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Abstract

Tail recursive functions allow for a wider range of optimisations than
general recursive functions. For this reason, much research has gone into
the transformation and optimisation of this family of functions, in partic-
ular those written in continuation passing style (CPS).

Though the CPS transformation, capable of transforming any recur-
sive function to an equivalent tail recursive one, is deeply problematic in
the context of reversible programming (as it relies on troublesome features
such as higher-order functions), we argue that relaxing (local) reversibility
to (global) invertibility drastically improves the situation. On this basis,
we present an algorithm for tail recursion conversion specifically for invert-
ible functions. The key insight is that functions introduced by program
transformations that preserve invertibility, need only be invertible in the
context in which the functions subject of transformation calls them. We
show how a bespoke data type, corresponding to such a context, can be
used to transform invertible recursive functions into a pair of tail recursive
function acting on this context, in a way where calls are highlighted, and
from which a tail recursive inverse can be straightforwardly extracted.

Keywords: tail recursion, CPS transformation, program transforma-
tion, program inversion

1 Introduction

When a function calls itself, either directly or indirectly, we say that the func-
tion is recursive. Furthermore, when the last operation of all branches in the
definition of a recursive function is the recursive call, we say that the function is
tail recursive. Unlike generally recursive functions, tail recursive functions can
be easily compiled into loops in imperative languages (in particular assembly
languages) doing away with the overhead of function calls entirely. This makes
tail recursion a desirable programming style.

Recall that a program is reversible when it is written such that it only
consists of invertible combinations of invertible atomic operations; this is the
idea of reversibility as local phenomenon. While every reversible program is also
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invertible (in the sense that it has an inverse), the converse is not the case, as
an invertible program may consist of a number of non-invertible functions that
simply happen to interact in a way as to make the program invertible. As such,
invertibility is a global phenomenon.

While recursion has been employed in both imperative and functional re-
versible programming languages [12,24] for many years, tail recursion has been
more cumbersome to handle. Here, we argue that relaxing (local) reversibility to
(global) invertibility can drastically simplify the handling of tail recursion and
even make it possible to use (adaptations of) conventional CPS transformation
methods for transforming general recursive to tail recursive functions. To see
this, consider the list reversal and list append functions

1 reverse1 [ ] = []
2 reverse1 (x : xs) =
3 let ys = reverse1 xs in

4 let (zs :_x) = snoc1 (ys, x) in

5 (zs :_x)

1 snoc1 ([ ], x) = x : []
2 snoc1 (y : ys , x) =
3 let (zs :_x) = snoc1 (ys, x) in

4 (y : zs :_x)

The careful reader will have already realised that reverse1 is its own inverse.
Here, we will refrain from clever realisations and focus on purely mechanical
ways of providing inverse functions. For instance, the inverses

1 unsnoc1 (y : zs :_x) =
2 let (ys , x) = unsnoc1 (zs:_x) in

3 (y : ys , x)
4 unsnoc1 (x : [ ]) = ([ ], x)

1 unreverse1 (zs :_x) =

2 let (ys , x) = unsnoc1 (zs:_x) in

3 let xs = unreverse1 ys in

4 (x : xs)
5 unreverse1 [ ] = [ ]

are produced by rewriting “ let y = f x in t” to “ let x = unf y in t”, and then
swapping the order bindings in the remaining program t, starting from the
last line and ending with the first, much in the style of Romanenko [19]. To
transform these recursive functions into tail recursive functions, the standard
technique is to introduce an iterator that passes around an explicit argument
for accumulating the deferred part of the computation, e.g.,

1 reverse2 xs = reverse2_iter (xs , [])
2

3 reverse2_iter ([ ], accum) = accum

4 reverse2_iter (x : xs , accum) = reverse2_iter (xs, x : accum)

Implementing list reversal in this style makes it tail recursive, but it also loses an
important property, namely branching symmetry. This is crucial, since branch-
ing symmetry was the entire reason why we could mechanically invert the imple-
mentations of snoc1 and reverse1 so easily: because the leaves of their cases are
syntactically orthogonal. For instance, in reverse1 , when the input is an empty
list, the result is also an empty list, and when the input is nonempty, the result
is also nonempty.

