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Abstract. We consider the problem of simultaneously approximating
the conditional distribution of market prices and their log returns with
a single machine learning model. We show that an instance of the GDN
model of [13] solves this problem without having prior assumptions on the
market’s “clipped” log returns, other than that they follow a generalized
Ornstein-Uhlenbeck process with a priori unknown dynamics. We provide
universal approximation guarantees for these conditional distributions
and contingent claims with a Lipschitz payoff function.
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1 Introduction

In classical portfolio theory, one considers a portfolio comprised of D predeter-
mined risky assets and a riskless asset. The objective is to identify the most
“efficient portfolios” by which we mean portfolios exhibiting the greatest gains
while not exceeding a fixed level of risk or variability. Here, a portfolio’s gains
are quantified by its expected (log) returns, and its risk is quantified by the
variance of its (log) returns. Thus, efficient portfolios are defined by optimizers
of the following problem

ŵ(γ, µ,Σ) , argmin
w∈RD

1̄?w=1

(
−γµ?w +

w?Σw

2

)
. (1)

In (1), w is the vector of portfolio weights expressed as the proportion of wealth
invested in each risky asset, µ ∈ R is the vector of the expected (log) returns of
the risky assets, Σ is the covariance matrix of that portfolio’s (log) returns, γ is
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a parameter balancing the objectives of maximizing the portfolio return versus
minimizing the portfolio variance, 1̄ is the vector with all its components equal
to 1, and ? denotes matrix transpose operator. If Σ is non-singular, the unique
optimal solution to equation (1) is given in closed-form by

ŵ(γ, µ,Σ) =
Σ−11̄

1̄?Σ−11̄
+ γ

(
Σ−1µ− 1̄?Σ−1µ

1̄?Σ−11̄
Σ−11̄

)
. (2)

The particular case where γ is set to 0 is the minimum variance portfolio of [15].
The minimum-variance portfolio ŵ(0, µ,Σ) may also be derived by minimizing
the portfolio variance subject to the budget constraint 1̄?w = 1. Accordingly, we
consider the case where Σ is non-singular. The optimality of (1) is contingent
on the normality of the asset’s (log) returns in this static picture of the market.

In reality, any financial market is continually and randomly evolving. There-
fore, one must actively update the risky asset’s mean µ and covariance matrix
Σ in (2) to maintain an efficient portfolio. Since future market prices are un-
known, so are the efficient portfolios in (1). Thus, our objective will be to forecast
both the conditional evolution of market prices and the distribution of their log
returns up to a regularizing factor.

Encoding Market Dynamics via Clipped log returns In stochastic finance, the
market’s continual random evolution is typically formalized by a (0,∞)D-valued
stochastic process S·

def.
= (St)t≥0 defined on a complete filtered probability space

(Ω,F ,F def.
= (Ft)t≥0,P). The components of S· describe the evolving market

prices. For simplicity, we omit the riskless asset, assuming that the continuously
compounded interest rate is a constant, r ≥ 0.

Since problem (1), concerns the log returns of the market’s assets, i.e. one
often models a latent Gaussian process X· driving the market prices where St ≈
eXt (where the exponential map is applied component-wise). This is primarily
due to three reasons: 1) stock prices cannot be non-positive, 2) most stock returns
are somewhat log-normally distributed on an appropriate time-scale, and 3) the
distribution of a stock’s log returns are mathematically convenient.

We note that any asset’s (log) returns can be substantial, either in the neg-
ative or positive directions, but realistically they cannot be arbitrarily large.
With this in mind, it will be analytically convenient to work with “clipped (or
regularized) log returns” which also satisfy the heuristics (1)-(3). By “clipped log
returns” we encode the evolution of the market’s prices S· as

St
def.
= E(Xt) and E(x)

def.
= exp

(
1

min{1, ‖x/M‖}
· x
)

(3)

for all t ≥ 0, where the exponential map exp is applied component-wise to any
vector in RD, and the “clipping threshhold” M > 0 is a fixed and large. From a
practical standpoint, both ways of encoding the evolution of market prices eXt

and E(Xt), into the latent “log returns-like” Gaussian process X·, are virtually
indistinguishable for M large enough. The main technical advantage of E over
exp is that it Lipschitz; thus, it is compatible with the optimal-transport toolbox.
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The transformation E is also appealing from the stochastic analytic vantage
point. This is because it is the composition of a convex function with a smooth
function; whence, if X· is a semi-martingale, then we can directly compute the
dynamics of S· from those of X· using a non-smooth Itô formula (e.g. [3,7]).

