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Abstract. An important challenge in Geometric Modeling is to classify polytopes with rational
linear precision. Equivalently, in Algebraic Statistics one is interested in classifying scaled toric
varieties, also known as discrete exponential families, for which the maximum likelihood estimator
can be written in closed form as a rational function of the data (rational MLE). The toric fiber
product (TFP) of statistical models is an operation to iteratively construct new models with rational
MLE from lower dimensional ones. In this paper we introduce TFPs to the Geometric Modeling
setting to construct polytopes with rational linear precision and give explicit formulae for their
blending functions. A special case of the TFP is taking the Cartesian product of two polytopes
and their blending functions. The Horn matrix of a statistical model with rational MLE is a key
player in both Geometric Modeling and Algebraic Statistics; it proved to be fruitful providing a
characterization of those polytopes having the more restrictive property of strict linear precision.
We give an explicit description of the Horn matrix of a TFP.

1. Introduction

A discrete statistical model with m outcomes is a subset M of the open probability simplex
∆◦

m−1 = {(p1, . . . , pm) : pi > 0,
∑

pi = 1}. Each point in ∆◦
m−1 specifies a probability distribution

for a random variable X with outcome space [m] := {1, . . . ,m} by setting pi = P (X = i). Given
an i.i.d. sample D = {X1, . . . , XN} of X, let ui be the number of times the outcome i appears in
D and set u = (u1, . . . , um). The maximum likelihood estimator of the model M is the function
Φ : Nm → M that assigns to u the point in M that maximizes the log-likelihood function ℓ(u|p) :=∑

i ui log(pi). For discrete regular exponential families, the log-likelihood function is concave, and
under certain genericity conditions on u ∈ Nm, existence and uniqueness of the maximum likelihood
estimate Φ(u) is guaranteed [10]. This does not mean that the MLE is given in closed form but
rather that it can be computed using iterative proportional scaling [5].

In Algebraic Statistics, discrete exponential families are studied from an algebro-geometric per-
spective using the fact that the Zariski closure of any such family is a scaled projective toric variety,
we refer to these as toric varieties from this point forward. In this setting, the complexity of maxi-
mum likelihood estimation for a model M, or more generally any algebraic variety, is measured in
terms of its maximum likelihood degree (ML degree). The ML degree of M is the number of critical
points of the likelihood function over the complex numbers for generic u and it is an invariant of
M [12]. If a model has ML degree one it means that the coordinate functions of Φ are rational
functions in u, thus the MLE has a closed form expression which is in fact determined completely
in terms of a Horn matrix as explained in [11, 7]. It is an open problem in Algebraic Statistics to
characterize the class of toric varieties with ML degree one and their respective Horn matrices.

The toric fiber product (TFP), introduced by Sullivant [15], is an operation that takes two
toric varieties M1,M2 and, using compatibility criteria determined by a multigrading A, creates
a higher dimensional toric variety M1 ×A M2. This operation is used to construct a Markov basis
for M1 ×A M2 by using Markov bases of M1 and M2. Interestingly, the ML degree of a TFP
is the product of the ML degrees of its factors, therefore the TFP of two models with ML degree
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one yields a model with ML degree one [2]. The Cartesian product of two statistical models is an
instance of a TFP. Another example is the class of decomposable graphical models, each of these
models has ML degree one and can be constructed iteratively from lower dimensional ones using
TFPs [15, 14].

In Geometric Modeling, it is an open problem to classify polytopes in dimension d ≥ 3 having
rational linear precision [3]. Remarkably, a polytope has rational linear precision if and only if its
corresponding toric variety has ML degree one [9]. Inspired by Algebraic Statistics, it is our goal in
this article to introduce the toric fiber product construction to Geometric Modeling. In statistics,
the interest is in the closed form expression for the MLE; in Geometric Modeling, the interest is
in explicitly writing blending functions defined on the polytope that satisfy the property of linear
precision. Our main Theorem 3.1 gives an explicit formula for the blending functions defined on
the toric fiber product of two polytopes that have rational linear precision.

