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Abstract. Let Hk, k ∈ N, be the Hilbert spaces of geometric quan-
tization on a Kähler manifold M . With two points in M we associate
a Bell-type state bk ∈ Hk ⊗ Hk. When M is compact or when M is
Cn, we provide positive lower bounds for the entanglement entropy of bk
(asymptotic in k, as k → ∞).
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1 Introduction and main results

Let Hk, k = 1, 2, 3, ... be the Hilbert spaces of Kähler quantization on a Kähler
manifold M . Let p, q ∈ M and Θ

(k)
p ∈ Hk and Θ

(k)
q ∈ Hk be the coherent states

at p and q respectively. With the pair p, q we associate the Bell-type pure state

wk = wk(p, q) =
1

||Θ(k)
p ||2

Θ(k)
p ⊗Θ(k)

p +
1

||Θ(k)
q ||2

Θ(k)
q ⊗Θ(k)

q ∈ Hk ⊗Hk. (1)

It is entangled. The two theorems below are for the cases when M is compact
and when M is Cn (n ∈ N), respectively. We address the question how the
entanglement entropy Ek [1] of

bk = bk(p, q) =
1

||wk||
wk ∈ Hk ⊗Hk (2)

depends on the quantum parameter k and on the distance between p and q,
dist(p, q). The theorems provide positive lower bounds on Ek(bk). In quantum
information theory, when quantum systems are used for communication, one
interpretation of entanglement entropy is the amount of information that can be
transmitted. Bell states are maximally entangled (e.g.

1√
2
(e0 ⊗ e0 + e1 ⊗ e1) (3)
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is one of the standard Bell states).
Our state (1) is constructed from the coherent vectors Θ

(k)
p and Θ

(k)
q which

are typically not orthogonal to each other (unlike e0 and e1 in the Bell state
(3)), although ⟨Θ(k)

p , Θ
(k)
q ⟩ → 0 as k → ∞.

To provide some background, in quantum information theory, given a nonzero
vector v in the tensor product of two separable Hilbert spaces V1 and V2, its
entanglement entropy E(v) characterizes "how nondecomposable" (or, in other
words, how entangled) this vector is. It is defined as follows. For the purposes
of this paper we only need the case V1 = V2 = V . Let ⟨., .⟩ be the inner product
in V . Let {ei} be an orthonormal basis in V . Let Tr2(A) ∈ End(V ) denote the
partial trace of a density matrix A. It is defined by

⟨x, Tr2(A)y⟩ =
∑
i

⟨x⊗ ei, A(y ⊗ ei)⟩

for every x, y ∈ V . The entanglement entropy is

E(v) = −Tr(ρ ln ρ) = −
∑
i

⟨(ρ ln ρ)ei, ei⟩

where
ρ = Tr2(Pv)

and Pv is the rank 1 orthogonal projection onto the 1-dimensional linear subspace
of V⊗V spanned by v. The operator ρ ln ρ is defined via the continuous functional
calculus. When V is finite-dimensional, E(v) is a real number in the interval
[0, ln dim(V )]. When V is infinite-dimensional, E(v) is a nonnegative real number
or +∞. The value of E(v) does not depend on the choice of the basis {ei}.

Kähler quantization deals with asymptotic analysis on Kähler manifolds in
the context of classical mechanics and quantum mechanics. Let (M,ω) be an
integral Kähler manifold. Let L → M be a holomorphic line bundle whose first
Chern class is represented by ω. One can consider (M,ω) as a classical phase
space, i.e. a space that parametrizes position and momentum of a classical par-
ticle. Classical mechanics on M is captured in ω and a choice of a Hamiltonian
(a smooth function on M). The symplectic form defines a Poisson bracket on
C∞(M). Dirac’s correspondence principle seeks a linear map from C∞(M) to
linear operators on the Hilbert space of quantum mechanical wave functions that
takes the Poisson bracket of functions to the commutator of operators. In geomet-
ric quantization or Kähler quantization, a standard choice of the Hilbert space
V is the space of holomorphic sections of Lk, where the positive integer k is in-
terpreted (philosophically) as 1/ℏ. If M is compact, then V is finite-dimensional.
If M is noncompact, then V is infinite-dimensional.