An Interpretable but Model-Agnostic Approach We operate in the interpretable
scenario where the clipped log returns process X·’s are not only conditionally
Gaussian, but they are a strong solution to a simple and interpretable stochastic
differential equation (SDE). We consider the generalized Ornstein-Uhlenbeck
(OU) process

Xx
t = x+

∫ t

0

(µs +MsX
x
s ) ds+

∫ t

0

σs dWs, (4)

where W·
def.
= (Wt)t≥0 is a D-dimensional F-Brownian motion, α : R → RD

and β : R → RD×D are a-priori unknown continuously differentiable Lipschitz
functions, and σ : R→ RD×D is an a-priori unknown Lipschitz functions; further
each σt a symmetric positive definite matrix (for t ≥ 0). We drop the superscript
emphasizing the dependence ofXx

· on the initial condition x whenever clear from
the context.

The first appeal of (4) is that, given any µ· and any σ·, the dynamics of
Xt and St ≈ Xt are readily interpretable. The second appeal of (4), after a sim-
ple/classical computation, shows that each Xt follows a D-dimensional Gaussian
distribution with mean

∫ t
0
µs ds and non-singular covariance

∫ t
0
σsσ

>
s ds; which

we denote ND
(
µ̄t,
∫ t
0
σsσ

>
s ds

)
where µ̄t solves the ODE ∂tµ̄t = µt + Mtµ̄t for

the initial condition µ0 = x. Note that if Mt = 0 then µ̄t =
∫ t
0
µs ds.

As an informal illustration, suppose that µt = µ0 − σ2
0/2, Mt = 0, and

σt = σ0 in (4). Then, as M tends to infinity, we see St tends to the classical
Geometric Brownian Motion (GBM) model used to derive the classical Black-
Scholes formula and used to derive tractable optimal investment strategies [17,8].

We remain agnostic to specifications of µ and of σ and instead, we adopt
a machine learning approach. Our first main objective is to implicitly infer the
dynamics of X·by explicitly approximating its regular conditional distribution
function x 7→ P(Xt ∈ ·|X0 = x). Then, our second goal is to deduce the same
for S·. Thus, we instead only postulate minimal regularity of the functions µ·
and σ·, just enough for a deep neural network approximation to the conditional
probability distribution function of X· to be viable.

Contributions We will show that the geometric deep network modelling frame-
work of [13], as specified in [13, Corollary 39], provides a universal solution to the
problem of simultaneously predicting the regular conditional distributions of X·
and of S·, conditioned on the current state of the market x for any given future
time t. In this case, the GDN implements a principled extension of the so-called
deep Kalman filter of [14], which has recently also entered the mathematical
finance literature in [11].
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Relation to Other Deep Learning Models

There have recently been several other probability-measure-valued deep learn-
ing models proposed in the literature. For instance, [1] proposes a deep learning
framework for approximating any regular conditional distribution function when
the target space of probability measures is equipped with the 1-Wasserstein or
adapted p-Wasserstein distances. In the case of the simple market dynamics (4),
we will find that the GDN model is more economical in its theoretically guar-
anteed parameter count. Unlike those models, its approximation-theoretic guar-
antees are necessarily limited to markets evolving according to generalized OU
dynamics such as (4), with non-singular volatility/diffusion. Gaussian-measure-
valued deep learning models were experimentally considered in [14].

Additional results can be found in the arXiv version, while experimental
support is provided at [12].

2 Preliminaries

We review the necessary background required to formulate our main results.

2.1 2-Wasserstein Riemannian Geometry

We equip the set of D-dimensional Gaussian distributions with non-singular
covariance, denoted by ND, with a smooth structure induced by the global chart

ϕ : RD × RD(D+1)/2 → D

(µ, σ) 7→ ND
(
µ, exp ◦ sym(σ)

)
,

(Chart)

where exp is the matrix exponential and sym is the linear map sending any
vector X ∈ RD(D+1)/2 to D ×D symmetric matrix

sym(X)
def.
=


X1 X2 . . . XD

X2 XD+1 . . . X2D−1
...

. . .
...

XD . . . XD(D+1)/2.