For certain toric varieties with ML degree one, geometric information about their associated
polytopes determines a Horn matrix for the model. Instances of this phenomena are present in the
characterization of polytopes with the more restrictive property of strict linear precision [3], and in
the classification of 2D toric models with ML degree one [6]. With the aim to facilitate the study of
these ideas in future work, we provide, in Section 4, an explicit construction of a Horn matrix for
the toric fiber product of two toric varieties with ML degree one. This construction reformulates
[2, Thm. 5.5] in terms of Horn matrices.

2. Preliminaries

In this section we provide background on blending functions, rational linear precision, scaled
projective toric varieties and toric fiber products. For a friendly introduction to Algebraic Statistics,
we refer the reader to the book by Sullivant [16], in particular to Chapter 7 on maximum likelihood
estimation. To the readers looking for more background on toric geometry we recommend the book
by Cox, Little and Schenck [4].

2.1. Blending Functions. Let P ⊂ Rd be a lattice polytope with facet representation P = {p ∈
Rd : ⟨p, ni⟩ ≥ ai, ∀i ∈ [R]}, where ni is a primitive inward facing normal vector to the facet Fi.
Without loss of generality, we will always assume that P is full-dimensional inside Rd. The lattice
distance of a point p ∈ Rd to Fi is hi(p) := ⟨p, ni⟩ + ai, i ∈ [R]. Set B := P ∩ Zd, so B is the
set of lattice points in P and let w = (wb)b∈B be a vector of positive weights. To each b ∈ B we
associate the rational functions βb, βw, βw,b : P → R defined by

βb(p) :=
R∏
i=1

hi(p)
hi(b), βw(p) :=

∑
b∈B

wbβb(p), and βw,b := wbβb/βw. (2.1)

The functions βw,b, b ∈ B, are the toric blending functions of the pair (P,w), introduced by
Krasauskas [13] as generalizations of Bézier curves and surfaces to more general polytopes. Blending
functions usually satisfy additional properties that make them amenable for computation, see for
instance [13]. Given a set of control points {Qb}b∈B, a toric patch is defined by the rule F (p) :=∑

b∈B βb(p)Qb.

The scaled projective toric variety XB,w is the Zariski closure of the image of the map (C∗)d →
P|B|−1 defined by t 7→ [wbt

b]b∈B. Here t = (t1, . . . , td),b = (b1, . . . , bd) and tb =
∏

i∈[d] t
bi
i . The

image of XB,w under the map P|B|−1 → C|B|, [x1 : · · · : x|B|] 7→ 1
x1+···+x|B|

(x1, · · · , x|B|) intersected
with the positive orthant defines a discrete regular exponential family MB,w inside ∆◦

|B|−1. In the

literature these are also called log-linear models. In this construction we require that the vector of
ones is in the rowspan of the matrix whose columns are the points in B. If this is not the case, we
add the vector of ones to this matrix.
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Definition 2.1. The pair (P,w) has rational linear precision if there is a set of rational functions

{β̂b}b∈B on Cd satisfying:

(1)
∑

b∈B β̂b = 1.

(2) The functions {β̂b}b∈B define a rational parametrization

β̂ : Cd 99K XB,w ⊂ P|B|−1, β̂(t) = (β̂b(t))b∈B.

(3) For every p ∈ Relint(P ) ⊂ Cd, β̂b(p) is defined and is a nonnegative real number.

(4) Linear precision:
∑

b∈B β̂b(p)b = p for all p ∈ P .

The property of rational linear precision does not hold for arbitrary toric patches but it is
desirable because the blending functions “provide barycentric coordinates for general control point
schemes” [9]. A deep relation to Algebraic Statistics is provided by the following statement.

Theorem 2.2 ([9]). The pair (P,w) has rational linear precision if and only if XB,w has ML degree
one.

Remark 2.3. Henceforth, to ease notation, we drop the usage of a vector of weights w for the
blending functions βw,b and the scaled projective toric varietyXB,w. Although we will not in general
write them explicitly in the proofs, the weights play an important role in determining whether the
toric variety has ML degree one or, equivalently, if the polytope has rational linear precision. A
deep dive into the study of these scalings for toric varieties by using principal A-determinants is
presented in [1].