As a consequence of this loss of symmetry, the iterator function reverse2_iter

it is not considered well-formed for inversion as defined by Glück & Kawabe [6].
Consequently, it cannot be implemented in a reversible functional programming
language such as RFun [20, 24] or CoreFun [8], as it breaks the symmetric first
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match policy; the base case returning accum will also return the same value
from the iterative case. Even worse, reverse2_iter cannot be inverted to a de-
terministic function using known methods [5, 16, 18]. Of course, this is because
reverse2_iter is not injective, so the outputs of a particular input is not unique.

It does not take much effort to show that reverse1 and reverse2 are semanti-
cally equivalent. Thus, since the latter does nothing but call reverse2_iter it is
surprising that we cannot invert it. A brief analysis of the problem concludes
that reverse2 restricts itself to a subset of the domain of reverse2_iter , and since
reverse2 is clearly injective, reverse2_iter as restricted to this smaller domain
must be injective as well. By further analysis, we realise that the second com-
ponent of the arguments to reverse2_iter , as called by reverse2 , is static and can
be ignored. In this context reverse2_iter is in one of three configurations: ac-
cepting the restricted input, iterating, or returning an output. By introducing
a data type, we can explicitly restrict reverse2_iter to this smaller domain:

1 data Configuration a = Input a | Iteration (a, a) | Output a
2

3 reverse3 xs = let (Output ys) = iterate (Input xs) in ys
4

5 iterate (Input xs) = iterate ( Iteration (xs , [ ]))
6 iterate ( Iteration (x : xs , ys)) = iterate ( Iteration (xs , x : ys))
7 iterate ( Iteration ([ ], ys)) = (Output ys)

Even further, just like reverse1 this definition can be mechanically inverted:

1 uniterate (Output ys) = uniterate ( Iteration ([ ], ys))
2 uniterate ( Iteration (xs , x : ys)) = uniterate ( Iteration (x : xs , ys))
3 uniterate ( Iteration (xs , [ ])) = (Input xs)
4

5 unreverse3 ys = let (Input xs) = uniterate (Output ys) in xs

Moreover, these four function definitions are all tail recursive, which was what
we wanted.

Structure: In this article we will show an algorithm that can perform this
transformation. First, in Section 2, we illustrate the program transformation
by example, before describing it formally in Section 3 and prove its correctness.
Afterwards, we discuss a couple of known limitations (Section 4) of our approach,
and show how the resulting constructs can be compiled to a flow-chart language
(Section 5). Finally, we discuss related in Section 6 and end in Section 7 with
some concluding remarks.

2 Tail recursion transformation, by example

The transformation we propose assumes a functional programming language
with first order functions, algebraic datatypes, and recursion, as these are the
features commonly found in reversible functional programming languages [8, 9,
20, 24]. Moreover, as the subject of the transformation, we only consider func-
tions that are well-formed for inversion [6] as usual, meaning that the patterns
of case-expressions are orthogonal, either syntactically, or by guard statements
as suggested in Mogensen’s semi-inversion for guarded-equations [15]. Further-
more, we require that expressions and patterns are linear (any variable binding
is used exactly once), and (for simplicity) that a variable cannot be redefined in
expressions that nest binders (such as let and case).
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Such programming languages usually introduce the notion of tail recursion
by introducing an imperative style language feature. For instance, Mogensen’s
language for guarded equations [15] features a loop construct that allows it to
call a partial function until it fails (by pattern matching not exhaustive), as
illustrated by the function reverse4 , defined by:

1 reverse4 (xs) = let ([], acc) = loop revStep (xs , []) in acc
2 where revStep(x : xs, acc) = (xs, x : acc);

Likewise, the Theseus programming language [9] provides a trace operation
encoded via so-called iteration labels, as demonstrated in reverse5 below.