The motivation to bring techniques from quantum information theory to geo-
metric quantization was to obtain new insights in the interplay between geometry
and analysis on Kähler manifolds. It would be interesting to investigate if there
is a meaningful relationship between the information-theoretic entropy and other
concepts of entropy. In the opposite direction, some geometric intuition may be
useful in information transmission problems.
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1.1 Compact case

Let L → M be a positive hermitian holomorphic line bundle on a compact
n-dimensional complex manifold M . Denote by ∇ the Chern connection in L.
Equipped with the 2-form ω = i curv(∇), M is a Kähler manifold. Denote by

dµ the measure on M associated with the volume form
ωn

n!
. As before, let k be

a positive integer. For p, q in M , let Θ(k)
p , Θ

(k)
q ∈ Hk = H0(M,Lk) be Rawnsley

coherent states at p and q (see e.g. [2]).
Let us recall the definition of Θ(k)

p for p ∈ M and k ∈ N. Choose a unit vector
ξ ∈ L. Then by Riesz representation theorem there is a unique vector Θ

(k)
p in

the Hilbert space H0(M,Lk) with the property

⟨s,Θ(k)
p ⟩ = ⟨s(p), ξ⊗k⟩

for every s ∈ H0(M,Lk).
The k → ∞ asymptotics of the norms ||Θ(k)

p ||, ||Θ(k)
q || are determined by

the asymptotics of the Bergman kernels for Lk on the diagonal. We take these
asymptotics from [5]. Asymptotic bounds for the inner products ⟨Θ(k)

p , Θ
(k)
q ⟩ can

be obtained from the off-diagonal estimates on the Bergman kernels [4].

Theorem 1. Suppose L → M is a positive hermitian holomorphic line bundle
on a compact n-dimensional complex manifold M . Let p, q ∈ M . Let k ∈ N.
Then there is the following (positive) lower bound for the entanglement entropy
of the pure state bk(p, q) (2). There are positive constants C1 and C2 that depend
on M and ω such that as k → ∞

Ek(bk) ≥
1

2
(1− C1e

−C2

√
k dist(p,q))4.

1.2 M = Cn

Let M = Cn, n ≥ 1. We will use the notations

zT w̄ = z1w̄1 + ...+ znw̄n

or
⟨z, w⟩ = z1w̄1 + ...+ znw̄n

and
|z| =

√
zT z̄

or
||z|| =

√
zT z̄

for z, w ∈ Cn.
For k ∈ N let Hk be the Segal-Bargmann space that consists of holomorphic

functions on M with the inner product

⟨f, g⟩ =
(
k

π

)n ∫
M

f(z)g(z)e−k|z|2dV (z),
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where dV is the Lebesgue measure on R2n. It is a reproducing kernel Hilbert
space. For p ∈ Cn the coherent vector at p is Θ

(k)
p ∈ Hk defined by

Θ(k)
p (z) = ekz

T p̄. (4)

It is defined by the property

⟨f,Θ(k)
p ⟩ = f(p) (5)

for every f ∈ Hk. Similarly for q ∈ M the coherent vector at q is

Θ(k)
q (z) = ekz

T q̄. (6)

Theorem 2. Let p, q ∈ Cn. Let k ∈ N. Let Θ(k)
p and Θ

(k)
p be the coherent states

at p and q respectively (4), (6). Then there is the following (positive) lower bound
for the entanglement entropy of the pure state bk(p, q) (2): as k → ∞

Ek(bk) ≥
1

2
(1− e−k|p−q|2)4.

Remark 1. The change from e−C
√
k dist(p,q) to e−Ck dist2(p,q) in Theorem 2 re-

flects the fact that the latter appears in the Bergman asymptotics for real ana-
lytic metrics (see the discussion in [3]). In the proof of Theorem 1 we used the
Bergman kernel expansion for smooth metrics.

2 Proofs

2.1 General lower bound

Theorem 3. Let H be a separable Hilbert space, with the inner product ⟨., .⟩.
Let u and v be nonzero vectors in H, such that u is not a multiple of v. Let

w =
1

||u||2
u⊗ u+

1

||v||2
v ⊗ v ∈ H ⊗H.