Example 2.4. Consider the point configurations B = {(0, 0), (1, 0), (0, 1), (1, 1)}, C = {(0, 0), (1, 0),
(2, 0), (1, 1), (0, 1)} and set P = Conv(B), Q = Conv(C); these are displayed in Figure 1 . The facet
presentation of P is

P = {(x1, x2) ∈ R2 : x1 ≥ 0, x2 ≥ 0, 1− x1 ≥ 0, 1− x2 ≥ 0}.
The lattice distance functions of a point (x1, x2) ∈ R2 to the facets of P are

h1 = x1, h2 = x2, h3 = 1− x1, h4 = 1− x2.

Therefore the toric bleding functions of P with weights w = (1, 1, 1, 1) are:

β(0
0

) = (1−x1)(1−x2), β(1
0

) = x2(1−x1), β(0
1

) = x1(1−x2), β(1
1

) = x1x2. (2.2)

These toric blending functions satisfy the conditions in Definition 2.1; when this is the case, P is
said to have strict linear precision. The polytope Q has rational linear precision for the vector of
weights w = (1, 2, 1, 1, 1). In this case, the toric blending functions do not satisfy condition 4 in
Definition 2.1, however, as explained in [3], the following functions do:

β̃(0
0

) =
(1−y2)(2−y1−y2)2

(2−y2)2
, β̃(1

0

) =
2y1(1−y2)(2−y1−y2)

(2−y2)2
, β̃(2

0

) =
y21(1−y2)
(2−y2)2

,

β̃(0
1

) =
y2(2−y1−y2)

2−y2
, β̃(1

1

) =
y1y2
2−y2

.

2.2. Toric Fiber Products of Point Configurations. Let r ∈ N and si, ti ∈ N for 1 ≤ i ≤ r.
Fix integral point configurations A = {ai : i ∈ [r]} ⊆ Zd, B = {bi

j : i ∈ [r] , j ∈ [si]} ⊆ Zd1 and

C = {cik : i ∈ [r] , k ∈ [ti]} ⊆ Zd2 . For any point configuration P, we use P interchangeably to
denote a set of points or the matrix whose columns are the points in P; the symbol |P| will be used
to denote the indexing set of P. For each i ∈ |A|, set Bi := {bi

j : j ∈ [si]} and Ci = {cik : k ∈ [ti]}.
The indices i, j, k are reserved for elements in |A|, |Bi| and |Ci|, respectively.
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Figure 1. Toric fiber product of the point configurations B and C in Example 2.5.
Each point configuration is displayed as a matrix with its corresponding convex hull
below. The blue vertices in each polytope have degree e1 while the red vertices in
each polytope have degree e2 in the associated multigrading A. The degree map is
deg(bi

j) = deg(cik) = ai.

Throughout this paper, we assume linear independence of A and the existence of a ω ∈ Qd such
that ωai = 1 for all i; the latter condition ensures that if an ideal is homogeneous with respect
to a multigrading in A it is also homogeneous in the usual sense. Sullivant introduces the TFP
as an operation on toric ideals which are multigraded by A; such condition, as explained in [8], is
equivalent to the existence of linear maps π1 : Zd1 → Zr and π2 : Zd2 → Zr such that π1(b

i
j) = ai

for all i and j, and π2(c
i
k) = ai for all i and k. We use deg to denote the projections π1, π2.

The toric fiber product of B and C is the point configuration B ×A C given by

B ×A C = {(bi
j , c

i
k) : i ∈ |A|, j ∈ |Bi|, k ∈ |Ci|}.

In terms of toric varieties, introduced in Section 2.1, the toric fiber product of XB and XC is the
toric variety XB×AC associated to B×A C which is given in the following way. Let XB and XC have
coordinates xij and yik respectively. Then XB ×A C = ϕ(XB ×XC) where ϕ is the monomial map

ϕ : C|B| × C|C| → C|B×AC|

(xij , y
i
k) 7→ xijy

i
k = zijk.

Furthermore, if w, w̃ are weights for B, C, respectively, then the vector of weights for B ×A C is

wB×AC := (wi
jw̃

i
k)

i∈|A|
(j,k)∈|Bi×Ci|. We end this section with an example illustrating this operation.

Example 2.5. Consider the point configurations B and C in Example 2.4 and let A = {e1, e2}
consist of two standard basis vectors. The construction of a degree map and the corresponding
toric fiber product B ×A C is explained in Figure 1.

