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Abstract

Spaces where each element describes a shape, so-called shape spaces,
are of particular interest in shape optimization and its applications.
Theory and algorithms in shape optimization are often based on tech-
niques from differential geometry. Challenges arise when an application
demands a non-smooth shape, which is commonly-encountered as an
optimal shape for fluid-mechanical problems. In order to avoid the re-
striction to infinitely-smooth shapes of a commonly-used shape space,
we construct a space containing shapes in R2 that can be identified with
a Riemannian product manifold but at the same time admits piecewise-
smooth curves as elements. We combine the new product manifold
with an approach for optimizing multiple non-intersecting shapes. For
the newly-defined shapes, adjustments are made in the known shape
optimization definitions and algorithms to ensure their usability in
applications. Numerical results regarding a fluid-mechanical problem
constrained by the Navier-Stokes equations, where the viscous energy
dissipation is minimized, show its applicability.

Key words: shape optimization, piecewise-smooth shape, Riemannian manifold,
product manifold, Navier-Stokes equation
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1 Introduction
Shape optimization is commonly-applied in enginnering in order to optimize
shapes w.r.t. to an objective functional that relies on the solution of a partial
differential equation (PDE). The PDE is required to model the underlying
physical phenomenon, e.g. elastic displacements due to loadings or fluid
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state of Hamburg (Germany) within the Landesforschungsförderung under project SEN-
SUS with project number LFF-GK11.
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movement due to pressure differences. Different methods are available for
the shape optmization, however we focus on gradient-based techniques on
shape spaces.

An ideal shape space would enable the usage of classical optimization
methods like gradient descent algorithms. Since this is usually not the case,
it is desirable to define a shape u to be an element of a Riemannian mani-
fold. An important example of a smooth1 manifold allowing a Riemannian
structure is the shape space

Be := Be(S1,R2) := Emb(S1,R2)/Diff(S1).

An element of Be is a smooth simple closed curve in R2. The space was
briefly investigated in [10]. The existence of Riemannian metrics, geodesics
or, more generally, the differential geometric structure of Be (cf., e.g. [11,
10]) reveals many possibilities like the computation of the shape gradient
in shape optimization (cf., e.g. [15]). However, since an element of Be is
a smooth curve in R2, the shape space is in general not sufficient to carry
out optimization algorithms on piecewise-smooth shapes, which are often
encountered as an optimal shape for fluid-mechanical problems, see e.g. [14]
for a prominent example. In particular, we are interested in shapes with
kinks. Such piecewise-smooth shapes are generally not elements of a shape
space that provides the desired geometrical properties for applications in
shape optimization. Some effort has been put into constructing a shape
space that contains non-smooth shapes, however so far only a diffeological
space structure could be found, cf. e.g. [19, 20]. A further issue for many
applications in shape optimization [1, 5, 8], such as the electrical impedance
tomography, is to consider multi-shapes. A first approach for optimizing
smooth multi-shapes has been presented in [6].

In this paper, we aim to construct a novel shape space holding a Rie-
mannian structure for optimizing piecewise-smooth multi-shapes. The struc-
ture of the paper is as follows: In section 2, we extend the findings related
to multi-shapes in [6] to a novel shape space considering piecewise-smooth
shapes. Hereby, we use the fact that the space of simple, open curves

Be([0, 1],R2) := Emb([0, 1],R2)/Diff([0, 1])

is a smooth manifold as well (cf. [9]) and interpret a closed curve with
kinks as a glued-together curve of smooth, open curves, i.e., elements of
Be([0, 1],R2). Moreover, we derive a shape optimization procedure on the
novel shape space. In section 3, we apply the presented optimization tech-
nique to a shape optimization problem constrained by Navier-Stokes equa-
tions and present numerical results.

1Throughout this paper, the term smooth shall refer to infinite differentiability.
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2 Product space for optimizing piecewise-smooth
shapes

In this section, we aim to construct a gradient descent algorithm for optimiz-
ing piecewise-smooth multi-shapes, e.g. the multi-shape u = (u1, u2) from
figure 1. In section 2.1, we therefore introduce a novel shape space which has
the structure of a Riemannian product manifold. An optimization algorithm
on the novel shape space is formulated in section 2.2.

