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Abstract. Data compression algorithms typically rely on identifying re-
peated sequences of symbols from the original data to provide a compact
representation of the same information, while maintaining the ability
to recover the original data from the compressed sequence. Using data
transformations prior to the compression process has the potential to
enhance the compression capabilities, being lossless as long as the trans-
formation is invertible. Floating point data presents unique challenges
to generate invertible transformations with high compression potential.
This paper identifies key conditions for basic operations of floating point
data that guarantee lossless transformations. Then, we show four meth-
ods that make use of these observations to deliver lossless compression
of real datasets, where we improve compression rates up to 40 %.
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1 Introduction

Data management is a key aspect of most IoT related applications, since data
generated by sensors usually has to be transmitted, stored and analyzed. A com-
mon practice to store time-series datasets is to compress them before archival,
so to limit the needed database space. Before compression, data is usually pre-
processed, undergoing a transformation process where the content of the dataset
is adjusted for compression, which can potentially enhance the compressibility
of the dataset. There are various preprocessing approaches that the user could
adopt, ranging from rounding the decimals, to changing domain of the signal
with the discrete wavelet transform [2], or dropping bits that carry minimal in-
formation [8]. One key distinction among preprocessing transforms is whether
they are lossy or lossless. Given a transformation function f and a dataset DS,
we say that f is lossless when f−1(f(DS)) = DS, lossy otherwise. The goal
of this paper is to characterize lossless operation on floating point data and
to propose 4 lossless preprocessing techniques enhancing the compressibility for
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mono-dimensional floating point datasets, meaning that the preprocessed dataset
f(DS), once compressed, is smaller in size than the compressed vanilla DS. We
quantify compression in terms of compression ratio (CR), defined as

CR =
Compressed dataset size in bits + Compression metadata

Uncompressed dataset size in bits
(1)

where the metadata might be needed to be able to undo the compression. Since
these transformations operate on each individual floating point number, they
are naturally compatible with compression methods with fine-grained random
access capabilities, such as Generalized Deduplication [12], which are useful for
computing analytics directly on the compressed data [6].

1.1 Compressing floating point numbers

The most common standard for floating point numbers is the IEEE-754 [1], where
a number x is represented by three components: the sign (S), the exponent (E)
and the mantissa (M). In this paper, we assume the use of double precision,
namely 64 bits per number. When interpreted as unsigned integers, x is

x = (−1)S · 2E−B · (1 +M · 2−l), (2)

where B = 1023 is the bias of the exponent, and l = 52 is the length of the
mantissa in bits. Out of the 64 bits, 1 is the sign bit, 11 are the exponent
and the remaining 52 bits are the mantissa. Each mantissa bit is mi, with i ∈
{1, 2, . . . , 52} and m1 being the most significant one. From Eq.(2), we see that
all x such that |x| ∈ [2E

∗
, 2E

∗+1) have the same exponent E∗ +B.
As studied in [11], a possible idea to improve compressibility is to maximize

the number of bits shared by all numbers in the collection we want to compress.
We say that the i-th bit is shared when all numbers int eh dataset have the
same value for the i-th bit, meaning that if all bits are shared, the dataset
is composed of a series of equal numbers. The work in [11] empirically shows
that having more shared bits generally results in better compression, with both
standard compressors, like zlib [4], and ones based on deduplication, used in
Sect. 4. However, the preprocessing technique f̄ showed in [11] is lossy: in the
following, we elaborate on it to propose lossless preprocessing techniques.

2 Key observations

2.1 Lossless operations on floating point numbers

Numbers represented with a finite amount of bits will necessarily have finite
precision. IEEE-754 can represent a subset of all numbers on the real line, while
values that are not in this subset get approximated to one that is. In this context,
we refer to the precision of a number x = (−1)Sx · 2Ex−1023 · (1 +Mx · 2−52) as
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the distance between x and the next representable floating point number. We
call this quantity unit in the last place, or ULP(x), calculated as

ULP(x) = 2Ex−1023−52 (3)

The reason why manipulating floating point numbers can result in losses is that
ULP(x) is not a constant in floating point, but rather a function of the number’s
unbiased exponent. Transformations whose output results in ULP(x) different
from the original could potentially lead to information losses. In order to explain
this phenomenon, we introduce the operations ⊕, ⊗, ⊖, ⊘, which represent
addition, multiplication, subtraction and division according to IEEE-754. For
our purposes, we can think of them as being the theoretical operations, followed
by rounding to the nearest representable number.

An example of potential losses due to floating point precision can be shown
by considering x = 3.5, the transform f(x) = x ⊕ 1016 with its inverse g(x) =
x ⊖ 1016 and their theoretical counterpart f ′(x) = x + 1016 with its inverse
g′(x) = x − 1016. While g′(f ′(x)) = x ,∀x ∈ R, the same is not true in floating
point, since g(f(3.5)) = 4.0 ̸= 3.5.