1 iso reverse5 :: [a] <−> [a]
2 | xs = iterate $ inL xs, []
3 | iterate inL $ (x : xs) ys = iterate $ inL xs, (x : ys)
4 | iterate inL $ [], ys = iterate $ inR ys
5 | iterate $ inR ys = ys
6 where

7 iterate :: ([a] ∗ [a]) + [a]

We do not introduce a new language feature, but instead relax the requirement
that all functions must be well-formed for inversion. Instead we require only
that the subject of the transformation must be well-formed for inversion. For in-
stance, recall that the function snoc1 from Section 1 is well-formed for inversion,
and consider Nishida & Vidal’s CPS transformation of first-order functions [17]

1 data Continuation a = Id | F a (Continuation a)
2

3 snoc2 p = snoc2_iter (p, Id)
4 where

5 snoc2_iter (([ ], x), g) = snoc2_call (g, x : [])
6 snoc2_iter ((y : ys , x), g) = snoc2_iter ((ys , x), F y g)
7 snoc2_call (Id , zs :_x) = zs:_x
8 snoc2_call (F y g, zs :_x) = snoc2_call (g, y : zs :_x)

Here, the computation has been split into two parts; one that computes a struc-
ture corresponding to the closure of the usual continuation function, and another
that corresponds to evaluating the call to said continuation. Now, just as with
reverse2_iter , snoc2_iter and snoc2_call are not injective functions, but can be
restricted to such when recognizing that one or more of its arguments are static
(Id and [] respectively). Consequently, we can introduce a datatype that does
away with these, and invert snoc2 as

1 data Configuration’ input acc arg output =
2 Input ’ input
3 | Iterate (input , Continuation acc)
4 | Call (Continuation acc, arg)
5 | Output’ output
6

7 snoc6 (ys , x) =
8 let (Output’ (zs :_x)) = snoc6_call (snoc6_iter (Input’ (ys , x))) in (zs :_x)
9

10 snoc6_iter (Input ’ (ys , x)) = snoc6_iter ( Iterate ((ys , x), Id ))
11 snoc6_iter ( Iterate ((y : ys , x), g)) = snoc6_iter ( Iterate ((ys , x), F y g))
12 snoc6_iter ( Iterate (([ ], x), g)) = (Call (g, [x ]))
13
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14 snoc6_call (Call (g, [x ])) = snoc6_call ( Iterate ([x ], g))
15 snoc6_call ( Iterate ((zs :_x), F y g)) = snoc6_call ( Iterate (y : (zs :_x), g))
16 snoc6_call ( Iterate ((zs :_x), Id )) = (Output’ ((zs :_x)))
17

18 unsnoc6_call (Output’ ((zs :_x))) = unsnoc6_call ( Iterate ((zs :_x), Id ))
19 unsnoc6_call ( Iterate (y : (zs :_x), g)) = unsnoc6_call ( Iterate ((zs :_x), F y g))
20 unsnoc6_call ( Iterate ([x ], g)) = (Call (g, [x ]))
21

22 unsnoc6_iter (Call (g, [x ])) = unsnoc6_iter ( Iterate (([ ], x), g))
23 unsnoc6_iter ( Iterate ((ys , x), F y g)) = unsnoc6_iter ( Iterate ((y : ys , x), g))
24 unsnoc6_iter ( Iterate ((ys , x), Id )) = (Input’ (ys , x))
25

26 unsnoc6 (zs:_x) =
27 let (Input ’ (ys , x)) = unsnoc6_iter (unsnoc6_call (Output’ (zs:_x))) in (ys , x)

Moreover, because the iterator does not use Output’ and the call simulation does
not use Input ’, we can introduce two separate datatypes, and a couple of gluing
functions to improve composition.

1 data Configuration2 input acc arg
2 = Input2 input
3 | Iterate2 (input , Continuation acc)
4 | Output2 (Continuation acc, arg)
5

6 data Configuration3 acc arg output
7 = Input3 (Continuation acc, arg)
8 | Iterate3 (Continuation acc, output)
9 | Output3 output
10

11 input a = (Input2 a)
12 uninput (Input2 a) = a
13 glue (Output2 a) = (Input3 a)
14 unglue (Input3 a) = (Output2 a)
15 output a = (Output3 a)
16 unoutput (Output3 a) = a

Now, because reverse1 was also well-formed for inversion, we can apply the usual
CPS transformation, and obtain a tail-recursive inverse program by the exact
same procedure:

1 reverse6 = unoutput . call6 . glue . iterate6 . input
2

3 iterate6 (Input2 xs) = iterate6 ( Iterate2 (xs , Id ))
4 iterate6 ( Iterate2 (x : xs , g)) = iterate6 ( Iterate2 (xs , F x g))
5 iterate6 ( Iterate2 ([], g)) = (Output2 (g, []))
6 call6 (Input3 (g, [])) = call6 ( Iterate3 (g, []))
7 call6 ( Iterate3 (F x g, ys)) = call6 ( Iterate3 (g, zs :_x))
8 where zs:_x = snoc6 (ys, x)
9 call6 ( Iterate3 (Id , ys)) = (Output3 ys)
10 uncall6 (Output3 ys) = uncall6 ( Iterate3 (Id , ys))
11 uncall6 ( Iterate3 (g, zs :_x)) = uncall6 ( Iterate3 (F x g, ys))
12 where (ys, x) = unsnoc6 (zs:_x)
13 uncall6 ( Iterate3 (g, [])) = (Input3 (g, []))
14 uniterate6 (Output2 (g, [])) = uniterate6 ( Iterate2 ([], g))
15 uniterate6 ( Iterate2 (xs , F x g)) = uniterate6 ( Iterate2 (x : xs , g))
16 uniterate6 ( Iterate2 (xs , Id )) = (Input2 xs)
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p ::= c(pi) (Constructor).

| x (Variable).

t ::= p | f p | case t of pi → ti (Terms.)

∆ ::= f p = t [where pi = ti]. ∆ | data τ = cj(τi) . ∆ | ǫ (Programs).

Figure 1: The syntax for a first order functional programming language.

Jf tK ::= case JtK of p → f p

Jc(ti)K ::= case JtiK of pi → c(pi)

Jlet p = t1 in t2K ::= case Jt1K of p → Jt2K

Jf pi = tiK ::= f x = case x of pi → JtiK

Jf p = t where pi = tiK ::= f p = case JtiK of pi → JtK

Figure 2: Disambiguation of syntactic sugar.

17

18 unreverse6 = uninput . uniterate6 . unglue . uncall6 . output

It is important to note that even though reverse6 seems a bit more com-
plicated than reverse3 , we did not start with a tail recursive function, and the
transformation process was entirely mechanical. First we converted into tail
recursive form using continuation passing style. Then, we restricted the func-
tions introduced by the transformation, to the domain on which they are called
by the function you are inverting. Finally, we inverted all the operations per-
formed by reverse1 , and this was also entirely mechanical (since reverse1 was
well-formed for inversion), and produced the inverse program by swapping the
input and output arguments (keeping the recursive call in front of the Iterate

data structure).

3 Tail recursion transformation, formally

In the interest of simplicity we will show how the transformation works on
a small, idealised subset of the Haskell programming language as shown in
Figure 1, restricted to first order function application and conditionals. A term
is a pattern, a function applied to a pattern, or a case-expression, though in
program examples, we might use a where-clause or a let-statement when the
syntactic disambiguation is obvious. Functions applied to terms, patterns that
consist of terms, and let-statements are disambiguated as shown in Figure 2.

First, we give the definition of the requirements for the transformation to
work.

Definition 1. A term t is closed under a pattern p precisely if all of the variables
that occur in p appear in t exactly once.
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Definition 2. A function f , as defined by the equation f p = t, is well-formed
for inversion, if t is closed under p. Moreover,

• If t is an application, then t ≡ g p0, where g is well-formed for inversion
as well.

• If t is a case-expression, then t ≡ case t0 of pi → ti, where then t0 is well-
formed for inversion, each ti is closed under the corresponding pattern pi,
and for all indices j and k, if j < k then pj is syntactically distinguishable
from pk and the leaf terms of tj are all syntactically distinguishable from
the corresponding leaf terms of tk.

When a function is well-formed for inversion in this way, we know how to
invert it using existing methods, even though such methods may require some
expensive search. However, functions that do not contain a case-expression are
all trivially and efficiently invertible, and we can focus on the hard part, namely
conditionals.

Functions that are well-formed for inversion will be implemented with func-
tion clauses of the following two forms

f pk = tk

f pi = gi (ti0, ti1).