 (5)

Following [16], we equip ND with a Riemannian metric gW2
defined at any D-

dimensional Gaussian distribution ND(µ,Σ) with non-singular covariance ma-
trix (i.e. any point in ND)) by

gW2, (µ,Σ)(u, v)
def.
= 〈u1, v1〉+ tr

(
sym(u2)Σ sym(u2)

)
,

where we have identified the tangent vectors u, v at ND(µ,Σ) with Euclidean
vectors via u = (u1, u2), v = (v1, v2) ∈ RD × RD(D+1)/2. Together (ND, gW2

)
is a well-defined simply connected Riemannian manifold (whence it has a well-
defined geodesic distance between any two points). In [16, Proposition A], the
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authors show that the geodesic distance on (ND, gW2
) coincides with the 2-

Wasserstein distance W2 on ND. By [9], W2 admits the following closed-form
for any ND(µ1, Σ1),ND(µ2, Σ2) ∈ ND

W2
2

(
ND(µ1, Σ1),ND(µ2, Σ2)

)
= ‖µ1−µ2‖2 + tr

(
Σ1 +Σ2−2(Σ

1/2
2 Σ1Σ

1/2
2 )1/2

)
,

where Σ1/2
i denotes the square-root of the positive-definite matrices Σ1 and Σ2.

2.2 The GDN Model

Figure 1 illustrates the GDN implements the top arrow between the (non-
Euclidean) Riemannian manifolds (ND, gW2

) in two phases. First, it transforms
that vector via a deep feedforward neural network with ReLU activation func-
tion; then, it decodes the deep feedforward neural network output by interpret-
ing them as the parameters defining D-dimensional Gaussian distribution with
a non-degenerate covariance matrix, thus generating a ND-valued prediction.

Fig. 1. Summary of the GDN Model Processing: First, it transforms the vectorial data
using a deep feedforward neural network with a suitable activation function; next, the
neural network output vectors are decoded as the parameters defining a Gaussian mean
and covariance. This Gaussian distribution is the GDN generated prediction.

Definition 1 (Geometric Deep Network (GDN)). Fix a non-polynomial
smooth “activation function” σ : R → R, and D,W, J ∈ N+, a geometric deep
network (GDN) on ND of width W and depth J is a map f̂ : R1+d → ND with
representation: for every ND(µ,Σ) ∈ ND

f̂(x)
def.
= ϕ(A(J) x(d) + b(J))

x(k+1) def.
= σ • (A(k) x(k) + b(k)) for k = 0, . . . , J − 1

x(0)
def.
= (x, t),

where (x, t) ∈ R1+d ∼= Rd × R, each A(k) ∈ Rdk×dk+1 , b(k) ∈ Rdk+1 , D = d0,
dJ = D(D + 1)/2, dk ≤W for every k = 1, . . . , J − 1, and ϕ as in (Chart).

3 Main Results

Our first result guarantees that the GDNmodel can approximate the distribution
of Xx

t at any future time t, given any initial state x, log returns imposing any
modelling assumptions for the “asset’s drift” µ· nor for its “volatility” σ·.
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Theorem 1 (GDNs can Approximately Implement the Distribution
of (4)). Fix a parameter δ > 0. Let K ⊆ RD be (non-empty) and compact and
consider a “time-horizon” T > δ > 0. For every “approximation error” ε > 0,
there is a GDN f̂ : R1+D → ND satisfying the uniform estimate

max
x∈K, δ≤t≤T

W2

(
f̂(x, t),P(Xx

t ∈ ·)
)
< ε.

Moreover, if t is fixed then f̂ has width D(6 + 2D +D2)/2 and depth O
(

1
ε2D

)
.

The power of the GDN model is that it can simultaneously approximate the
regular conditional distribution (RCD) of the clipped log returns process and
the market prices.

Theorem 2 (Simultaneous Approximation of the Market RCD). Con-
sider the setting of Theorem 1, and let f̂ the GDN obtained from that result. For
every x ∈ K and each t ∈ [δ, T ]

W2

(
P(Sxt ∈ ·), E#(f̂(t, x))

)
<
√
DeM ε.

The Fundamental Theorem of Asset Pricing [5], implies that risk-neutral prices
for contingent claims exist and are expressed as conditional expectations of the
claim payoffs, computed under an equivalent martingale measure for the dis-
counted market prices (e−rtSxt )t≥0. For illustrative simplicity, suppose that r = 0
and that Sx· is a P-martingale. Then contingent claims are computed as condi-
tional expectations under P.