While there are multiple strategies to limit the effects of this approximation
error, as described in Section 5.3 of [10], this paper aims at devising strategies
to avoid it completely. In Sect. 2.1, we discuss particular scenarios for which
summation does not produce error, and in Sect. 2.1 we analyze multiplication.

Lossless addition In the scenario where x ∈ [2E
∗
, 2E

∗+1) and f(x) = A⊕ x is
such that f(x) ∈ [2E

∗+1, 2E
∗+2) and A ∈ [2E

∗
, 2E

∗+1), the operation is lossless
as long as both A and x have the same least significant mantissa bit m52. The
reason is that during an addition under these conditions, a bit called guard bit has
to be rounded away, since ULP(·) goes from ULP(x) = 2E

∗−52 to ULP(f(x)) =
2E

∗−51. However, if both addends have the same m52, the guard bit is guaranteed
to be equal to zero, requiring no rounding. This result is summarized in Table 1
and more details on how addition works in floating point in Section 7.3 of [10].

Table 1: Mantissa least significant bits for lossless addition y = x⊕A. The blue
results indicate a lossless transformation, namely y ⊖A = x.

my
52 mx

51m
x
52

00 01 10 11

m
A 5
1
m

A 5
2 00 0 0 1 0

01 0 1 0 0
10 1 0 0 0
11 0 0 0 1

Another particular useful scenario is the addition y = x ⊕ A where x, y ∈
[2E

∗
, 2E

∗+1) and A ∈ [2Ẽ , 2Ẽ+1) < 2E
∗
. It can be shown that given the floating

point addition process detailed in [9], this operation is lossless when

mi = 0 for i ∈
{
52−

(
E∗ − Ẽ + 1

)
, . . . , 52

}
. (4)
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Fig. 1: Representation of the loss with f(x) = y = x ⊙ M and f−1(x) = x̃ =
y ⊘M . Assuming the use of the round to nearest approach, all real numbers in
the same color region get rounded to the same floating point number.

Lossless multiplication In the scenario where x ∈ [2E
∗
, 2E

∗+1) and f(x) =
x ⊗ M is such that f(x) ∈ [2E

∗+1, 2E
∗+2), the operation is guaranteed to be

lossless as long as M ≥ 2. To prove it, we consider Fig. 1, where y∗ = x · M ,
y = x ⊗M , x̃∗ = y/M and x̃ = y ⊘M . In order for this transformation to be
lossless, we need

|x− x̃∗| = ∆x < ULP(x)/2 (5)

since this would result in x̃ = x under the round to nearest rounding scheme.
Since y = x̃∗ ·M = (x+∆x) ·M , we havey− y∗ = M ·∆x, which combined with
Eq.(5), results in the condition for lossless multiplication being

y − y∗ < M · ULP(x)

2
. (6)

Since ULP(y) = 2·ULP(x) and y−y∗ < ULP(y)
2 because of the rounding method,

we have y − y∗ < ULP(x) < M · ULP(x)
2 , fulfilling Eq.(6) when M ≥ 2.

3 Lossless dataset manipulations for better compression

In order to increase the number of shared mantissa bits in the dataset, our goal
is to ensure that all numbers after preprocessing lie in the portion of the real
line where the mantissa bits are guaranteed to be as we desire. Given a dataset
DS, in order to guarantee that the D most significant mantissa bits are shared,
the datapoints x would all have to be such that

|x| ∈
[
2E , 2E + 2E−D

]
with E ∈ [−1022, 1023] ∀x ∈ DS. (7)

Next, we present four techniques to losslessly place the numbers in the dataset in
these preferred regions, supposing without loss of generality and for clarity sake
to have a dataset where all numbers have the same exponent. This can be easily
generalized by storing as metadata the information on the original exponent of
each sample. We named these techniques compact bins, multiply and shift, shift
and separate even from odd, shift and save evenness.
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Original	dataset	range New	dataset	range

2!∗ 2!∗"#

⊕𝐴#

⊕𝐴$
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Fig. 2: Illustration of method compact bins. In this example, by using 3
bins all numbers in the new dataset are guaranteed to have m1 = 1 and m2 = 1,
while there was no such guarantee in the original dataset.