There is the following (positive) lower bound on the entanglement entropy E(b)
of the vector b = 1

||w||w

E(b) ≥ 2
(||u||2||v||2 − |⟨u, v⟩|2)2

(2||u||2||v||2 + ⟨u, v⟩2 + ⟨v, u⟩2)2
. (7)

Proof. Let e1, e2 be an orthonormal basis of the 2-dimensional complex linear
subspace spanned by u and v, defined as follows:

e1 =
1

||u||
u,
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e2 is the unit vector in the direction of v − ⟨v, e1⟩e1

e2 =
1

||v − ⟨v, e1⟩e1||
(v − ⟨v, e1⟩e1) =

1√
||v||2 − |⟨v, e1⟩|2

(v − ⟨v, e1⟩e1)

We get:

w =
||v||2 + ⟨v, e1⟩2

||v||2
e1 ⊗ e1 +

⟨v, e1⟩
√
||v||2 − |⟨v, e1⟩|2
||v||2

(e1 ⊗ e2 + e2 ⊗ e1)

+
||v||2 − |⟨v, e1⟩|2

||v||2
e2 ⊗ e2

||w|| =
√
2||v||2 + ⟨v, e1⟩2 + ⟨e1, v⟩2

||v||
Denote

β =
√
2||v||2 + ⟨v, e1⟩2 + ⟨e1, v⟩2.

We get:

b =
1

β||v||

(
(||v||2 + ⟨v, e1⟩2)e1 ⊗ e1+

⟨v, e1⟩
√
||v||2 − |⟨v, e1⟩|2(e1 ⊗ e2 + e2 ⊗ e1) + (||v||2 − |⟨v, e1⟩|2)e2 ⊗ e2

)
Let

A =
1

β||v||

(
||v||2 + ⟨v, e1⟩2 ⟨v, e1⟩

√
||v||2 − |⟨v, e1⟩|2

⟨v, e1⟩
√
||v||2 − |⟨v, e1⟩|2 ||v||2 − |⟨v, e1⟩|2

)
.

Then A∗A =

1

β2

(
||v||2 + ⟨v, e1⟩2 + ⟨e1, v⟩2 + |⟨v, e1⟩|2

√
||v||2 − |⟨v, e1⟩|2(⟨v, e1⟩+ ⟨e1, v⟩)√

||v||2 − |⟨v, e1⟩|2(⟨v, e1⟩+ ⟨e1, v⟩) ||v||2 − |⟨v, e1⟩|2

)
The equation for the eigenvalues of A∗A is

λ2 − λ+
(||v||2 − |⟨v, e1⟩|2)2

β4
= 0.

The eigenvalues of A∗A are

λ1,2 =
1

2
± 1

2

(⟨v, e1⟩+ ⟨e1, v⟩)
√
4||v||2 + (⟨v, e1⟩ − ⟨e1, v⟩)2

β2
=

1

2
± 1

2

(⟨u, v⟩+ ⟨v, u⟩)
√

4||u||2||v||2 + (⟨u, v⟩ − ⟨v, u⟩)2
2||u||2||v||2 + ⟨u, v⟩2 + ⟨v, u⟩2

. (8)

The singular values of A are the square roots of the eigenvalues of A∗A. The
entanglement entropy of b equals

E(b) = −λ1 lnλ1 − λ2 lnλ2. (9)
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Since for 0 < x < 1
− lnx > 1− x,

we have:
E(b) ≥ λ1(1− λ1) + λ2(1− λ2) = 1− λ2

1 − λ2
2. (10)

Now, (7) is obtained by plugging (8) into (10).

Remark 2. Since u and v in Theorem 3 are linearly independent, it follows that
the vector b is entangled, i.e. E(b) > 0. This follows from the fact that the right
hand side of the inequality (7) is positive. Another way to see it is to refer to
(9) and to observe that in (8)∣∣∣ (⟨u, v⟩+ ⟨v, u⟩)

√
4||u||2||v||2 + (⟨u, v⟩ − ⟨v, u⟩)2

2||u||2||v||2 + ⟨u, v⟩2 + ⟨v, u⟩2
∣∣∣ < 1

(it is straightforward to check that this inequality is equivalent to

(||u||2||v||2 − ⟨u, v⟩⟨v, u⟩)2 > 0),

hence 0 < λ1 < 1 and 0 < λ2 < 1.

