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Abstract. The shape space considered in this article consists of surfaces
embedded in R3, that are decorated with curves. It is a special case of the
Fréchet manifolds of nonlinear flags, i.e. nested submanifolds of a fixed
type. The gauge invariant elastic metric on the shape space of surfaces
involves the mean curvature and the normal deformation, i.e. the sum
and the difference of the principal curvatures κ1, κ2. The proposed gauge
invariant elastic metrics on the space of surfaces decorated with curves
involve, in addition, the geodesic and normal curvatures κg, κn of the
curve on the surface, as well as the geodesic torsion τg.
More precisely, we show that, with the help of the Euclidean metric, the
tangent space at (C,Σ) can be identified with C∞(C)×C∞(Σ) and the
gauge invariant elastic metrics form a 6-parameter family:

G(C,Σ)(h1, h2) = a1

∫
C

(h1κg + h2|Cκn)2d` +a2

∫
Σ

(h2)
2(κ1 − κ2)

2dA

+ b1

∫
C

(Dsh1 − h2|Cτg)2d` +b2

∫
Σ

(h2)
2(κ1 + κ2)

2dA

+ c1

∫
C

(Ds(h2|C) + h1τg)
2d` +c2

∫
Σ

|∇h2|2dA,

where h1 ∈ C∞(C), h2 ∈ C∞(Σ).

Keywords: Shape space · Geometric Green Learning · Gauge invariant
elastic metrics.

1 Introduction

In this paper we use the elastic metrics on parameterized curves ([4,9]) and pa-
rameterized surfaces ([3]) in order to endow the shape space of surfaces decorated
with curves with a family of Riemannian metrics. This shape space of decorated
? Supported by FWF grant I 5015-N, Institut CNRS Pauli, University of Timişoara
and University of Lille
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surfaces is an example of Fréchet manifold of nonlinear flags, studied in [2]. These
consist of nested submanifolds of a fixed type S1

ι1−→ S2
ι2−→ · · · → Sr, which in

our case is the equator embedded in the sphere S1 ι−→ S2.
We emphasize that we do not use the quotient elastic metrics on curves and

surfaces, but rather their gauge invariant relatives (see [7,8]). Indeed, following
[6,5] for surfaces in R3, and [1] for curves in R3, we construct degenerate metrics
on parameterized curves and surfaces by first projecting an arbitrary variation of
a given curve or surface onto the space of vector fields perpendicular to the curve
or surface (for the Euclidean product of R3) and then applying the elastic metric
on this component. By construction, vector fields tangent to the curve or surface
will have vanishing norms, leading to a degenerate metric on pre-shape space.
However, since the degeneracy is exactly along the tangent space to the orbit of
the reparameterization group, these degenerate metrics define Riemannian (i.e.
non-degenerate) metrics on shapes spaces of curves and surfaces. The following
advantages of this procedure can be mentioned:
• there is no need to compute a complicated horizontal space in order to define

a Riemannian metric on shape space
• the length of paths in shape space equals the length of any of their lifts for

the corresponding degenerate metric, a property called gauge invariance in
[6,5].
• the resulting Riemannian metric on shape spaces can be easily expressed in

terms of geometric invariants of curves and surfaces, leading to expressions
that are completely independant of parameterizations.

In this paper, we use the gauge invariant (degenerate) metrics on parame-
terized curves and surfaces obtained from the elastic metrics via the procedure
described above in order to define Riemannian metrics on shape spaces of curves
and surfaces. Then we embed the shape space of nonlinear flags consisting of
surfaces decorated with curves into the Cartesian product of the shape space
of curves in R3 with the shape space of surfaces in R3. The Riemannian metric
obtained on the shape space of nonlinear flags can be made explicit thanks to a
precise description of its tangent space (Theorem 1) and thanks to the geometric
expressions of the metrics used on curves and surfaces, leading to a 6-parameter
family of natural Riemannian metrics (Theorem 2).

Note that although the space of parameterized flags is a principal fiber bun-
dle over the shape space of flags as it is the case for parameterized curves or
surfaces, in this case there is no natural complement to the tangent space to
the fibers. Another way to express this difference is that the principal bundle of
parameterized curves or surfaces in R3 has a canonical connection, which is not
the case for the space of nonlinear flags.

2 Manifolds of decorated surfaces as shape spaces

2.1 Notations

We will consider the shape space of nonlinear flags consisting of pairs (C,Σ)
such that C is a curve on the surface Σ embedded in R3. We will restrict our



Shape spaces of nonlinear flags 3

attention to surfaces of genus 0, and simple curves (the complement to the curve
in the surface has only two connected components), but our construction can
be extended without substantial changes to surfaces of genus g and to a finite
number of curves. We denote the space of all such nonlinear flags by

F := FlagS1
ι
↪→S2(R3).

