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Abstract. This paper is devoted to the study of unparameterized sim-
ple curves in the plane. We propose diverse canonical parameterizations
of a 2D-curve. For instance, the arc-length parameterization is canonical,
but we consider other natural parameterizations like the parameteriza-
tion proportionnal to the curvature of the curve. Both aforementionned
parameterizations are very natural and correspond to a natural physi-
cal movement : the arc-length parameterization corresponds to travelling
along the curve at constant speed, whereas parameterization proportion-
nal to curvature corresponds to a constant-speed moving frame. Since
the curvature function of a curve is a geometric invariant of the unpa-
rameterized curve, a parameterization using the curvature function is
a canonical parameterization. The main idea is that to any physically
meaningful stricktly increasing function is associated a natural parame-
terization of 2D-curves, which gives an optimal sampling, and which can
be used to compare unparameterized curves in a efficient and pertinent
way. An application to point correspondance in medical imaging is given.

Keywords: Canonical parameterization · Geometric Green Learning ·
shape space.

1 Introduction

Curves in R2 appear in many applications: in shape recognition as outline of
an object, in radar detection as the signature of a signal, as trajectories of cars
etc... There are two main features of the curve : the route and the speed profil.
In this paper, we are only interested in the route drawn by the curve and we will
called it the unparameterized curve. An unparameterized curve can be parame-
terized in multiple ways, and the choosen parameterization selects the speed at
which the curve is traversed. Hence a curve can be travelled with many different
speed profils, like a car can travel with different speeds (not necessarily constant)
along a given road. The choice of a speed profil is called a parameterization of
the curve. It may be physically meaningful or not. For instance, depending on
applications, there may not be any relevant parameterization of the contour of
? Supported by FWF grant I 5015-N, Institut CNRS Pauli, Vienna, Austria, and
University of Lille, France

ar
X

iv
:2

30
3.

15
20

5v
1 

 [
m

at
h.

D
G

] 
 2

7 
M

ar
 2

02
3

http://math.univ-lille1.fr/~tumpach/Site/home.html


2 Tumpach

the statue of Liberty depicted in Fig. 1. In this paper, we propose various very
natural parameterization of 2D-curves. They are based on the curvature, which
together with the arc-length measure form a complete set of geometric invariants
or descriptors of the unparameterized curves.

2 Different parameterizations of 2D-shapes

2.1 Arc-length parameterization and Signed curvature

By 2D-shape, we mean the shape drawn by a parameterized curve in the plane.
It is the ordered set of points visited by the curve. The shapes of two curves are
identical if one can reparameterize one curve into the other (using a continuous
increasing function). Any rectifiable planar curve admits a canonical parameter-
ization, its arc-length parameterization, which draws the same shape, but with
constant unit speed. The set of 2D-shapes can be therefore identified with the set
of arc-length parameterized curves, which is not a vector subspace, but rather
an infinite-dimensional submanifold of the space of parameterized curves (see
[5]).
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Fig. 1: The statue of Liberty (left), a uniform resampling using Matlab function spline (middle), a
reconstruction of the statue using its discrete curvature (right).

It may be difficult to compute an explicit formula of the arc-length param-
eterization of a given rectifiable curve. Fortunately, when working with a com-
puter, one do not need it. One neither need a concrete parameterization of the
curve to depict it, a sample of points on the curve suffises. To draw the statue
of Liberty as in Fig. 1 left, one just need a finite ordered set of points (the red
stars). The discrete version of an arc-length parameterized curve is a uniformly
sampled curve, i.e. an ordered set of equally distant points (for the euclidean
metric). Resampling a curve uniformly is immediate using some appropriate in-
terpolation function like the matlab function spline (the second picture in Fig. 1
shows a uniform resampling of the statue of liberty).
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Consider the set of 2D simple closed curves, such as the contour of Elie
Cartan’s head in Fig. 2. After the choice of a starting point and a direction,
there is a unique way to travel the curve at unit speed. In Fig. 2, we have drawn
the velocity vector near the glasses of Elie Cartan, as well as the unit normal
vector which is obtained from the unit tangent vector by a rotation of +π

2 . These
two vectors form an orthonornal basis, i.e. an element (modulo the choice of a
basis of R2) of the Lie group SO(2), which is characterized by a rotation angle.
The rate of variation of this rotation angle is called the signed curvature of the
curve. For instance, when moving along the external outline of the glasses, this
curvature equals the inverse of the radius of the glasses. We have depicted the
curvature function κ of Elie Cartan’s head in Fig. 3, first line, when the parameter
s ∈ [0; 1] on the horizontal axis is proportional to arc-length, and such that the
entire contour of Elie Cartan’s head is travelled when the parameter reaches 1.
Its corresponds to a uniform sampling of the contour. The curvature function is
also depicted when parameterized by two other canonical parameters, namely by
the curvature-length parameter (second line) and the curvarc-length parameter
(third line).