Each term tk is well-formed for inversion and do not contain recursive calls to
f , k is less than i, and gi is well-formed for inversion. Furthermore, ti0 may
contain recursive calls to f but ti1 is free of such calls. Moreover, the result of
calling gi with these arguments yield patterns that are distinguishable from the
results of calling gj on (tj0, tj1) whenever i < j.

The first order CPS transformation proposed by Nishida & Vidal essentially
defers the call to gi by storing the unused parts of pi and ti1 in a data structure,
yielding the program transforms

data τ = Id | Gi(τti1 , τ)

f0 x = f1 (Id, x)

fj (g, pk) = fn (g, tk)

fj (g, pi) = fl (Gi(ti1, g), ti0)

fn (Id, y) = y

fn (Gi(pi1, g), pi0) = fn (g, gi (pi0, pi1)) ,

where 1 ≤ j ≤ n and 1 ≤ l ≤ n. This transformation clearly preserves semantics
(in the sense that f is semantically equivalent with f0) since fj essentially builds
up a stack of calls to respective gi’s, while fn performs these calls in the expected
order.

The only problem is that each fj may not be well-formed for inversion,
and fn is certainly not well-formed; the variable pattern in the first case is a
catch-all that later cases cannot be syntactically orthogonal to. Consequently,
we cannot use existing methods to invert these functions. Instead, we realize
that their origins are well-formed for inversion, so we should have been able to
invert them in a way that is “well formed enough”. The idea is to represent
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each intermediate function with a datatype, and use the fact that each gi is
well-formed for inversion to construct the invertible program as

data τ = Id | Gi(τti1 , τ).

data τ ′ = In(τx) | Fj0(τ, τi0) | Hk1(τ, τk).

data τ ′′ = Hk2(τ, τk) | Eval(τ, τk) | Out(τy).

f ′

0
= f ′

2
◦ h ◦ f ′

1
.

h (Hk1(f, x)) = Hk2(f, x).

f ′

1
(In(pl)) = f ′

1
(Fl(Id, pl))

f ′

1
(Fj(g, pj)) = f ′

1
Fj0(Gj(ti1, g), ti0).

f ′

1
(Fj(g, pk)) = f ′

1
Hk1(g, pk).

f ′

2
(Hk2(g, pk)) = f ′

2
Eval(g, pk).

f ′

2
(Eval(Fi0(Gi(pi1, g)), pi0)) = f ′

2
(g, yi) where yi = gi(pi0, pi1).

f ′

2
(Eval(Id, y)) = Out(y).

Now, just as with the CPS transformation, f ′

0
is semantically equivalent to f

because f ′

1
collects calls Gj and f ′

2
evaluates them. As such, the only difference

is that the input is wrapped in In and Out. However, this time we can derive
an inverse program as

f ′−1

0
= f ′−1

1
◦ h−1 ◦ f ′−1

2
(1)

h−1 (Hk2(f, x)) = Hk1(f, x) (2)

f ′−1

2
(Out(y)) = f ′−1

2
(Eval(Id, y)) (3)

f ′−1

2
(g, yi) = f ′−1

2
(Eval(Fi0(Gi(pi1, g)), pi0)) (4)

where (pi0, pi1) = g−1

i (yi) (5)

f ′−1

2
(Eval(g, pk)) = Hk2(g, pk) (6)

f ′−1

1
(Hk1(g, pk)) = f ′−1

1
(Fj(g, pk)) (7)

f ′−1

1
Fj0(Gj(pi1, g), pi0) = f ′−1

1
(Fj(g, pj)) (8)

f ′−1

1
(Fl(Id, pl)) = (In(pl)) (9)

The correctness of this technique can be shown as follows.

Theorem 1. The function f ′−1

0
is inverse to f0.

Proof. We remark the following for each step of the transformation:

• (1) f ′−1

0
is inverse to f ′

0
(by definition of function composition) precisely

if h−1, f ′−1

1
, and f ′−1

2
are the inverse to h, f ′

1
, and f ′

2
respectively.

• (2) h−1 is trivially inverse to h since it does not contain application or
case-expressions.

• (3) There is only one way of constructing the arguements to f ′−1

2
, namely

using the constructor Out on the output of f ′

2
.