The general setting for the Fréchet manifolds on nonlinear flags of a given type
S1

ι1−→ S2
ι2−→ · · · → Sr can be found in [2].

Examples of elements (C,Σ) ∈ F are given in Fig. 1.

3 Reference

Figure 3: Reference for Task 5 in OpenGL.

3

Fig. 1: Examples of elements in the shape space of nonlinear flags.

We will be interested in deforming flags. To this aim, we will consider a
reference flag to be the pair (S1,S2) consisting in the unit sphere S2 and the unit
circle S1 embedded as the equator ι : S1 ↪→ S2. We will represent a general flag
(C,Σ) using an embedding F : S2 → R3 such that the image of the restriction
F ◦ι of F to the equator is C. The pair (F ◦ι, F ) is also called a parameterization
of the flag (C,Σ). The space of parametrized flags is

P := {F : S2 → R3, F is an embedding}.

It is called the pre-shape space of flags since objects with same shape but different
parameterizations correspond to different points in P. The set P is a manifold,
as an open subset of the linear space C∞(S2,R3) of smooth functions from S2 to
R3. The tangent space to P at F , denoted by TFP, is therefore just C∞(S2,R3).

There is a natural projection π from the space of parameterized flags P onto
the space of flags F given by

π(F ) = ((F ◦ ι)(S1), F (S2)). (1)
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2.2 Shape space of nonlinear flags as quotient space

Since we are only interested in unparameterized nonlinear flags, we would like to
identify pairs of parameterized curves and surfaces that can be related through
reparameterization. The reparametrization group G is the group of diffeomor-
phisms γ of S2 which restrict to a diffeomorphism of the equator ι : S1 ↪→ S2 :

G = {γ ∈ Diff(S2) : γ ◦ ι = ι ◦ γ̄ for some γ̄ ∈ Diff(S1)}.

The group G is an infinite-dimensional Fréchet Lie group whose Lie algebra is
the space of vector fields on S2 whose restriction to the equator is tangent to the
equator. The right action of G on P is given by F · γ := F ◦ γ. It’s a principal
action for the principal G-bundle π : P → F .

The elements in P obtained by following a fixed parameterized flag F ∈ P
when acted on by all elements of G is called the G-orbit of F or the equivalence
class of F under the action of G, and will be denoted by [F ]. The orbit of F ∈ P
is characterized by the surface Σ := F (S2) and the curve C := (F ◦ ι)(S1), hence
π(F ) = (C,Σ) (see (1)). The elements in the orbit [F ] = {F ◦ γ, for γ ∈ G} are
all possible parameterizations of (C,Σ) of the form (F ◦ ι, F ). For instance in
Fig. 2 one can see some parameterized hands with bracelets that are elements of
the same orbit. The set of orbits of P under the group G is called the quotient
space and will be denoted by P/G.

Fig. 2: Examples of elements in the same orbit under the group of reparameter-
izations.

Proposition 1. The shape space F is isomorphic to the quotient space of the
pre-shape space P by the shape-preserving group G = Diff(S2; ι) :

F = P/G.

The shape space F = P/G is a smooth manifold and the canonical projection
π : P → F , F 7→ [F ] is a submersion (see for instance [2]). The kernel of the
differential of this projection is called the vertical space. It is the tangent space
to the orbit of F ∈ P under the action of the group G.

Proposition 2. The vertical space VerF of π at some embedding F ∈ P is the
space of vector fields XF ∈ C∞(S2,R3) such that the deformation vector field
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XF ◦ F−1 is tangent to the surface Σ := F (S2) and such that the restriction of
XF ◦ F−1 to the curve C := F ◦ ι(S1) is tangent to C.

Definition 1. The normal bundle Nor is the vector bundle over the pre-shape
space P, whose fiber over an embedding F is the quotient vector space

NorF := TFP/VerF . (2)

Proposition 3. The right action of G on P induces an action on TP which
preserves the vertical bundle, hence it descends to an action on Nor by vector
bundle homomorphisms. The quotient bundle Nor /G can be identified with the
tangent bundle TF .

Consider a nonlinear flag (C,Σ). Let us denote by ν the unit normal vector
field on the oriented surface Σ, and by t the unit vector field tangent to the
oriented curve C. Set n := ν × t the unit normal to the curve C contained in
the tangent space to the surface Σ. The triple (t, n, ν) is an orthonormal frame
along C, called the Darboux frame. We will denote by 〈·, ·〉 the Euclidian scalar
product on R3.