Fig. 2: Elie Cartan and the moving frame associated to the contour of his head.

A discrete version of an arc-length parameterized curve is an equilateral
polygon. To draw an equilateral polygon, one just need to know the length of
the edges, the position of the first edge, and the angles between two successive
edges. The sequence of turning-angles is the discrete version of the curvature
and defines a equilateral polygon modulo rotation and translation. In Fig. 1 ,
right, we have reconstructed the statue of Liberty using the discrete curvature.

In order to interpolate between two parameterized curves, it is easier when
the domains of the parameter coincide. For this reason we will always consider
curves parameterized with a parameter in [0; 1]. A natural parameterization is
then the parameterization proportional to arc-length. It is obtain from the pa-
rameterization by arc-length by dividing the arc-length parameter by the length
of the curve L. The corresponding curvature function is also defined on [0; 1]
and is obtained from the curvature function parameterized by arc-length by
compressing the x-axis by a factor L. To recover the initial curve from the cur-
vature function associated to the parameter s ∈ [0; 1] proportional to arc-length,
one only need to know the length of the curve.
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Fig. 3: Signed curvature of Elie Cartan’s head for the parameterization proportional to arc-length
(first line), proportional to the curvature-length (second line), and proportional to the curvarc length
(third line).

2.2 Parameterization proportional to curvature-length

In the same spirit as the scale space of T. Lindeberg ([2]), and the curvature
scale space of Mackworth and Farcin Mokhtarian ([3]), we now define another
very natural parameterization space of 2D curves. Its relies on the fact that the
integral of the absolute value of the curvature κ is an increasing function on the
interval [0; 1], stricktly increasing when there are no flat pieces. In that case the
function

r(s) =

∫ s
0
|κ(s)|ds∫ 1

0
|κ(s)|ds

(1)

(where κ denotes the curvature of the curve) belongs to the group of orientation
preserving diffeomorphisms of the parameter space [0; 1], denoted by Diff+([0; 1]).
Note that its inverse s(r) can be computed graphically using the fact that its
graph is the symmetric of the graph of r(s) with respect to y = x. The contour of
Elie Cartan’s head can be reparameterized using the parameter r ∈ [0; 1] instead
of the parameter s ∈ [0; 1]. In Fig. 4 upper left, we have depicted the graph
of the function s 7→ r(s). A uniform sampling with respect to the parameter
r is obtain by uniformly sampling the vertical-axis (this is materialized by the
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green equidistributed horizontal lines) and resampling Elie Cartan’s head at the
sequence of values of the s-parameter given by the abscissa of the corresponding
points on the graph of r (where a green line hits the graph of r a red vertical
line materializes the corresponding abscissa). One sees that this reparameteriza-
tion naturally increases the number of points where the 2D contour is the most
curved, and decreases the number of points on nearly flat pieces of the contour.
For a given number of points, it gives an optimal way to store the information
contained in the contour. The quantity

C = L

∫ 1

0

|κ(s)|ds, (2)

where s ∈ [0; 1] is proportional to arc-length, is called the total curvature-length
of the curve. It is the length of the curve drawn in SO(2) by the moving frame
associated with the arc-length parameterized curve. For this reason we call this
parameterization the parameterization proportional to curvature-length. In the
right picture of Fig. 4, we show the corresponding resampling of the contour of
Elie Cartan’s head.
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Fig. 4: First line : Integral of the (renormalized) absolute value of the curvature (left), and cor-
responding resampling of Elie’s Cartan head (right). Second line : Integral of the (renormalized)
curvarc length (left), and corresponding resampling of Elie’s Cartan head (right).
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This resampling can naturally be adapted in the case of flat pieces resulting
in a sampling where there is no points between two points on the curve joint by
a straight line. In the left picture of Fig. 5, we have depicted a sampling of the
statue of Liberty proportional to curvature-length. Note that there are no points
on the base of the statue. The corresponding parameterization has the advantage
of concentrating on the pieces of the contour that are very complex, i.e. where
there is a lot of curvature, and not distributing points on the flat pieces which
are easy to reconstruct (connecting two points by a straight line is easy, but
drawing the moustache of Elie Cartan is harder and needs more information).

The drawback of using the parameterization proportional to curvature-length
is that one can not reconstruct the flat pieces of a shape without knowing their
lengths (remember that the parameterization proportional to curvature-length
put no point at all on flat pieces). For this reason we propose a parameteri-
zation intermediate between arc-length parameterization and curvature-length
parameterization. We call it curvarc-length parameterization.