• (4-5) Since gi was well-formed for inversion, the output yi is syntactically
orthogonal to outputs of gj when i 6= j. The patterns it takes as arguments
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(pi0, pi1) are syntactically orthogonal to all other such patterns, so the
choice of constructors Fi0 and Gi has to be unique as well.

• (6) pk is trivially recognized as one of the syntactically orthogonal parts
of the left-hand side of f , which was well-formed for inversion.

• (7) There is only one way of constructing Hk1, namely using h−1.

• (8) These are exactly the arguments of gj, Since f was well-formed for
inversion, they must be closed under pj (Definition 2), which we may now
reconstruct by copying.

• (9) Finally, the first argument of Fl could only have been Id in one program
point, and the result has to be constructed using In, and we are done.

By equations (7)–(9), f ′−1

1
is inverse to f ′

1
, and by equations (3)–(6), f ′−1

2
is

inverse to f ′

2
. Since, by equation (2), h−1 is inverse to h, it follows by equation

(1) that f ′−1

0
is inverse to f ′

0
. Now, since f ′

0
was semantically equivalent to f0,

f ′−1

0
must be inverse to f0 as well, and we are done.

4 Known limitations

In Definition 1 we required linearity, which is slightly stronger than it needs to
be. The reason why we chose this restriction is because it commonly occurs in
reversible programming [20, 24], and makes it easy to reject programs that are
trivially non-invertible. However, the linearity restriction could be relaxed to
relevance (i.e., that variables must occur at least once rather than exactly once)
as in [8]. Moreover, we might even want to relax this restriction even further
to say that all values that were available to a particular function of interest
must be used at least once on every execution path. We do not believe that it
can relaxed further than that, as an invertible program cannot lose information
when it is not redundant.

Additionally, one may want to relax the constraints of local invertibility to be
operations for which an inverse is symbolically derivable. For instance, consider
extending the syntax for patterns with integer literals, and terms with addition
and subtraction. Hence, the following formulation of the Fibonacci-pair function
is possible.

1 fib (a, b) = (a + b, a)
2 dec n = n − 1
3

4 fib_pair 0 = (1, 1)
5 fib_pair n = fib (fib_pair (dec n))

While this program is invertible, it requires a bit of inference to derive the
inverse. For instance, that one of the arguments of fib is preserved in its output,
which is needed to infer unfib. Likewise for dec and undec, the compiler must
infer that subtracting a constant can be automatically inverted.

Additionally, while the algebraic data-representation of natural number con-
stants is syntactically distinguishable, with integer constants and variables the
compiler has to insert guards, as in

9



1 fib_pair = unoutput . call7 . glue . iterate7 . input
2

3 iterate7 (Input2 n) = iterate7 ( Iterate2 (n, Id ))
4 iterate7 ( Iterate2 (n, f )) | n /= 0 = iterate7 ( Iterate2 (n ’, F () f ))
5 where n’ = dec n
6 iterate7 ( Iterate2 (0, f )) = (Output2 (f, (1,1)))
7 call7 (Input3 (f , (1, 1))) = call7 ( Iterate3 (f , (1, 1)))
8 call7 ( Iterate3 (F () f , pair )) = call7 ( Iterate3 (f , y))
9 where y = fib pair
10 call7 ( Iterate3 (Id , x)) = (Output3 x)
11 uncall7 (Output3 x) = uncall7 ( Iterate3 (Id , x))
12 uncall7 ( Iterate3 (f , y)) | y /= (1, 1) = uncall7 ( Iterate3 (F () f , pair ))
13 where pair = unfib y
14 uncall7 ( Iterate3 (f , (1, 1))) = (Input3 (f , (1, 1)))
15 uniterate7 (Output2 (f , (1, 1))) = uniterate7 ( Iterate2 (0, f ))
16 uniterate7 ( Iterate2 (n ’, F () f )) = uniterate7 ( Iterate2 (n, f ))
17 where n = undec n’
18 uniterate7 ( Iterate2 (n, Id )) = (Input2 n)
19

20 unfib_pair = uninput . uniterate7 . unglue . uncall7 . output
21

22 unfib (ab, a) = (a, ab − a)
23 undec n = n + 1

However, the necessary guards are essentially predicates stating that future
clauses do not match (so, they can all be formulated using the 6=-operator).
Moreover, the additional meta theory needed for this kind of support is fairly
simple. In this case, that adding a constant can be inverted by subtracting it,
and that one of the arguments of addition must be an available expression in
the term returned by the call.