Fig. 3: Deformation vector field and Darboux frame

Theorem 1. Let F be a parameterization of (C,Σ). Consider the linear surjec-
tive map

ΨF : TFP ' C∞(S2,R3)→ C∞(C)× C∞(Σ), (3)

which maps XF ∈ TFP to (h1, h2) defined by

h1 := 〈(XF ◦ ι) ◦ (F ◦ ι)−1, n〉 ∈ C∞(C),

h2 := 〈XF ◦ F−1, ν〉 ∈ C∞(Σ).
(4)

Then the kernel of ΨF is the vertical subspace VerF , hence ΨF defines a map
from the quotient space NorF = TFP/VerF into C∞(C)×C∞(Σ). The resulting
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bundle map Ψ is G-invariant providing an isomorphism between the tangent
space T(C,Σ)F and C∞(C)× C∞(Σ).

Proof. Consider XF such that ΨF (XF ) = 0. Since h2 = 0, XF ◦ F−1 is a vector
field tangent to Σ. Since h1 = 0, the restriction of XF ◦ F−1 to the curve C
given by

(XF ◦ ι) ◦ (F ◦ ι)−1 : C → R3

is tangent to Σ and orthogonal to n, hence it is tangent to C. Thus, by Propo-
sition 2, the kernel of Ψ is exactly VerF .

Let us show that Ψ is G-invariant, i.e. that for γ ∈ G,

ΨF (XF ) = ΨF◦γ(XF ◦ γ). (5)

One has π(F ◦ γ) = π(F ) = (C,Σ). Moreover the normal vector fields ν : Σ →
R3 and n : C → R3 do not depend on the parameterizations of Σ and C. For
γ ∈ G, we have

(XF ◦ γ) ◦ (F ◦ γ)−1 = XF ◦ F−1

as deformation vector fields on Σ. On the other hand, using the fact that γ ◦ ι =
ι ◦ γ̄ for some γ̄ ∈ Diff(S1), we get

(XF ◦ γ ◦ ι) ◦ (F ◦ γ ◦ ι)−1 = (XF ◦ ι ◦ γ̄) ◦ (F ◦ ι ◦ γ̄)−1

= (XF ◦ ι) ◦ (F ◦ ι)−1

as deformation vector fields on C. The invariance property (5) follows.
The projection π : P → F = P/G is a principal G-bundle, hence the G-

action preserves the vertical bundle Ver. It induces a well-defined G-action on
Nor : for γ ∈ G, the class [XF ] ∈ NorF is mapped to the class [XF ◦ γ] ∈
NorF◦γ . By G-invariance of Ψ , we get a well-defined map on Nor /G which maps
isomorphically the tangent space T(C,Σ)F into C∞(C)× C∞(Σ).

Remark 1. For the pre-shape space of embedded surfaces, there is a natural
section of the projection TFP → C∞(Σ), given by variations that are in the
direction of the normal vector field ν to the surface Σ. In this case, the Euclidean
metric on R3 induces a connection on the principal Diff(S2)-bundle P → S,
where S denotes the shape space of surfaces. Similar sections for the projection
(3) are not available for our shape spaces. In other words, there is no natural
principal connection on our principal G-bundle P → F .

3 Riemannian metrics on shape spaces of nonlinear flags

As in [5], we endow the pre-shape space of parameterized curves and surfaces
with a family of gauge invariant metrics which descend to a family of Riemannian
metric on shape spaces of curves and surfaces. The construction is explained in
subsection 3.1. The Riemannian metrics on parameterized curves and surfaces
used in this construction are the elastic metrics given in subsection 3.2. The
expression of the Riemannian metrics obtained on nonlinear flags in terms of
the geometric invariants of curves and surfaces is given in subsection 3.3.
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3.1 Procedure to construct the Riemannian metrics

In order to construct a Riemannian metric on the space F of nonlinear flags, we
proceed as follows:

1. we embed our shape space F of surfaces decorated with curves in the Carte-
sian product S1×S2, where S1 denotes the shape space of curves and S2 the
shape space of surfaces.

2. we choose a family ga,b of Diff+(S1)-invariant metrics on the space of pa-
rameterized curves P1 (equation (8))

3. the family ga,b defines a family of Riemannian metrics on the shape space of
curves S1 by restricting to the normal variations of curves

4. we choose a family ga
′,b′,c′ of Diff+(S2)-invariant metrics on the space of

parameterized surfaces P2(equation (9)).
5. the family ga

′,b′,c′ defines a family of Riemannian metrics on the shape space
of sufaces S2 by restricting to the normal variations of surfaces

6. the product of these metrics is then restricted to F using the characterization
of the tangent space to F given in Theorem 1.