Theorem 3 (Automatic Contingent Claim Pricing). Consider the setting
and conclusion of Theorem 2, let r = 0, and suppose that S· is a P-martingale.
For every Lipschitz payoff function V : RD → R, and every (x, t) ∈ K × [δ, T ]∣∣∣EU∼f̂(x,t)[V (E(U)

)]
− EQ

[
V (Sxt )

]∣∣∣ < Cε,

for some constant C ≥ 0 depending only on V , D and on M .

Theorem 3 implies that once f̂ is trained, then we can directly approximate
any contingent claim on S· by simply sampling V (E(U)) where U is distributed
according to f̂(x, t). We conclude by proving our guarantees for the GDN model.

4 Proofs

Lemma 1 (Gaussianity of the SDE (4) Solutions). For any x ∈ RD and
any t > 0, the random vector Sxt is distributed according to a D-dimensional
Gaussian distribution with non-singular covariance; more precisely

Sxt ∼ ND
(
µ̄t,

∫ t

0

σsσ
>
s dt

)
;

where µ̄ is continuous and solves ∂tµ̄t = µt+Mtµ̄t with initial condition µ̄0 = x.
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Lemma 1 implies that the map (x, t) 7→ P(Sxt ∈ ·) takes values in (ND, gW1
) so

that we can apply the universal approximation theorem of [13]. However, need
to verify that the target function is continuous. The next Lemma implies that
(x, t) 7→ P(Sxt ∈ ·) has the required regularity to apply the results of [13].

Lemma 2 (Stability Estimate for (t, x) 7→ Xx
t ). Fix a compact subset K ⊆

RD and a positive “time–horizon” T > 0. Then the map

RD × [0,∞)→ (ND, gW2)

(x, t) 7→ Xx
t

is Lipschitz in x and 1/2-Hölder in t, over K × [0, T ].

Proof. For each t, s > 0 and every x, x̃ ∈ RD, we have

W1

(
P(Xx

t ∈ ·),P(Sx̃s ∈ ·)
)
≤ E

[
‖Xx

t −X x̃
s ‖2
]1/2

. (6)

Applying [4, Propositions 8.15 and 8.16] to the right-hand side of (6) yields

W2

(
P(Xx

t ∈ ·),P(X x̃
s ∈ ·)

)
≤ E

[
‖Xx

t −X x̃
s ‖2
]1/2 ≤ C(‖t− s‖1/2 +‖x− x̃‖), (7)

for some constant C ≥ 0 depending on K × [0, T ]. The result then follows from
[16, Proposition A], which states that the geodesic distance on (ND, gW2

) coin-
cides with the restriction of the 2-Wasserstein distance thereto.

Proof (Proof of Theorem 1). By Lemma 1 for every (x, t) ∈ K×[δ, T ] the random
vectorXx

t is distributed according to a Gaussian distribution with a non-singular
covariance matrix. Thus, the map f(x, t) 7→ P(Xx

t ∈ ·) takes values in ND. By
our stability estimate, namely Lemma 2, f is a Lipschitz function; in particular, it
is continuous. Therefore, [13, Corollary 40] applies; whence, for every given ε > 0

there is a GDN satisfying max(x,t)∈K×[δ,T ] W2

(
f(x, t), f̂(x, t)

)
< ε. Furthermore,

if t is fixed, then the depth and width of f̂ are given in the first row of [13, Table
1]; since x 7→ P(Xx

t ) is Lipschitz.

Lemma 3. The push-forward E# is a well-defined map from (P2(RD),W2) of√
DeM -Lipschitz continuity. In particular, E# is a Lipschitz map to (P2(RD),W1).

Proof (Proof of Lemma 3). We first observe that E is Lipschitz. To see this, note
that x 7→ exp

(
(min{1, ‖x/M‖})−1 · x

)
is precisely the orthogonal projection P

of Rd onto the closed Euclidean ball BRD,‖·‖2(0,M) of radius M > 0 of about
0 ∈ RD. Since BRD,‖·‖2(0,M) is a closed convex set, then this projection is well-
defined and 1-Lipschitz (see [2, Example 12.25 and Proposition 12.27]). Since
E is given by the composition E = exp ◦P (here exp is “composed” component-
wise), P is 1-Lipschitz, and since the composition of Lipschitz functions is again
Lipschitz, then E if exp is Lipschitz on the range of P . By Rademacher’s theorem
(see [6, Theorem 3.16]), if exp were to be L-Lipschitz on the range of P , then
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supx∈P (RD) ‖∇ exp(x)‖ must be finite; in which case this quantity is equal to its
Lipschitz constant L. This is indeed the case, since

sup
x∈p(RD)

‖∇ exp(u)‖ ≤
√
D max
−M≤v≤M

√
DeM <∞. (8)

Thus, E is -Lipschitz, with Lipschitz constant bounded-above by L def.
=
√
DeM .