2.1 Product shape space

In the following, we introduce a novel shape manifold, whose structure will
later be used to optimize piecewise-smooth shapes. The construction of the
novel shape space is based on a Riemannian product manifold. Therefore,
we first investigate the structure of product manifolds.

We define (Ui, G
i) to be Riemannian manifolds equipped with the Rie-

mannian metrics Gi for all i = 1, . . . , N ∈ N. The Riemannian metric Gi at
the point p ∈ Ui will be denoted by

Gi
p(·, ·) : TpUi × TpUi → R,

where TpUi denotes the tangent space at a point p ∈ Ui. We then define the
product manifold as

UN := U1 × . . .× UN =
N∏

i=1
Ui.

As shown in [6], for the tangent space of product manifolds it holds

TũUN ∼= Tũ1U1 × · · · × TũNUN .

Moreover, a product metric can be defined as

GN =
N∑

i=1
π∗iG

i, (1)

where π∗i are the pushforwards associated with canonical projections. It
is obvious to use the space Be defined in section 1 to construct a specific
product shape space. An issue arises for non-smooth shapes, e.g. the shape
u1 from figure 1. To fix this issue, we now introduce the new multi-shape
space for s shapes built on the Riemannian product manifold UN .

Definition 2.1. Let (Ui, G
i) be Riemannian manifolds equipped with Rie-

mannian metrics Gi for all i = 1, . . . , N . Moreover, UN := ∏N
i=1 Ui. For
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s ∈ N, we define the s-dimensional shape space on UN by

Ms(UN ) := {u = (u1, . . . , us) |uj ∈
kj+nj−1∏

l=kj

Ul,
s∑

j=1
nj = N and

k1 = 1, kj+1 = kj + nj ∀j = 1, . . . , s− 1}.

With definition 2.1, an element in Ms(UN ) is defined as a group of s
shapes u1, . . . , us, where each shape uj is an element of the product of nj

smooth manifolds. For Ul = Be([0, 1],R2) for l = 1, . . . , 12 and U13 =
Be(S1,R2), we can define the shapes presented in figure 1 by (u1, u2) ∈
M2(U13), where u1 ∈

∏12
l=1 Ul and u2 ∈ U13.

For applications of definition 2.1 in shape optimization problems, it is of
great interest to look at the tangent space ofMs(UN ). Since any element u =
(u1, . . . , us) ∈Ms(UN ) can be understood as an element ũ = (ũ1, . . . , ũN ) ∈
UN , we set TuMs(UN ) = TũUN and

Gu(ϕ,ψ) = Gũ(ϕ,ψ) ∀ϕ,ψ ∈ TuMs(UN ) = TũUN .

Next, we consider shape optimization problems, i.e., we investigate so-called
shape functionals. A shape functional onMs(UN ) is given by j : Ms(UN )→
R, u 7→ j(u). In the following paragraph, we investigate solution techniques
for shape optimization problems, i.e., for problems of the form

min
u∈Ms(UN )

j(u). (2)

2.2 Optimization technique on Ms(UN) for optimizing piece-
wise-smooth shapes

A theoretical framework for shape optimization depending on multi-shapes
is presented in [6], where the optimization variable can be represented as
a multi-shape belonging to a product shape space. Among other things,
a multi-pushforward and multi-shape gradient are defined; however, each
shape is assumed to be an element of one shape space. In contrast, definition
2.1 also allows that a shape itself is represented by a product shape space.
Therefore, we need to adapt the findings in [6] to our setting.

To derive a gradient descent algorithm for a shape optimization problem
as in (2), we need a definition for differentiating a shape functional mapping
from a smooth manifold to R. For smooth manifolds, this is achieved using
a pushforward.

Definition 2.2. For each shape u ∈ Ms(UN ), the multi-pushforward of a
shape functional j : Ms(UN )→ R is given by the map

(j∗)u : TuMs(UN )→ R, ϕ 7→ d
dtj(ϕ(t))t=0 = (j ◦ ϕ)′(0).
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Thanks to the multi-pushforward, we can define the so-called multi-shape
gradient, which is required for optimization algorithms.