5 Translation to flowchart languages

One reason for putting recursive functions on a tail recursive form is for ef-
ficiency, as tail recursive programs can be easily compiled to iterative loop-
constructs, eliminating the overhead of function calls. We sketch here how
the transformed programs can be translated to a reversible loop-construct from
flowchart languages [23] (see also [3,4]), which can be implemented in Janus [12,
25] and later be compiled [2] to reversible abstract machines such as PISA [22]
or BobISA [21].

We remind the reader that the reversible loop has the following structure:

Entry
assertion

Pre/post
statement

Exit con-
dition

Iterative
statement

yes

no

yes

no
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The entry assertion must only be true on entry to the loop, while the exit
condition will only be true in the final iterations. For completeness there are
two statements in the loop: the upper (called pre/post statement) we can use
to transform between the input/output state and the iterative state, while the
lower (called iterative statement) is the most widely used as this has similar
semantics to the normal while-loop.

We will show the translation based on the reverse3 example from before.

1 data Configuration a = Input a | Iteration (a, a) | Output a
2

3 reverse3 xs = let (Output ys) = interpret (Input xs) in ys
4

5 interpret (Input xs) = interpret ( Iteration (xs , [ ]))
6 interpret ( Iteration (x : xs , ys)) = interpret ( Iteration (xs , x : ys))
7 interpret ( Iteration ([ ], ys)) = (Output ys)

The first step is to apply our transformation to yield a tail recursive function;
here, this has already been done. Next, we must translate the functional abstract
data types to imperative values. The Configuration type will be translated into
an enumeration type, with the values Input, Iteration , and Output encoded at
integers (e.g. 1, 2, and 3). We would also need to encoded the function data
(here the two lists), which could be done with an arrays and a given length. We
will, however, not dwell on the data encoding, as our focus is the translation of
code that our translation generates.

We can now construct the reverse3 procedure that will contain the loop.
This will be given the encoded list and return the reversed encoded list. Here
a full compiler (again outside our scope) should also be aware that e.g. Janus
restricts to call-by-reference, making it needed to compile the function to inline
data handling. Though, this is not a restriction in reversible assembly languages.
In the beginning of reverse3 we will create a local variable configuration that is
initialised to Input. After the loop, this variable will be delocalised with the
value Output. At the entry to the loop, the available variables will, thus, be
configuration and the function data (i.e. the encoding of the two lists).

The reversible loop will implement the interpret function. We assume that
there exist a translation of the data handling, meaning that we have the two
procedures

empty that checks if the encoded list is empty, and

move that move the first element of an encode list to the other.

With this, we mechanically derive the four components of the loop as

Entry assertion: configuration = Input. We have defined that is the only
valid value at entrance. Afterwards it will not be used.

Exit condition: configuration = Output. Similar to before, this value is
only used on exit from the function.

Pre/post statement: Line 1 and 3. These two lines can be implemented as
two conditions in sequence, similar to

1 if ( configuration = Input)
2 then configuration++ // Update from enum Input to Iteration
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3 fi ( configuration = Iteration and empty(ys))
4

5 if ( configuration = Iteration and empty(xs))
6 then configuration++ // Update from enum Iteration to Output
7 fi ( configuration = Output)

Here, the first condition transforms the Input value to an Iteration value
with the assertion that the resulting list is empty, while the second con-
dition transforms a Iteration value with an empty list to an Output value
with an assertion that we now have an output value.

Iterative statement: Line 2. This performs the iterative computation, gen-
erating code similar to

8 if ( configuration = Iteration and (not empty(xs)))
9 then move(xs,ys) // Update from enum Input to Iteration
10 fi ( configuration = Iteration and (not empty(ys)))

For completeness we check and assert that configuration = Iteration , though
this is clear from the translation. We also assure correct data handling,
by checking that the relevant lists are non-empty (matching the pattern
matching of the function) and implement the relevant data handling (the
move function).

The generated program could be more efficient, but it clearly demonstrates how
the datatype Configuration translates to a reversible loop. The hard work is in
the encoding of the data. This approach also applies to functions that have more
one function clause with Input and Output cases, and more iterative clauses.

