[m]
−−−−→ a[m] | (a+ b[n])

The resulting transitions would be:

!X
!|R+Rb[n]
−−−−−−→!X | (a | (a+ b[n]))

〈|L!|R+La[m],|R|La[m]〉
−−−−−−−−−−−−−−−→

(

!X | (a | (a[m] + b))
)

| (a[m] | (a+ b[n]))

Even if we could let the proved labels be equivalent in some ways, since our
system do not have a structural congruence, we cannot consider the two terms
obtained after the transitions as equal or equivalent. So, to have a chance of
obtaining (SP), we have to make more transitions dependent than we would like.
We can observe, however, that the original system for forward-only transition
had the same flaw [6, Definition 2].

Last but not least, this system does not enjoy (BTI). Indeed, consider e.g.,
the reachable process X =!a.P | a[m].P , we have

t1 : X
!a[m]

!a.P and t2 : X
|Ra[m]

!a.P | a.P ,

and since !a[m]⋖|Ra[m], t1 and t2 are not concurrent–this dependency is actually
useful in proving (SP).

There are at least three options that could be explored to restore (BTI):
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1. One could argue that t1 and t2 are the same up to the structural congruence
!P | P ≡!P [4, Definition 12] (which is missing in our system and introduces
many additional complications),

2. One could “mark” the key m so that it cannot backtrack independently, thus
forbidding the |Ra[m]-transition,

3. One could decide that rep.1 and rep.2 are irreversible rules.

Before exploring those options in too much details, we thought it would be
preferable to explore the alternative formalism for replication, as we discuss in
Sect. 3.3.
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