Definition 2.3. The multi-shape gradient for a shape functional j : Ms(UN )→
R at the point u ∈Ms(UN ) is given by ψ ∈ TuMs(UN ) satisfying

GN
u (ψ,ϕ) = (j∗)uϕ ∀ϕ ∈ TũMs(UN ).

We are now able to formulate a gradient descent algorithm on Ms(UN )
similar to the one presented in [6]. For updating the multi-shape u in each
iteration, the multi-exponential map

expN
u : TuMs(UN )→Ms(UN ), ϕ = (ϕ1, . . . , ϕN ) 7→ (expũ1 ϕ1, . . . , expũN

ϕN )

is used. The algorithm is depicted in algorithm 1.

Algorithm 1 Gradient descent algorithm on Ms(UN ) with Armijo back-
tracking line search to solve (2)
Input: Initial shape u = (u1, . . . , us) = (ũ1, . . . , ũN ) = ũ, constants for

Armijo backtracking and ε > 0 for break condition
1: while ‖v‖GN > ε do
2: Compute the multi-shape gradient v with respect to GN

3: Compute stepsize α with Armijo backtracking
4: u← expN

u (−αv)
5: end while

So far, we have derived an optimization algorithm on Ms(UN ), i.e., an
algorithm for optimizing a non-intersecting group of shapes, where each
shape is an element of a product manifold with a varying number of factor
spaces. With the main goal of this section in mind, we need to further
restrict the choice of shapes in Ms(UN ) to glued-together piecewise-smooth
shapes: We assume that Ui is either Be(S1,R2) or Be([0, 1],R2). Moreover,
we assume that each shape (u1, . . . , us) is closed, where u = (u1, . . . , us) is

chosen from Ms(UN ). By that we mean that if a shape is uj ∈
kj+nj−1∏

l=kj

Ul,

then either
nj = 1 and Ukj

= Be(S1,R2)
or

Ul = Be([0, 1],R2) ∀l = kj , . . . , kj + nj − 1 and for
uj = (ukj

, . . . , ukj+nj−1), it holds that
ukj+h(1) = ukj+h+1(0) ∀h = 0, . . . , nj − 2 and ukj

(0) = ukj+nj−1(1).

Finally, we want to address another important issue in shape optimiza-
tion algorithms: the development of kinks in smooth shapes over the course
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of the optimization. If we view a smooth initial shape, e.g. u2 from figure
1, as an element in Be(S1,R2) no kinks can arise during the optimization of
the shape. An approach to fix this issue for applications, where the develop-
ments of kinks in shapes is desired, is to approximate a smooth shape with
elements of Be([0, 1],R2). A simple but sufficient choice is using initially
straight lines connecting locations of possible kinks. In this manner, the
multi-shape u = (u1, u2) from figure 1 would be an element of

M2(U12+l1+l2), where l1, l2 ∈ N and

u1 ∈
12+l1∏
l=1
Ul = Be([0, 1],R2)12+l1 , u2 ∈

12+l1+l2∏
l=13+l1

Ul = Be([0, 1],R2)l2 .
(3)

3 Application to Navier-Stokes flow
In the following, we apply algorithm 1 to a shape optimization problem
constrained by steady-state Navier-Stokes equations and geometrical con-
straints. In section 3.1, we briefly describe the numerical implementation of
algorithm 1. Afterwards, we formulate the optimization problem that will
be considered for the numerical studies in section 3.2, and finally, in section
3.3, we describe the numerical results.

3.1 Adjustments of algorithm 1 for numerical computations

In order to ensure the numerical applicability of algorithm 1, adjustments
must be made. We define the space W := {W ∈ H1(Du,R2)|W =
0 on ∂Du \u}, and similarly to [6], we use an optimization approach based
on partial shape derivatives, together with the Steklov-Poincaré metric in
equation (1). The Steklov-Poincaré metric is defined in [16] and yields
Gi(V |u,W |u) = a(V ,W ) with a symmetric and coercive bilinear form
a : W ×W. We replace the multi-shape gradient with the mesh deforma-
tion V ∈ W, which is obtained by replacing the multi-pushforward with the
multi-shape derivative2 in definition 2.3. A common choice for the bilinear
form when using the Steklov-Poincaré metric is linear elasticity∫