2.3 Curvarc-length parameterization

In order to define the curvarc-length parameterization, we consider the triple
(P (s),v(s),n(s)), where P (s) is the point of the shape parameterized propor-
tionally to arc-length with s ∈ [0; 1], v(s) and n(s) the corresponding unit
tangent vector and unit normal vector respectively. It defines an element of the
group of rigid motions of R2, called the special Euclidean group and denoted
by SE(2) := R2 o SO(2). The point P (s) corresponds to the translation part of
the rigid motion, it is the vector of translation needed to move the origin to the
point of the curve corresponding to the parameter value s. The moving frame
O(s) defined by v(s) and n(s) is the rotation part of the rigid motion. One has
the following equations :

dP

ds
= Lv(s) and O(s)−1 d

ds
O(s) =

(
0 −κ(s)

κ(s) 0

)
, (3)

where L is the length of the curve. Endow SE(2) := R2oSO(2) with the structure
of a Riemannian manifold, product of the plane and the Lie group SO(2) ' S1.
Than the norm of the tangent vector to the curve s 7→ (P (s),v(s),n(s)) is
L + |κ(s)|. Therefore the length of the SE(2)-valued curve is L +

∫ 1

0
|κ(s)|ds =

L+ C
L . We call it the total curvarc-length. It follows that the following function

u(s) =

∫ s
0
(L+ |κ(s)|)ds∫ 1

0
(L+ |κ(s)|)ds

(4)

defines a reparameterization of [0; 1]. More generally, one can use the following
canonical parameter to reparameterize a curve in a canonical way:

uλ(s) =

∫ s
0
Lλ+ |κ(s)|)ds∫ 1

0
Lλ+ |κ(s)|)ds

, (5)
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where s is the arc-length parameter. In Fig. 5 we show the resulting sampling of
the Statue of Liberty for different values of λ. Note that for λ = 0, one recovers
the curvature-length parameterization, for λ = 1 one obtains the curvarc-length
parameterization, and when λ → +∞ the parmeterization tends to the arc-
length parameterization.
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Fig. 5: Resampling of the statue of Liberty proportional to the intergral of λ + curvature, for (from
left to right) λ = 0;λ = 0.3;λ = 1;λ = 2;λ = 100.

3 Application to medical imaging : parameterization of
bones

Fig. 6: Landmarks on bones used to measure joint space (courtesy of [1])

In the analysis of diseases like Rheumatoid Arthritis, one uses X-ray scans to
evaluate how the disease affectes the bones. One effect of Rheumatoid Arthritis
is erosion of bones, another is joint shrinking [1]. In order to measure joint space,
one has to solve a point correspondance problem. For this, one uses landmarks
along the contours of bones as in Fig.6. These landmarks have to be placed at
the same anatomical positions for every patient. Below they are placed using
a method by Hans Henrik Thodberg [4], based on minimum description length
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which minimizes the description of a PCA model capturing the variability of the
landmark positions. For instance in Fig. 7 left, the landmark number 56 should
always be in the middle of the head of the bone because it is used to measure
the width between two adjacent bones in order to detect rheumatoid arthritis.

Fig. 7: Point correspondance on 3 different bones using the method of [4]

Although the method by Hans Henrik Thodberg gives good results, it is com-
putationally expensive. In this paper we propose to recover similar results with
an quicker algorithm. It is based on the fact that any geometrically meaningful
parameterization of a contour can be expressed using the arc-length measure
and the curvature of the contour, which are the only geometric invariants of a
2D-curve (modulo translation and rotation). It follows that the parameterization
calculated by Thodberg’s algorithm should be recovered as a parameterization
expressed using arc-length and curvature. We investigate a 2 parameter family
of parameterizations defined by

u(s) =

∫ s
0
(c ∗ L+ |κ(s)|λ)ds∫ 1

0
(c ∗ L+ |κ(s)|λ)ds

(6)

where c and λ are positive parameters and where L is the length of the curve
and κ its curvature function. We recover an analoguous parameterization to the
one given by Thodberg’s algorithm with c = 1 and λ = 7 at real-time speed
(gain of 2 order of magnitude).

4 Conclusion

We proposed diverse canonical parameterization of 2D-contours, which are ex-
pressed using arc-length and curvature of curves. The curvature-length param-
eterization and the curvarc-length parameterization are very natural examples,
since they corresponds to a constant-speed moving frame in SO(2) and SE(2).
We present an application to the problem of point correspondance in medi-
cal imaging consisting of labelling automatically keypoints along the contour
of bones. We recover an analoguous parameterization to the one proposed by
Thodberg at real-time speed. Having a two-parameter family of parameteriza-
tions at our disposal, a fine-tuning can be applied on top of our results in order
to improve the point correspondance further.
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Fig. 8: 14 bones parameterized by Thodberg’s algorithm on one hand and the
parameterization defined by (6) with c = 1 and λ = 7 on the other hand (the
two parameterizations are superposed). The colored points corresponds to points
labelled 1, 48, 56, 66. They overlap for the two methods.
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