3. Blending Functions of Toric Fiber Products

In this section we show that the blending functions of the toric fiber product of two polytopes with
rational linear precision can be constructed from the blending functions of the original polytopes
and give an explicit formula for them. Throughout this section we use the setup for the toric fiber
product introduced in Section 2.2. We let P = Conv(B) and Q = Conv(C) be polytopes with

rational linear precision and denote their blending functions satisfying Definition 2.1 by {βi
j}

i∈|A|
j∈|Bi|

and {βi
k}

i∈|A|
k∈|Ci|, respectively.
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Theorem 3.1. If P and Q are polytopes with rational linear precision for weights w, w̃, respectively,
then the toric fiber product P ×A Q has rational linear precision with vector of weights wB×AC.
Moreover, blending functions with rational linear precision for P ×A Q are given by

βi
j,k(p,q) =

βi
j(p)β

i
k(q)∑

j′∈|Bi| β
i
j′(p)

=
βi
j(p)β

i
k(q)∑

k′∈|Ci| β
i
k′(q)

(3.1)

where (p,q) ∈ P ×A Q.

Remark 3.2. The two expressions on the right hand side of Equation (3.1) are well defined on
Relint(P ×A Q). The morphism βi

j,k extends to a rational function βi
j,k : Cd 99K C where d =

dim(P ×A Q). By abuse of notation, we will sometimes write βi
j,k(t) = 1

N i(t)
βi
j(t)β

i
k(t) where

t ∈ Cd and N i(t) denotes the denominator as in (3.1).

The following example illustrates the construction in Theorem 3.1.

Example 3.3. Consider the polytopes P and Q from Example 2.4, with their vectors of weights.

By Theorem 3.1, the blending functions for P ×A Q are
βi
j β̃

i
k∑

j β
i
j
=

βi
j β̃

i
k∑

k β̃i
k

. For example, the blending

function corresponding to (b1
2 c13)

T is

β1
2,3 =

β1
2 β̃

1
3

β1
1 + β2

1

=
x1(1−x2)y21(1−y2)
(1−x2)(2− y2)2

=
β1
2 β̃

1
3

β̃1
1 + β̃1

2 + β̃1
3

=
x1(1−x2)y21(1−y2)
(1−y2)(2− y2)2

.

Note that while the denominators are not the same, the two expressions above are equal at all
points in Relint(P ×A Q).

Before proving Theorem 3.1 we will prove two lemmas which will be used in the final proof. Our
first lemma demonstrates how the blending functions behave on certain faces of P and Q. The
second lemma shows that the two parametrizations in Equation (3.1) yield the same MLE for a
generic data point u.

Lemma 3.4. Let P i be the subpolytope defined by P i = Conv{bi
j : j ∈ |Bi|}. Then, for p ∈ P i, we

have ∑
j∈|Bi|

βi
j(p) = 1.

Proof. By assumption, β : Cd1 99K XB, β(t) =
(
βi
j(t)

)i∈|A|

j∈|Bi|
is a rational parametrization of XB.

Let Xi
B be the toric variety associated to P i; we claim that Xi

B is parametrized by
(
βi
j(t)

)
j∈|Bi|

and setting all other coordinates of β to zero. Indeed, consider the linear map

deg : P → Conv(A), bi
j 7→ ai.

As A is linearly independent, ai is a vertex of Conv(A). Note that P i = deg−1(ai); as preimages
of faces under linear maps are again faces, P i is a face of P . The claim then follows from the
Orbit-Cone Correspondence [4, Thm. 3.2.6]. We know that

∑
(i,j)∈|B| β

i
j = 1. On P i, all βi′

j for

i′ ̸= i vanish, so we must have
∑

j∈|Bi| β
i
j(p) = 1 for p ∈ P i. □

We record the following fact as a consequence from the proof above.

Corollary 3.5. Let P be a polytope equipped with a linearly independent multigrading A. Then
P i = Conv(bi

j | j ∈ |Bi|) is a face of P .

Example 3.6. For the polytopeQ in Figure 1, we haveQ1 = Conv(c11, c
1
2, c

1
3) andQ2 = Conv(c21, c

2
2).