Du

ε(V ) : C : ε(W ) dx = dj(u)[W ] ∀W ∈ W, (4)

where ε(V ) = sym grad(V ) and C describes the linear elasticity tensor,
A : B is the standard Frobenius inner product and dj(u)[W ] denotes the
shape derivative of j at u in direction W . Due to the equivalence of the
Steklov-Poincaré metric and the bilinear form a, we replace the GN -norm in
the stopping criterion of the algorithm 1 with the H1-norm in Du. Finally,
since the exponential map used in algorithm 1 is an expensive operation, it

2We refer to [6] for the definition and details about the multi-shape derivative.
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u1

u2

Du

x1

x2

Figure 1: Sketch of two shapes u1, u2 surrounded by a domain Du ⊂ R2.

is common to replace it by a so-called retraction. In our computations, we
use the retraction introduced in [17].

3.2 Model formulation

We consider the problem

min
u∈Ms(UN )

j(u) := min
u∈Ms(UN )

∫
Du

µ

2∇v : ∇v dx, (5)

where we constrain the optimization problem by the Navier-Stokes equations
and choose Ms(UN ) as in (3). The state is denoted as y = (v, p) for which
the Navier-Stokes equations can be found in standard literature and will
be omitted here for brevity. The material constants dynamic viscosity and
density are defined as µ = 1.81 and ρ = 1.2 · 105, respectively. We choose
homogenous Dirichlet boundary conditions on the top and bottom boundary
as well as on both shapes. The right boundary is modelled as homogenous
Neumann, and the left boundary has the inhomogenous Dirichlet boundary
condition v = (0.08421x2 (x2 − 1), 0)>. We choose the hold-all domain
D = (0, 1)2, in which two shapes u1 and u2 are embedded as shown in
figure 1 with barycenters at (0.3, 0.3)> and (0.45, 0.75)>, respectively.

Additional geometrical constraints are required in order to avoid trivial
solutions, see e.g. [12, 13], which are implemented as inequality constraints
with an Augmented Lagrange approach as described in [18]. We restrict the
area of each shape vol(ui) to be at 100% initial area. Further, the barycenter
bary(u1) is constrained to stay between (−0.03,−0.05)> and (0.04, 0.03)>
of the initial position in x and y direction, respectively, and the barycenter
bary(u2) to stay between (−0.075,−0.02)> and (0.02, 0.05)> of the initial
position.
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Figure 2: Optimization results: objective functional (left) and H1-norm of
the mesh deformation (right).

3.3 Numerical results

The computational domain is discretized with 3512 nodes and 7026 trian-
gular elements using Gmsh [7] with standard Taylor-Hood elements. An
automatic remesher is available in case the mesh quality deteriorates below
a threshold. The optimization is performed in FEniCS 2019.1.0 [2]. We use
a Newton solver and solve the linearized system of equations using MUMPS
5.5.1 [3, 4]. Armijo backtracking is performed as described in algorithm 1
with α̃ = 0.0125, σ = 10−4 and ρ̃ = 1

10 . The stopping criterion for each
gradient descent is reached when the H1-norm of the mesh deformation is
at or below 10−4. The objective functional and the H1-norm of the mesh
deformation over the course of the optimization are shown in figure 2 and
the magnitude of the fluid velocity in the computational domain before, dur-
ing, and after optimization can be found in figure 3. The optimized shapes
can be seen in figure 3 on the right. Over the course of the optimization we
observe a reduction of the objective functional by approximately 74%. The
norm of the mesh deformation shows an exponential decrease, similar to a
classical gradient descent algorithm. The peaks are caused by remeshing or
by the adjustment of Augmented Lagrange parameters. Initially, the opti-
mizer is mainly concerned with obtaining a approximate optimized shape,
see figure 3b–3d, while the exact fulfillment of geometrical constraints is
less relevant. The later stages optimize small features like the leading and
trailing edge of the shape, see figure 3e, any suboptimal kinks that were
still remaining are removed, and in figure 3f the geometrical constraints are
fulfilled with an infeasibility of below 10−6 after k = 7 Augmented Lagrange
iterations.
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(a) Initial shapes:
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(b) Iteration 200:
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(c) Iteration 600:
j = 0.02205
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(d) Iteration 2 000:
j = 0.01918

0 0.5 1
x1

(e) Iteration 15 000:
j = 0.01917

0 0.5 1
x1

(f) Optimized shapes:
j = 0.02034

Figure 3: Fluid velocity magnitude at different stages of the optimization.
Figure 3f has an increased objective functional value in comparison to fig-
ure 3d and 3e, however it fulfills the geometrical constraints while the others
do not yet.