It is straight-forward to see that E# is well-defined and maps P2(RD) to
itself, since we have just seen that E is Lipschitz. To see that E# is

√
DeM -

Lipschitz, fix any two µ, ν ∈ Pf (Rm) a transport plan π between them. Define
the “induced diagonal transport plan” π̃ := (E , E)#π and simply note that π̃ is
indeed a transport plan between E#µ and E#ν. We then compute

W2
2 (E#µ, E#ν) ≤E(U1,U2)∼π̃[‖U1 − U2‖2]

=E(V1,V2)∼π[‖E(V1)− E(V2)‖2]

≤E(V1,V2)∼π[De2M‖V1 − V2‖2]

=De2ME(V1,V2)∼π[‖V1 − V2‖2].

We complete the proof by first square-rooting both sides of the inequality and
then taking the infimum over all transport plans π between µ and ν; thus

W2(E#µ, E#ν) ≤
√
DeM inf

π
E(V1,V2)∼π[‖V1 − V2‖2]1/2 =

√
DeMW2(µ, ν).

Since W1 ≤ W2 for any probability measures, the second claim follows.

Proof (Proof of Theorem 2). By (3), we have that P(Sxt ∈ ·) = E#P(Xx
t ∈ ·).

By Lemma 1 P(Xx
t ∈ ·) belongs is a D-Dimensional Gaussian measure and

therefore it belongs to P2(RD). Likewise, by construction f̂ is alsoD-Dimensional
Gaussian measure; thus, it also belongs to P2(RD). Therefore, Lemma 3 applies,
allowing us to deduce that

W2

(
P(Sxt ∈ ·), E#(f̂(t, x))

)
≤
√
DeMW2

(
P(Xx

t ∈ ·), f̂(t, x)
)
. (9)

Since f̂ is as in Theorem 1 then, the right-hand side of (9) is less than
√
DeMε.

Proof (Proof of Theorem 3). If V is constant, then the result is clear. Therefore,
assume that V is non-constant. Since W1 ≤ W2, then Theorem 2 implies that,
for every (x, t) ∈ K × [δ, T ]

W1

(
E#f̂(x, t),Q(S̃xt ∈ ·)

)
≤ C1ε, (10)

were the for the constant C1
def.
=
√
DeM . By the Kantorovich-Rubinstein duality

(see [10, Theorem 9.6]) the left-hand side of (10) can be rewritten as

sup
Ṽ ∈Lip(RD,R;1)

∣∣∣EU∼E#f̂(x,t)[Ṽ (U)]− EQ
[
Ṽ (S̃xt )

]∣∣∣ =W1

(
f̂(x, t),Q(S̃xt ∈ ·)

)
(11)



Generative Ornstein–Uhlenbeck Markets via Geometric Deep Learning 9

for every x ∈ K and each t ∈ [δ, T ]; where Lip(RD,R; 1) is the set of real-valued
Lipschitz maps on RD with Lipschitz norm ‖Ṽ ‖Lip

def.
= supx∈RD |Ṽ (x)|+ Lip(Ṽ )

at-most 1 (note, we the Lipschitz norm as ∞ if the map Ṽ is not Lipschitz since
its “Lipschitz constant” Lip(Ṽ ) would be infinite). Since V is non-constant then
Lip(V ) > 0 is positive. Thus, Ṽ def.

= [‖V ‖Lip]−1 ·V is well-defined and (11) implies

1

‖V ‖Lip

∣∣∣EU∼E#f̂(x,t)[V (U)]− EQ
[
V (S̃xt )

]∣∣∣ =W1

(
E#f̂(x, t),Q(S̃xt ∈ ·)

)
, (12)

for (x, t) ∈ K × {T}. We conclude by multiplying (12) by ‖V ‖Lip, setting C
def.
=

C1 ‖V ‖Lip, and using the change-of-variable formula for push-forward measures.
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