3.1 Compact bins

In the scenario where x ∈
[
2E

∗
, 2E

∗+1
)
, if we cluster this set of values into

bins and shift the bins so they they are closer to each other, we are effectively
reducing the range of values of the transformed dataset, possibly making it fit
to a region where some mantissa bits are guaranteed to be shared. An example
of this binning process is in Fig. 2, where we use 3 bins to ensure m1 = 1 and
m2 = 1 ∀x ∈ DS. The optimal amount of bins depends on the distribution of
values in the real axis. Two conditions are needed in order for this process to
be lossless. First, supposing to use k bins on a dataset with ℓ unique values, we
have to store (k− 1) · ⌈log2 (ℓ)⌉ bits as metadata representing the boundaries of
the bins, as well as the k values {A1, . . . , Ak} used to shift the bins. The size
of metadata in bytes is Z = (k · 64 + (k − 1) · b)/8. Secondly, the Ai have to be
chosen so that the operation y = x⊕ Ai is lossless. We can use Eq.(6) to select
the correct Ai values.

3.2 Multiply and shift

As per Eq.(7), there is one portion of the real axis per exponent region guarantee-
ing that the D most significant bits are equal to 1. Using the lossless operations
in Subsect. 2.1, we can manipulate the dataset so that the modified DS has
all values lying in those regions. The multiply and shift transform we propose,
represented in Fig. 3, involves one multiplication and one addition to move to
the next exponent region, applied interatively until all modified numbers lie on
the portion of the real axis where the most significant D mantissa bits are guar-
anteed to be shared. Assuming that x ∈

[
2E

∗
, 2E

∗+1
)
∀x ∈ DS, the operation

is
f(x) = (2.0⊗ x)⊕A, with A = 2E

∗−D+1 − 2 ·ULP
(
2E

∗+1
)
, (8)
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Fig. 3: Illustration of method multiply and shift . From the original dataset
in black, we iteratively apply Eq.(8) to obtain a transformed dataset in red lying
on regions in green, where all numbers are guaranteed to share at least the first
D mantissa bits. We can recover the original dataset with the inverse transform
since all operations are lossless.

where A has to be rounded down if necessary to the first value fulfilling Eq.(4).
As we can see in Fig. 3, after an iteration, only the values out of the region with
desired common bits have to go through another one, progressively shaving the
dataset under analysis. A limitation of this algorithm is that the multiplication
by a factor of 2.0 effectively enlarges the window of values of the transformed
portion of the dataset, increasing the number of needed iterations. However,
M = 2 is the smallest lossless factor, as per Eq.(6). In terms of metadata, we
need to store D and A1, since all Ai with i ̸= 1 can be computed by knowing the
exponent of the original dataset and D. In order to invert the transformation,
given the transformed dataset, we can iteratively apply the inverse transforma-
tion f−1(y) = (y ⊖A)⊘2.0 on each element belonging to the rightmost exponent
region, concluding with the inverted shift stored as metadata.

3.3 Shift and separate even from odd

In order to alleviate the drawbacks of multiply and shift in Subsect. 3.2, we
can substitute the multiplication with an addition, while carefully selecting the
addendum so that it fulfills the conditions in Sect. 2.1. Specifically, given the
operation y = x⊕A with x,A ∈

[
2E

∗
, 2E

∗+1
)
, their mantissas Mx and MA have

to have the same evenness, namely mx
52 = mA

52. We do that by ensuring that
all y resulting from x with even mantissas lie in a portion of the real axis that
does not overlap with the one for the odds. In this way, we can distinguish the
two during the inverse transformation. As depicted in Fig. 4, the transformation
differs depending on the evenness of the mantissas as input, resulting in

f(x) =

{
x⊕Aeven

i if mod (Mx, 2) = 0

x⊕Aodd
i if mod (Mx, 2) = 1.

(9)

Aeven
i and Aodd

i at the i-th iteration are computed so to fulfill Eq.(4). In particu-
lar, at th i-th iteration, with x,Aeven

i , Aodd
i ∈

[
2E

∗
, 2E

∗+1
)

and D desired shared
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Fig. 4: Illustration of method shift and separate even from odd .We iter-
atively apply Eq.(9), ensuring that the output of x with even and odd mantissas
lie in different portions of the real axis ath every iteration.

most significant mantissa bits, they are

Aeven
i = 2E

∗+1 + 2E
∗−D, Aodd

i = Aeven
i −Wi, (10)

where Wi represents the length of the portion of the dataset to be processed
at the i-th iteration. It is calculated starting from the original dataset DS
with Wi+1 = 2 · Wi − 2E

∗−D, where W0 = max(DS) − min(DS). In terms of
metadata, we need to store the initial shift Aalign, D and W0, since all Ai

can be reconstructed from those. The i-th step of the inverse transformation of
y ∈

[
2E

∗
, 2E

∗+1
]

is

f−1(y) =

{
y ⊖Aeven

i if y > 2E
∗+1 −Wi

x⊖Aodd
i if y ≤ 2E

∗+1 −Wi.
(11)

With this method we strategically choose Aeven
i and Aodd

i so that we can guess
the evenness of the original x by checking the position of y on the real axis.
The drawback is that we need to enlarge the range of values of the transformed
dataset at every iteration, similarly to what happened with the multiplication
by 2.0 in Subsect. 3.2.