4 Conclusion
A novel shape space Ms(UN ) that provides both, a Riemannian structure
and a possibility to consider glued-together shapes (in particular, shapes
with kinks) is introduced. Additionally, an optimization algorithm, based
on findings from [6], is formulated. The new algorithm is applied to solve an
optimization problem constrained by the Navier-Stokes equations with ad-
ditional geometrical inequality constraints, where we have observed a strong
reduction of the objective functional and convergence of the gradient descent
on Ms(UN ) similar to a classical gradient descent algorithm. Forthcoming
research should involve an investigation of the development of the shapes’
overlaps (glued-together points) over the course of the optimization. More-
over, convergence statements need to be investigated.

9



References
[1] Y.F. Albuquerque, A. Laurain, and K. Sturm. A shape optimization ap-

proach for electrical impedance tomography with point measurements.
Inverse Probl, 36(9):095006, 2020. doi:10.1088/1361-6420/ab9f87.

[2] M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg,
C. Richardson, J. Ring, M.E. Rognes, and G.N. Wells. The FEniCS
Project Version 1.5. Archive of Numerical Software, 3(100), 2015. doi:
10.11588/ans.2015.100.20553.

[3] P.R. Amestoy, I.S. Duff, J. Koster, and J.-Y. L’Excellent. A fully
asynchronous multifrontal solver using distributed dynamic schedul-
ing. SIAM J Matrix Anal Appl, 23(1):15–41, 2001. doi:10.1137/
S0895479899358194.

[4] P.R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet. Hybrid
scheduling for the parallel solution of linear systems. Parallel Comput,
32(2):136–156, 2006. doi:10.1016/j.parco.2005.07.004.

[5] M. Cheney, D. Isaacson, and J.C. Newell. Electrical impedance to-
mography. SIAM Rev Soc Ind Appl Math, 41(1):85–101, 1999. doi:
10.1137/S0036144598333613.

[6] C. Geiersbach, E. Loayza-Romero, and K. Welker. PDE-constrained
shape optimization: Towards product shape spaces and stochastic mod-
els. In K. Chen, C.-B. Schönlieb, X.-C. Tai, and L. Younes, editors,
Handbook of Mathematical Models and Algorithms in Computer Vi-
sion and Imaging, pages 1–46. Springer International Publishing, 2022.
doi:10.1007/978-3-030-03009-4_120-1.

[7] C. Geuzaine and J.-F. Remacle. Gmsh: A 3-D finite element mesh
generator with built-in pre- and post-processing facilities. Int J Numer
Methods Engs, 79(11):1309–1331, 2009. doi:10.1002/nme.2579.

[8] O. Kwon, E.J. Woo, J.-R. Yoon, and J.K. Seo. Magnetic reso-
nance electrical impedance tomography (mreit): simulation study of j-
substitution algorithm. IEEE Trans Biomed Eng, 49(2):160–167, 2002.
doi:10.1109/10.979355.

[9] P.W. Michor. Manifolds of differentiable mappings, volume 3. Shiva
mathematics series, 1980. URL: https://www.mat.univie.ac.at/
~michor/manifolds_of_differentiable_mappings.pdf.

[10] P.W. Michor and D.B. Mumford. Riemannian geometries on spaces of
plane curves. J. Eur. Math. Soc., 8:1–48, 2006. doi:10.4171/JEMS/37.