The projection deg is illustrated in Figure 1. To illustrate the result of Lemma 3.4, note that the
sum of the blending functions associated to the lattice points in Q1 is equal to 1− y2.
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Lemma 3.7. Let P and Q be polytopes with rational linear precision and β1, β2 be two rational
functions defined by

β1(t) =

(
βi
j(t)β

i
k(t)∑

j′∈|Bi| β
i
j′(t)

)i∈|A|

(j,k)∈|Bi×Ci|

, β2(t) =

(
βi
j(t)β

i
k(t)∑

k′∈|Ci| β
i
k′(t)

)i∈|A|

(j,k)∈|Bi×Ci|

.

For u =
(
uij,k

)i∈|A|

(j,k)∈|Bi×Ci|
, set p =

∑
(i,j,k)∈|B×AC|

ui
j,k

u+
+,+

mi
j,k ∈ Cd. Then the maximum likelihood

estimate for XB×AC is

β1(p) = β2(p) =
(
p̂ij,k
)i∈|A|
(j,k)∈|Bi×Ci| .

Proof. As P and Q have rational linear precision, by [3, Prop. 8.4] we have βi
j(p) = (p̂B)

i
j and

βi
k(p) = (p̂C)

i
k. Furthermore, by [2, Thm. 5.5], the MLE of the toric fiber product is given by

p̂ij,k =
(p̂B)

i
j(p̂C)

i
k

(p̂A)i
. From the proof of [2, Lem. 5.10], as a consequence of Birch’s Theorem, it follows

that (p̂B)
i
+ =

ui
+,+

u+
+,+

= (p̂A)
i, and analogously (p̂C)

i
+ = (p̂A)

i. Therefore,∑
j′∈|Bi|

βi
j′(p) = (p̂B)

i
+ =

∑
k′∈|Ci|

βi
k′(p) = (p̂C)

i
+ = (p̂A)

i

and the desired statement follows. □

We are now ready to prove Theorem 3.1.

Proof. Having rational linear precision is equivalent to having ML degree one by Theorem 2.2.
Then the first statement is a direct consequence of the multiplicativity of the ML degree under
toric fiber products [2, Thm. 5.5].

We first show that both expressions in (3.1) define rational parametrizations

β1(t) =

(
βi
j(t)β

i
k(t)∑

j′∈|Bi| β
i
j′(t)

)i∈|A|

(j,k)∈|Bi×Ci|

, β2(t) =

(
βi
j(t)β

i
k(t)∑

k′∈|Ci| β
i
k′(t)

)i∈|A|

(j,k)∈|Bi×Ci|

of XB×AC . To do this, we first show that the products βi
jβ

i
k parametrize XB×AC and the result then

follows since β1 and β2 are equivalent to βi
jβ

i
k under the torus action associated to the multigrading

A. Let ϕ : C|B| × C|C| → C|B×AC| be the map given by

ϕ(x,y) = (xijy
i
k)

i∈|A|
(j,k)∈|Bi×Ci| .

Then the toric fiber product XB×AC is precisely given by ϕ(XB×XC). Since the blending functions
βi
j and βi

k parametrize XB and XC , respectively, and βi
jβ

i
k = ϕ ◦ (βi

j , β
i
k), we immediately get that

the βi
jβ

i
k parametrize XB×AC . Now observe that the multigrading A induces an action of the torus

TA = (C∗)|A| via

TA ×XB×AC → XB×AC , (t1, . . . , t|A|).
(
xij,k
)i∈|A|
(j,k)∈|Bi×Ci| =

(
tixij,k

)i∈|A|
(j,k)∈|Bi×Ci| .

Define τ : Cd1 → TA by

τ = (τ1, . . . , τ |A|), τ i(t) =

{ (∑
j∈|Bi| β

i
j(t)

)−1
if
∑

j∈|Bi| β
i
j(t) ̸= 0

1 else.

Note that τ(t) ∈ TA and τ(x).(βi
j(x)β

i
k(x)

i∈|A|
j∈|Bi|,k∈|Ci| = β1(x) for all x ∈ P ×A Q, showing that

βi
j(x)β

i
k(x) and β1(x) lie in the same TA-orbit. A similar argument shows the same for β2(x), thus

both β1 and β2 parametrize XB×AC .
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We will now show the two expressions in Equation 3.1 are equal. Let us define a new τ : Cd1+d2 →
TA by

τ = (τ1, . . . , τ |A|), τ i(t) =


∑

j∈|Bi| β
i
j(t)∑

k∈|Ci| β
i
k(t)

if
∑

j∈|Bi| β
i
j(t) ̸= 0 ̸=

∑
k∈|Ci| β

i
k(t)

1 else.