Remark 2. An equivalent procedure is to pull back to P, via F 7→ (F ◦ ι, F ) ∈
P1 × P2, the sum of the gauge invariant elastic metrics on the preshape space
P1 for curves and P2 for surfaces. The result is gauge invariant under G, so it
descends to a Riemannian metric on the shape space F .

F ∈ P

G

��

� � // P1 × P2 3 (F ◦ ι, F )

Diff(S1)×Diff(S2)

��
(C,Σ) ∈ F �

� // S1 × S2 3 (C,Σ).

(6)

3.2 Elastic metrics on manifolds of parameterized curves and
surfaces

The family of Riemannian metric measuring deformations of curves that we will
use is the family of Diff+(S1)-invariant elastic metrics on parameterized curves
P1 introduced in [4]:

ga,bf (h1, h2) =

∫
C

[
a(Dsh

‖
1)(Dsh

‖
2) + b(Dsh

⊥
1 )(Dsh

⊥
2 )
]
d`, (7)

where f ∈ P1 is a parameterization of the curve C, hi ∈ TfP1 are tangent
vectors to the space of parameterized curves, d` = ‖ḟ(t)‖dt, Dsh(t) = ḣ(t)

‖ḟ(t)‖ is

the arc-length derivative of the variation h, Dsh
‖ = 〈Dsh, t〉 is the component

along the unit tangent vector field t = ḟ

‖ḟ‖ to the curve, Dsh
⊥ = Dsh−〈Dsh, t〉t

is the component orthogonal to the tangent vector t. Here the a-term measures
streching of the curve, while the b-term measures its bending.
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Let δf denote a perturbation of a parametrized curve f : S1 → R3, and let
(δr, δt) denote the corresponding variation of the speed r := ‖ḟ(t)‖ and of the
unit tangent vector field t. It is easy to check that the squared norm of δf for
the metric (7) reads:

E ′f (δf) := ga,bf (δf, δf) = a

∫
S1

(
δr

r

)2

d`+ b

∫
S1
|δt|2d`. (8)

The family of Riemannian metrics measuring deformations of surfaces that
we will use is the family of Diff+(S2)-invariant metrics introduced in [3] and
called elastic metrics. Let δF denote a perturbation of a parametrized surface
F , and let (δg, δν) denote the corresponding perturbation of the induced metric
g = F ∗〈·, ·〉R3 and of the unit normal vector field ν. Then the squared norm of
δF , namely ga

′,b′,c′

F (δF, δF ), is:

E ′′F (δF ) = a′
∫
S2

Tr(g−1δg)2
0dA+ b′

∫
S2

Tr(g−1δg)2dA+ c′
∫
S2
|δν|2dA (9)

where B0 is the traceless part of a 2×2-matrix B defined as B0 = B− Tr(B)
2 I2×2.

The a′-term measures area-preserving changes in the induced metric g, the b′-
term measures changes in the area of patches, and the c′-term measures bending.

3.3 Geometric expression of the Riemannian metrics on manifolds
of decorated surfaces

In this subsection we restrict the reparametrization invariant metrics (8) and (9)
to normal variations. This allows us to express them with the help of the principal
curvatures κ1 and κ2 of the surface, geodesic and normal curvatures κg, κn of the
curve on the surface, as well as its geodesic torsion τg. We recall the identities
involving (t, n, ν), the Darboux frame: ṫ = r(κgn + κnν), ṅ = r(−κgt + τgν)
and ν̇ = r(−κnt− τgn). For functions h on the curve we will use the arc-length
derivative Dsh = ḣ/r, because it is invariant under reparametrizations.