3.4 Shift and save evenness

In order to limit the scaling up of the transformed dataset at every iteration in
shift and separate even from odd, we could store the evenness information as a
single metadata bit per sample, meaning n bits per iteration for a dataset of n
elements. The increased size of metadata is compensated by a drastic reduction
in the number of iterations needed to end the procedure. The direct transfor-
mation formulas is the same as per Eq.(9), where the only difference is that the
calculation of Aodd

i becomes Aodd
i = Aeven

i .
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Fig. 5: Illustration of method shift and save evenness. While similar in
concept to Fig. 4, we use metadata to distinguish whether to apply the inverse
transformation with Aodd

i , namely having odd mantissas, or with Aeven
i , which

has it even.

2 4 6 8 10
DM

−40%
−30%
−20%
−10%

0%

δ C
R

DATASET
Uci
Taxi

TECHNIQUE
Compact bin
Multiply and shift
Shift and separate even from odd
Shift and save evenness

Fig. 6: Comparison of the best results from Fig. 7a and Fig. 7b, where lower δCR

are better.

4 Results

In this section we analyze the benefits of the four proposed techniques for lossless
preprocessing of floating point datasets, namely compact bins, multiply and shift,
shift and separate even from odd, shift and save evenness. In order to quantify
their effectiveness, we compare the compression ratio achieved with preprocessing
(CRPREP) and without preprocessing (CRNO−PREP), using the metric

δCR =
CRPREP − CRNO−PREP

CRNO−PREP
(12)

where negative values mean that our techniques resulted in better compressed
datasets. To measure the impact of metadata on the final size, we define Z as

Z =
Metadata size in bytes

Compressed dataset size in bytes
. (13)

As compressor, we use Greedy-GD [7], since the number of common bits is par-
ticularly beneficial for its effectiveness in terms of CR. Here, DM is the number
of desired most significant guaranteed shared mantissa bits, whereas the total



Lossless preprocessing of floating point data to enhance compression 9

0

25

50

Bi
ts

Compact bins Multiply and shift Shift and separate Save evenness

0 5 10 15
DM

20%
0%

−20%
−40%

δ C
R

0 2 4 6 8
DM

0 2 4 6 8
DM

0 15 30 45
DM

0%

500%

Z

STOT SM SE δCR Z

(a) Chicago-taxi-trips-fares [3]
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(b) UCI-gas-turbine-emissions [5].

Fig. 7: Performances of the 4 techniques for lossless preprocessing in terms of CR
on the datasets Chicago-taxi-trips-fares and UCI-gas-turbine-emissions.

number of shared mantissa bits is SM , SE is for shared exponent bits and STOT

for the total number shared bits. As input, we use the first 1000 elements of the
datasets Chicago-taxi-trips-fares [3] and UCI-gas-turbine-emissions [5], having
a single dimension of non-negative floating point values: these technique could
be extended to mixed signed datasets. In Fig. 6, we summarize the best results
of all 4 techniques with both datasets, while in Fig. 7 we report more detailed
performances.

Looking at Fig. 6, we see that in all scenarios we were able to find a trans-
formation that improved compression, since all optimal results are below zero.
We also notice that the best transformation was able to achieve an improvement
of 40% in CR, meaning that the final size of the compressed dataset was 40%
smaller in size than the compressed vanilla version.

Regarding the compact bins technique, we notice that STOT is always larger
than DM . It plateaus when all 52 mantissa bits are shared, causing CR to
plateaus as well. We also see that SE is constant, since this technique preserves
the original exponents. We see a plateau in STOT also with multiply and shift
and shift and separate even from odd. Here, after a certain DM value, for every
additional mantissa bit we want to be shared, we lose a shared exponent bit,
making STOT constant: as a consequence, CR plateaus as well .
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We also notice that with Compact bins and shift and save evenness we can
impose a much higher number of common mantissa bits compared to both multi-
ply and shift and shift and separate even from odd, since the first two require less
iterations to terminate. The trade-off is that Z increases for larger D, potentially
becoming larger that the size of the compressed dataset itself.

5 Conclusions and future work

This paper identifies key conditions for floating point addition and multiplication
operations to be invertible, i.e., without introducing errors. Using these obser-
vations, we proposed four techniques to preprocess arrays of floating point data
in a lossless fashion to enhance their compression potential. We discussed their
implementations and analyzed their application on real datasets and showed
their efficacy and limitations. Our numerical results show possible compression
improvements of up to 40 %, without introducing losses. In the future, we plan
to expand their use to mixed sign datasets and investigate their combination.
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