Clearly, τ(t) ∈ TA; we claim that τ(x).β1(x) = β2(x) for x ∈ P ×A Q. First consider the case
x ∈ P i×Qi, with P i and Qi defined as in Lemma 3.4. By the Orbit-Cone Correspondence applied
to the TA-action, all coordinates in β1(x) and β2(x) vanish except for those graded by ai. By
Lemma 3.4,

∑
j∈|Bi| β

i
j(x) =

∑
k∈|Ci| β

i
k(x) = 1, so in particular the claim holds. Now consider the

case where x /∈
⋃

i∈|A| P
i × Qi. Then, again by the Orbit-Cone Correspondence applied to the

TA-action, for each i ∈ |A| there exist j ∈ |Bi| and k ∈ |Ci| such that βi
j(x), β

i
k(x) ̸= 0. Thus, by

definition, τ(x).β1(x) = β2(x). We conclude that for all x ∈ P ×A Q, β1(x) and β2(x) lie in the
same TA-orbit. Equality of β1 and β2 then follows once there exists at least one point in each orbit
where the two parametrizations agree. This is indeed the case: for the maximal orbit this is the
point given in Lemma 3.7, for smaller orbits corresponding to faces of P i ×Qi we can pick a point
as in Lemma 3.4.

It now remains to show that the βi
j,k sum to one and that they satisfy linear precision. This

follows from direct computation. Firstly, we have∑
(i,j,k)∈|B×AC|

βi
j,k =

∑
i∈|A|,k∈|Ci|

βi
k

∑
j∈|Bi|

βi
j∑

j′∈|Bi| β
i
j′

=
∑

i∈|A|,k∈|Ci|

βi
k = 1.

Finally, we compute∑
(i,j,k)∈|B×AC|

βi
j,k(p)m

i
j,k =

∑
i∈|A|,j∈|Bi|

βi
j(p)

∑
k∈|Ci|

βi
k(p)∑

k′∈|Ci| β
i
k′(p)

(bi
j , 0)

+
∑

i∈|A|,k∈|Ci|

βi
k(p)

∑
j∈|Bi|

βi
j(p)∑

j′∈|Bi| β
i
j′(p)

(0, cik)

=

 ∑
i∈|A|,j∈|Bi|

βi
j(p)b

i
j ,

∑
i∈|A|,k∈|Ci|

βi
k(p)c

i
k

 = p.

Therefore, the βi
j,k constitute blending functions with rational linear precision. □

4. The Horn matrix of ML degree one toric fiber products

In this section we give an explicit description of a Horn pair for the toric fiber product of two
toric varieties with ML degree one. This construction uses a Horn pair for each factor and for the
(A − 1)-dimensional probability simplex. Throughout this section we use notation and setup for
the toric fiber product introduced in Section 2.2. First, we recall the definition of Horn matrix and
Horn pair as for example in [7]. Next, in Example 4.3, we give Horn matrices for the n-dimensional
probability simplex, the unit square, and the trapezoid considered in Example 2.5. Given two
vectors u, v with the same number of entries, we use uv to denote the product

∏
i u

vi
i .

Definition 4.1. A Horn matrix is an r×d integer matrix with all column sums being zero. Given
a Horn matrix H with columns h1, h2, . . . , hd and a vector λ ∈ Rd, the Horn parametrization
φ(H,λ) : Rd → Rd is the rational map defined by

u 7→ λ ⋆ (Hu)H =
(
λ1(Hu)h1 , λ2(Hu)h2 , . . . , λd(Hu)hd

)
.
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Definition 4.2. The pair (H,λ) is called a Horn pair if
(1) the coordinates of φ(H,λ) sum up to one, i.e. λ1(Hu)h1 + λ2(Hu)h2 + · · · + λd(Hu)hd = 1,

and
(2) φ(H,λ) is defined for all positive vectors and maps these to positive vectors.