2.2 Proof of Theorem 1

Proof. It follows from [5] that there is a constant A0 > 0 such that as k → ∞,
||Θ(k)

p ||2 and ||Θ(k)
q ||2 are asymptotic to

A0k
n +O(kn−1). (11)

It follows from [4] that there are constants A1 > 0, A2 > 0 such that as k → ∞

|⟨Θ(k)
p , Θ(k)

q ⟩| ≤ A1k
ne−A2

√
k dist(p,q).

From (7) in Theorem 3 we get:

Ek(bk) ≥
1

2

(1− |⟨Θ(k)
p ,Θ(k)

q ⟩|2

||Θ(k)
p ||2||Θ(k)

q ||2
)2

(1 +
⟨Θ(k)

p ,Θ
(k)
q ⟩2+⟨Θ(k)

q ,Θ
(k)
p ⟩2

2||Θ(k)
p ||2||Θ(k)

q ||2
)2
.

As k → ∞,

Ek(bk) ≥
1

2
(1− |⟨Θ(k)

p , Θ
(k)
q ⟩|2

||Θ(k)
p ||2||Θ(k)

q ||2
)2(1− ⟨Θ(k)

p , Θ
(k)
q ⟩2 + ⟨Θ(k)

q , Θ
(k)
p ⟩2

2||Θ(k)
p ||2||Θ(k)

q ||2
)2 ≥

1

2
(1− A2

1k
2ne−2A2

√
k dist(p,q)

||Θ(k)
p ||2||Θ(k)

q ||2
)4.

The conclusion now follows from (11).
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2.3 Proof of Theorem 2

Proof. Using (7) in Theorem 3 we get:

Ek(bk) ≥ 2
(||Θ(k)

p ||2||Θ(k)
q ||2 − |⟨Θ(k)

p , Θ
(k)
q ⟩|2)2

(2||Θ(k)
p ||2||Θ(k)

q ||2 + ⟨Θ(k)
p , Θ

(k)
q ⟩2 + ⟨Θ(k)

q , Θ
(k)
p ⟩2)2

.

By the reproducing property (5)

||Θ(k)
p ||2 = Θp(p) = ek|p|

2

||Θ(k)
q ||2 = Θq(q) = ek|q|

2

⟨Θ(k)
p , Θ(k)

q ⟩ = Θ(k)
p (q) = ekq

T p̄.

Therefore

Ek(bk) ≥
1

2

(1− ekq
T p̄+kpT q̄−k|p|2−k|q|2)2

(1 + e2kqT p̄+e2kpT q̄

2ek|p|2+k|q|2 )2
.

As k → ∞

Ek(bk) ≥
1

2
(1− ekq

T p̄+kpT q̄−k|p|2−k|q|2)2(1− e2kq
T p̄ + e2kp

T q̄

2ek|p|2+k|q|2 )2.

and the conclusion follows.

3 Example for 1.1

Let M = CP1 and let L → M be the hyperplane bundle with the standard
hermitian metric. The Kähler form is the Fubini-Study form on M . The Hilbert
space V = H0(M,L) is isomorphic to the space of polynomials in 1 and z, with
the inner product

⟨f, g⟩ = 2

π

∫
C

f(z)g(z)

(1 + |z|2)3
dx dy.

The monomials e0 = 1 and e1 = z form an orthonormal basis in V . For p ∈ C
(an affine chart of M) let Θp be the unique vector in V defined by the property

⟨f,Θp⟩ = f(p)

for all f ∈ V . It is immediate that

Θp(z) = 1 + zp̄

and
||Θp|| =

√
1 + |p|2.
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Let us consider two particles at p = x+i0 and q = −x+i0, x > 0. The associated
state (2) is

b1 = b1(p, q) =
1√

1 + x4
e0 ⊗ e0 +

x2

√
1 + x4

e1 ⊗ e1.

The Schmidt coefficients are α0 = 1√
1+x4

and α1 = x2
√
1+x4

. The entanglement
entropy of b1 equals

E(x) = −α2
1 ln(α

2
1)− α2

2 ln(α
2
2) =

(1 + x4) ln(1 + x4)− x4 ln(x4)

1 + x4
. (12)

The graph of E is shown in Figure 1. From (12), we observe that E(x) → 0 as
x → ∞, and the maximum value of E(x) is attained at x = 1.

Fig. 1. The graph of E(x), x > 0.
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