10

https://doi.org/10.1088/1361-6420/ab9f87
https://doi.org/10.11588/ans.2015.100.20553
https://doi.org/10.11588/ans.2015.100.20553
https://doi.org/10.1137/S0895479899358194
https://doi.org/10.1137/S0895479899358194
https://doi.org/10.1016/j.parco.2005.07.004
https://doi.org/10.1137/S0036144598333613
https://doi.org/10.1137/S0036144598333613
https://doi.org/10.1007/978-3-030-03009-4_120-1
https://doi.org/10.1002/nme.2579
https://doi.org/10.1109/10.979355
https://www.mat.univie.ac.at/~michor/manifolds_of_differentiable_mappings.pdf
https://www.mat.univie.ac.at/~michor/manifolds_of_differentiable_mappings.pdf
https://doi.org/10.4171/JEMS/37


[11] P.W. Michor and D.B. Mumford. An overview of the Riemannian met-
rics on spaces of curves using the Hamiltonian approach. Appl Com-
put Harmon Anal, 23(1):74–113, 2007. doi:10.1016/j.acha.2006.
07.004.

[12] B. Mohammadi and O. Pironneau. Applied Shape Optimization for
Fluids. Oxford University Press, 2009. doi:10.1093/acprof:oso/
9780199546909.001.0001.

[13] P.M. Müller, N. Kühl, M. Siebenborn, K. Deckelnick, M. Hinze, and
T. Rung. A novel p-harmonic descent approach applied to fluid dynamic
shape optimization. Struct Multidiscipl Optim, 64(6):3489–3503, 2021.
doi:10.1007/s00158-021-03030-x.

[14] O. Pironneau. On optimum profiles in Stokes flow. J Fluid Mech,
59(1):117–128, 1973. doi:10.1017/s002211207300145x.

[15] V.H. Schulz. A Riemannian view on shape optimization. Found Comput
Math, 14(3):483–501, 2014. doi:10.1007/s10208-014-9200-5.

[16] V.H. Schulz, M. Siebenborn, and K. Welker. Efficient PDE constrained
shape optimization based on Steklov-Poincaré-type metrics. SIAM J
Optim, 26(4):2800–2819, 2016. doi:10.1137/15m1029369.

[17] V.H. Schulz and K. Welker. On optimization transfer operators in shape
spaces. In V. Schulz and D. Seck, editors, Shape Optimization, Homog-
enization and Optimal Control, pages 259–275. Springer International
Publishing, 2018. doi:10.1007/978-3-319-90469-6_13.

[18] D. Steck. Lagrange multiplier methods for constrained optimization
and variational problems in Banach spaces. PhD thesis, Universität
Würzburg, 2018. URL: https://opus.bibliothek.uni-wuerzburg.
de/frontdoor/index/index/year/2018/docId/17444.

[19] K. Welker. Efficient PDE constrained shape optimization in shape
spaces. PhD thesis, Universität Trier, 2016. doi:10.25353/
ubtr-xxxx-6575-788c/.

[20] K. Welker. Suitable spaces for shape optimization. Appl Math Optim,
84(S1):869–902, 2021. doi:10.1007/s00245-021-09788-2.

11

https://doi.org/10.1016/j.acha.2006.07.004
https://doi.org/10.1016/j.acha.2006.07.004
https://doi.org/10.1093/acprof:oso/9780199546909.001.0001
https://doi.org/10.1093/acprof:oso/9780199546909.001.0001
https://doi.org/10.1007/s00158-021-03030-x
https://doi.org/10.1017/s002211207300145x
https://doi.org/10.1007/s10208-014-9200-5
https://doi.org/10.1137/15m1029369
https://doi.org/10.1007/978-3-319-90469-6_13
https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/year/2018/docId/17444
https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/year/2018/docId/17444
https://doi.org/10.25353/ubtr-xxxx-6575-788c/
https://doi.org/10.25353/ubtr-xxxx-6575-788c/
https://doi.org/10.1007/s00245-021-09788-2

	1 Introduction
	2 Product space for optimizing piecewise-smooth shapes
	2.1 Product shape space
	2.2 Optimization technique on Ms(UN) for optimizing piecewise-smooth shapes

	3 Application to Navier-Stokes flow
	3.1 Adjustments of algorithm 1 for numerical computations
	3.2 Model formulation
	3.3 Numerical results

	4 Conclusion