6 Discussion and related work

While it is possible to invert all injective functions [1, 14], inverse programs
constructed this way are often not very efficient. In spite of this, specific inver-
sion methods tend to have well-defined subsets of programs for which they can
produce efficient inverses.

Precisely classifying the problems which can be efficiently inverted is hard,
so the problem is usually approached from a program-specific perspective. One
approach is to restricting programs to be formulated in a way that is particularly
conducive to inversion. Another approach is grammar-based-inversion, which
works by classifying how hard it is to invert a function, based on the properties
of a grammar derived from the function body that decides whether or not a
given value is in its range [7, 13].

An alternative perspective on finding efficient inverse programs is to acknowl-
edge the huge body of knowledge that has been produced in order to optimized
programs running in the forward direction for time complexity, and see if we
can bring those optimizations into the realm of reversible computing. In doing
so we have not found a need to invent new class of programs to invert. Instead,
we enable existing techniques for optimizing CPS transformed programs to be
leveraged on programs which do not naturally allow for CPS transformation.

The technique we use for transforming programs into tail recursive form
is essentially Nishida & Vidal’s method for continuation passing style for first
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order programs [17]. In doing so, we introduce an extra function that evaluates
a data type that represents a continuation.

In related work on grammar/syntax based inversion techniques [6,18], well-
formed with respect to inversion means that the function is linear in its argu-
ments (and so does not throw anything away), and that cases are syntactically
orthogonal. Programs that are well-formed in this sense allow inversion by ap-
plying known inversion methods to the iteration function, which then becomes
a non-deterministic inverse program (since it need not be injective). However,
existing methods for non-determinism elimination can be applied to solve this
problem since the original program was well-formed.

7 Conclusion

In this work we have shown that invertible programs admit a tail recursion trans-
formation, provided that they are syntactically well-formed. This was achieved
using a version of the first order CPS transformation tailored to invertible pro-
grams. Alternatives that do not have tail recursion optimisation must instead
rely on search, which can be prohibitively expensive. Instead of searching, we
can enforce determinism by pattern matching. That is, transformations where
the non-injective part is introduced by the compiler, we can use a “new datatype
trick ”. Finally, we have shown correctness of our transformation and how the
transformed programs can be efficiently compiled to the reversible loops found
in reversible flowchart languages, which in turn may serve as a basis for efficient
implementations in reversible abstract machines.

7.1 Future work

Currently, the transformation is implemented for at subset of Haskell. Future
work will be to integrate this into a invertible functional programming languages
such as Jeopardy [10, 11].

This work avoids the need for a symbolic and relational intermediate repre-
sentation. Perhaps future iterations on such an approach will enable a relaxation
of the existing methods’ very strict requirements (such as linearity), and thus a
less restrictive notion of well-formedness, but also a less syntactic notion of the
complexity of function invertibility.

A major improvement to the complexity of function invertibility would also
be to eschew classifying programs that are hard to invert in favor of classifying
problems. One approach could be to see if the grammar-based approach from [13]
can be relaxed to grammars that recognize the output of the function, rather
than grammars generated by the syntactic structure of the output of a program.

An example of such a relaxation would to allow existential variables. That
is, to split the mechanism of introducing a variable symbol from the mechanism
that associates it with a value (its binder). This is customary in logic program-
ming languages such as Prolog, where programs express logical relationships that
are solved for all possible solutions based on backtracking that redefines variable
bindings. In a functional language, such a mechanism could try to postpone the
need to use a free variable until as late as possible, allowing partially invertible
functions that accept and return partial data structures (containing logical vari-
ables) that may be combined to complete ones (free of logical variables) when
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composed in certain ways. We are currently exploring this concept further in
related work on the Jeopardy programming language [11].

The use of existential variables could further enable the relaxation of the
linearity constraint beyond relevance, such that an iterator function may recon-
struct a partial term (containing free varaibles) which is then unified with the
available knowledge about its origin, if it is possible to unify it to a complete
term (not containing free variables). We have developed an analysis to infer
per-program-point sets of such information [10], which may be combined with
control flow analysis to decide on a suitable program point in which to unify.
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