If X is a statistical model with ML degree one, then, by the results of [11] and [7], there exist
a Horn pair (H,λ) such that the MLE Φ of X satisfies Φ = φ(H,λ). Thus if XB and XC have
ML degree one, there exist Horn pairs (HB, λB) and (HC , λC) such that the maximum likelihood
estimate can be expressed as a Horn parametrization, i.e.

p̂B = λB ⋆ (HBuB)
HB and p̂C = λC ⋆ (HCuC)

HC

for data vectors uB and uC . It follows from [2, Thm. 5.5] that the toric fiber product of the two
models XB×AC has again ML degree one and must therefore admit a Horn pair (HB×AC , λB×AC).
We will give an explicit description of (HB×AC , λB×AC) in Proposition 4.4 below.

To set up the notation, let

u =
(
uij,k
)i∈|A|
(j,k)∈|Bi×Ci|

denote a data vector. As before, we will reserve i, j and k for indices of A,Bi and Ci, respectively.
We use “+” to denote summation over all possible values of the respective index, e.g. uij,+ =∑

k∈|Ci| u
i
j,k = (uB)

i
j . In a similar vein, we denote by

p =
(
pij,k
)i∈|A|
(j,k)∈|Bi×Ci|

a joint probability distribution for the model XB×AC .
In general, if a statistical model possesses a Horn pair, i.e. the Horn parametrization yields a

parametrization of the model, the Horn pair is not unique. However, there exists a minimal Horn
matrix to a model with ML degree one, see [7].

Example 4.3. A Horn pair corresponding to the simplex ∆n is given by letting the Horn matrix
be the (n+ 1)× (n+ 1)-identity matrix with an additional row of (−1)s at the bottom and with λ
being the vector of all (−1)s. For the one-dimensional simplex ∆1 we have

H =

 1 0
0 1
−1 −1

 , λ = (−1,−1), Φ(u1, u2) = λ ⋆ (Hu)H =

(
u1

u1 + u2
,

u2
u1 + u2

)
.

For another illustration, consider the two models XB and XC defined by the polytopes P = Conv(B)
and Q = Conv(C) from Example 2.4. Note that XB is the well-known independence model of two
binary random variables, and XC is a multinomial staged tree. For toric surfaces with ML degree
one, the Horn pair can be directly read off from the lattice distance functions and the normal fan
of the polytope, see [6, Prop. 3.1]. Concretely, we have

HB =



b1
1 b1

2 b2
1 b2

2

1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1
−1 −1 −1 −1
−1 −1 −1 −1

, HC =



c11 c12 c13 c21 c22
0 1 2 1 0
0 0 0 1 1
2 1 0 0 1
1 1 1 0 0
−1 −1 −1 −1 −1
−2 −2 −2 −1 −1


and λB = (1, 1, 1, 1), λC = (−1,−2,−1, 1, 1); the columns of the Horn matrices are labelled by the
vectors of B and C, respectively.
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Proposition 4.4. Let XB and XC be toric varieties with ML degree one and correspondng Horn
pairs (HB, λB) and (HC , λC), respectively, where HB ∈ Zr1×|B|, HC ∈ Zr2×|C|. Fix HA to be the min-

imal Horn matrix associated to the (|A|−1)-dimensional probability simplex, so HA ∈ Z(|A|+1)×|A|.
Denote the columns of HB, HC, and HA by hij , h

i
k, and hi, respectively. Then (HB×AC , λB×AC) is a

Horn pair for the toric fiber product XB×AC. Here, the vector λB×AC of coefficients is given by

λB×AC =
(
λi
j,k

)i∈|A|
(j,k)∈|Bi×Ci| with λi

j,k = −λi
jλ

i
k and λB = (λi

j)
i∈|A|
j∈|Bi|, λC = (λi

k)
i∈|A|
k∈|Ci|,

and the Horn matrix HB×AC is given in block form by

HB×AC =
(
HB1×C1 | HB2×C2 | · · · | HB|A|×C|A|

)
. (4.1)

For each i ∈ |A|, the column hij,k, of block HBi×Ci is the vertical concatenation of hij , h
i
k,−hi.