Moreover, we split the b-term in (8) into two terms in order to put different
weights on the variations along ν and n. This leads to the following result :

Theorem 2. The gauge invariant elastic metrics for parameterized curves re-
spectively surfaces lead to a 6-parameter family of Riemannian metrics on the
shape space of embedded surfaces decorated with curves:

G(C,Σ)(h1, h2) = a1

∫
C

(h1κg + h2|Cκn)2d` +a2

∫
Σ

(h2)2(κ1 − κ2)2dA

+ b1

∫
C

(Dsh1 − h2|Cτg)2d` +b2

∫
Σ

(h2)2(κ1 + κ2)2dA

+ c1

∫
C

(Ds(h2|C) + h1τg)
2d` +c2

∫
Σ

|∇h2|2dA, (10)

for h1 ∈ C∞(C) and h2 ∈ C∞(Σ).
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Proof. Let (t, n, ν) be the Darboux frame along the curve C ⊂ Σ. The normal
vector field h1n + (h2|C)ν to the curve C encodes the variation of the curve
which doesn’t leave the surface Σ. Using the Lemma 1, we obtain the following
expression for the elastic metric (8) restricted to this normal variation:

E ′F (h1n+ (h2|C)ν) = a

∫
C

(h1κg + h2|Cκn)2d`

+ b

∫
C

(
(Dsh1 − h2|Cτg)2 + (Ds(h2|C) + h1τg)

2
)
d`.

We will split the b-term in two parts, thus obtaining a 3-parameter family of
metrics, namely

a1

∫
C

(h1κg+h2|Cκn)2d`+b1

∫
C

(Dsh1−h2|Cτg)2d`+c1

∫
C

(Ds(h2|C)+h1τg)
2d`.

The normal vector field h2ν to the surface Σ encodes the variation of the
surface. Using Eqn. (12) in [5] the elastic metric (9) restricted to this normal
variation is given by the following geometric expression :

E ′′F (h2ν) = 2a

∫
Σ

(h2)2(κ1 − κ2)2dA+ 4b

∫
Σ

(h2)2(κ1 + κ2)2dA+ c

∫
Σ

|∇h2|2dA.

(11)
Here we use the fact that g−1δg = −2h2L, where L is the shape operator of the
surface, as well as the identity |δν| = |∇h2|, where ∇ denotes the gradient with
respect to the induced metric on the surface, by Lemma 2.

Renaming the parameters and adding to this elastic metric for the surface
the elastic metric for the curve on the surface obtained above leads to the 6-
parameter family of elastic metrics for the shape space F .

Remark 3. Assuming that the functions h1, h2 are constant along the curve C,
the b1-term becomes

∫
C

(h2|Cτg)2d` and encodes the variation of the curve nor-
mal to the surface (variation together with the surface) while the c1 term becomes∫
C

(h1τg)
2d` and encodes the normal variation of the curve inside the surface.

Lemma 1. Given the normal variation δf = h1n + h2|Cν of the parametrized
curve f = F ◦ ι on the parametrized surface F , the variation of the speed r and
of the unit tangent vector field t are

δr = −r(h1κg + h2|Cκn)

δt = ( 1
r ḣ1 − h2|Cτg)n+ ( 1

r ḣ2|C + h1τg)ν

Proof. For fε = f + ε(h1n+ h2ν) +O(ε2), we get

r2
ε = r2 − 2εr2(h1κg + h2|Cκn) +O(ε2)

using the well known identities ṅ = r(−κgt + τgν) and ν̇ = r(−κnt − τgn).
Thus 2rδr = −2r2(h1κg + h2|Cκn), hence the first identity. We use it in the
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computation of the variation of the unit tangent goes as follows:

δt = 1
r δḟ −

δr
r t = 1

r (−r(h1κg + h2|Cκn)t

+ (ḣ1 − rh2|Cτg)n+ (ḣ2|C + rh1τg)ν) + (h1κg + h2|Cκn)t

= ( ḣ1

r − h2|Cτg)n+ ( ḣ2|C
r + h1τg)ν,

hence the second identity.

Lemma 2. Given the normal variation δF = hν of the parametrized surface F ,
the variation of the unit normal vector field ν and the gradient of h with respect
to the induced metric on the surface have the same norm.

Proof. Let (u, v) denote coordinates on S2 and let Fu, Fv denote the partial
derivatives of F (and similarly for h). Then, as in [6], we get the variation

δν = −(hu, hv)g
−1(Fu, Fv)

>.

On the other hand ∇h = g−1(hu, hv)
>. Now we compute

|δν|2 = (hu, hv)g
−1(Fu, Fv)

>(Fu, Fv)g
−1(hu, hv)

>

= (hu, hv)g
−1(hu, hv)

> = (∇h)>g∇h = |∇h|2,

using the fact that g = (Fu, Fv)
>(Fu, Fv).

4 Conclusion

In this paper, we identify the tangent spaces to nonlinear flags consisting of
surfaces of genus zero decorated with a simple curve. We use gauge invariant
metrics on parameterized curves and surfaces to endow the space of nonlinear
flags with a family of Riemannian metrics, whose expression is given in terms of
geometric invariants of curves and surfaces.
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