Explicitly, if ρ = r1 + r2 + |A|+ 1 and α ∈ [ρ], then the row α of hij,k, denoted by hα,ij,k, is given by

hα,ij,k =


hα,ij for 1 ≤ α ≤ r1

h
(α−r1),i
k for r1 + 1 ≤ α ≤ r1 + r2

−h(α−r1−r2),i for r1 + r2 + 1 ≤ α ≤ ρ.

Where, hα,ij , h
(α−r1),i
k , and h(α−r1−r2),i, are the entries α, α − r1, and α − r1 − r2 of the columns

hij , h
i
k, h

i, respectively.

Proof. It suffices to check that the pair (HB×AC , λB×AC) gives rise to a Horn parametrization yielding
the correct expression for the maximum likelihood estimate of XB×AC ; then the pair will automat-
ically be friendly and positive and thus a Horn pair for XB×AC , see [7].

By [2, Thm. 5.5], the MLE of XB×AC is given by

p̂ =
(
p̂ij,k
)i∈|A|
(j,k)∈|Bi×Ci| with p̂ij,k =

p̂ij p̂
i
k

p̂i+,+

.

The (i, j, k)th entry of the Horn parametrization computes as

(
λB×AC ⋆ (HB×ACu)

HB×AC
)i
j,k

= λi
j,k

ρ∏
α=1

 ∑
(̃i,j̃,k̃)∈|B×AC|

hα,̃i
j̃,k̃

uĩ
j̃,k̃

hα,i
j,k

(4.2)

Let us split the product above into three products P1, P2 and P3 where α ranges over {1, . . . , r1},
{r1 + 1, . . . , r1 + r2} and {r1 + r2 + 1, . . . , ρ}, respectively. Then we obtain

P1 =

r1∏
α=1

 ∑
(̃i,j̃,k̃)∈|B×AC|

hα,̃i
j̃,k̃

uĩ
j̃,k̃

hα,i
B×ACj,k

=

r1∏
α=1

 ∑
(̃i,j̃,k̃)∈|B×AC|

hα,̃i
j̃

uĩ
j̃,k̃

hα,i
j

=

r1∏
α=1

 ∑
(̃i,j̃)∈|B|

hα,̃i
j̃

uĩ
j̃,+

hα,i
Bj

=
p̂ij,+
λi
j

,
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and similarly P2 =
p̂i+,k

λi
k

. Finally, we have

P3 =

ρ∏
α=r1+r2+1

 ∑
(̃i,j̃,k̃)∈|B×AC|

hα,̃i
j̃,k̃

uĩ
j̃,k̃

hα,i
j,k

=

ρ∏
α=r1+r2+1

∑
ĩ∈|A|

−h(α−r1−r2),̃iuĩ+,+

(−hα,i)

=

 |A|∏
α=1

(
−uα+,+

)δα,i

(−1)

· u++,+ = −
u++,+

ui+,+

.

As A is linearly independent, p̂i+,+ =
ui
+,+

u+
+,+

. Combining this with the computations above, we obtain

(4.2) = −λi
jλ

i
kP1P2P3 =

p̂ij,+p̂
i
+,k

p̂i+,+

.

□

Example 4.5. The Horn pair for the toric fiber product XB ×A XC from Proposition 4.4, where
XB and XC are defined in Example 4.3 and the multigrading is specified in Figure 1, is given by

HB×AC =



b1
1

c11

b1
1

c12

b1
1

c13

b1
2

c11

b1
2

c12

b1
2

c13

b2
1

c21

b2
1

c22

b2
2

c21

b2
2

c22
1 1 1 0 0 0 1 1 0 0
0 0 0 1 1 1 0 0 1 1
1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1 1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1
0 1 2 0 1 2 1 0 1 0
0 0 0 0 0 0 1 1 1 1
2 1 0 2 1 0 0 1 0 1
1 1 1 1 1 1 0 0 0 0
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−2 −2 −2 −2 −2 −2 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 0 0 0 0
0 0 0 0 0 0 −1 −1 −1 −1
1 1 1 1 1 1 1 1 1 1


and λB×AC = (1, 2, 1, 1, 2, 1,−1,−1,−1,−1). Note that in almost all instances, the Horn matrix as
constructed in Proposition 4.4 will not be minimal, as is also the case in this example. However, it
can be transformed into a minimal one via an efficient algorithm [7, Lem. 3].
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