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Abstract

Living substrates are capable for nontrivial mappings of electrical signals
due to the substrate nonlinear electrical characteristics. This property can
be used to realise Boolean functions. Input logical values are represented
by amplitude or frequency of electrical stimuli. Output logical values are
decoded from electrical responses of living substrates. We demonstrate how
logical circuits can be implemented in mycelium bound composites. The
mycelium bound composites (fungal materials) are getting growing recog-
nition as building, packaging, decoration and clothing materials. Presently
the fungal materials are passive. To make the fungal materials adaptive,
i.e. sensing and computing, we should embed logical circuits into them.
We demonstrate experimental laboratory prototypes of many-input Boolean
functions implemented in fungal materials from oyster fungi P. ostreatus.
We characterise complexity of the functions discovered via complexity of the
space-time configurations of one-dimensional cellular automata governed by
the functions. We show that the mycelium bound composites can implement
representative functions from all classes of cellular automata complexity in-
cluding the computationally universal. The results presented will make an
impact in the field of unconventional computing, experimental demonstration
of purposeful computing with fungi, and in the field of intelligent materials,
as the prototypes of computing mycelium bound composites.

Keywords: mycelium network, Boolean gates, unconventional computing

1. Introduction

The fungi are one of the largest, the oldest, most adaptive and widely dis-
tributed group of organisms [9]. Smallest fungi are single cells. The largest
mycelium spreads in hectares [46]. When growing in a bulk medium of wood
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or plant shavings fungi bind the medium in a solid monolith with outstanding
mechanical properties. The mycelium bound composites are seen as future
environmentally sustainable growing biomaterials [26, 25, 10 I]. They are
already used in acoustic [40} [15, 41] and thermal [52], 51], 19] 14) 149 K] in-
sulation panels and cladding, materials for packaging [21], 45, B6] and wear-
ables [2], [44] 26| 4, 24]. The currently used fungal materials are passive and
inert because the fungi in the composites are dead and treated to prevent
decay. To make the fungal materials adaptive and intelligent we must either
(1) leave part of the fungal materials alive, or (2) dope the materials with
functional nanoparticles and polymers. In the present paper we explore the
first option of sensing and computing with living mycelium.

Fungal colonies are characterised by rich typology of mycelium networks [20),
18| 16, 17, 23] in some cases similar to fractal structures [37, 39, [7, 31, 6], [3§].
Rich morphological features might imply rich computational abilities and
thus worth to analyse from a realising Boolean functions point of view. To
implement logical functions we adopted a theoretical approach developed in
[3, 43]. The technique is based on selecting a pair of input sites, apply-
ing all possible combinations of inputs, where logical values are represented
by electrical characteristics of input signals, to the sites and recording out-
puts, represented by electrical responses of the substrate, on a set of the
selected output sites. The approach belong to the family of reservoir com-
puting [48, 28, 11, 27, 12] and in materio computing [32, 33 47, 34, 35]
techniques of analysing computational properties of physical and biological
substrates.

The paper is structured as follows. First, the experimental setup will
be described, then the procedure for data gathering and analysis will be
outlined.

2. Methods

A hemp shavings substrate was colonised by the mycelium of the grey
oyster fungi, P. ostreatus (Ann Miller’s Speciality Mushrooms Ltd, UK).
Recordings were carried out in a stable indoor environment with the temper-
ature remaining stable at 22 4+ 0.5°and relative humidity of air 40 +5%. The
humidity of the substrate colonised by fungi was kept at c¢. 70-80%.

Hardware was developed that was capable of sending sequences of 4 bit
strings to a mycelium substrate. The strings were encoded as step voltage
inputs where -5 V denoted a logical 0 and 5 V a logical 1. The hardware
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Figure 1: Left: Schematic of the mycelium communications system; PC — laptop for

generating sequences; CU — control unit, dashed section is a breakdown of a single channel;
ADC — analogue to digital converter. Right: experimental set up.

was based around an Arduino Mega 2560 (Elegoo, China) and a series of
programmable signal generators, AD9833 (Analog, USA). The 4 input elec-
trodes were 1 mm diameter platinum rods inserted to a depth of 50 mm in
the substrate in a straight line with a separation of 20 mm. Data acquisition
(DAQ) probes were placed in a parallel line 50 mm away separated by 10 mm.
The electron sink and source was placed 50 mm on from DAQ probes. There
were 7 DAQ differential inputs from the mycelium substrate to a Pico 24
(Pico Technology, UK) analogue-to-digital converter (ADC), the 8th channel
was used to pass a pulse to the ADC on every input state change, see Fig.
for a schematic of the apparatus. The substrate and probes were placed in
a semi-sealed container. After each experimental repeat the substrate was
sprayed with water, left for an hour and then the next repeat was conducted.
There were a total of 14 repeats.

A sequence of 4 bit strings counting up from binary 0000 to 1111, with a
state change every hour, were passed into the substrate, see Fig. [2| for timing
details. In all 14 repeats of the experiment were done on the same substrate
to capture changes in structure of the growing mycelium. Samples from 7
channels were taken at 1 Hz over the whole duration of a given experimental
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Figure 2: Timing diagram and associated Boolean strings for four inputs into the mycelium
substrate, time step is one hour.

run. Peaks for each channel were located for a set of 32 thresholds, from
20 mV to 175 mV with step 5 mV, for each input state, 0000 to 1111.

Boolean strings were extracted from the data, where a logic ‘1’ was noted
for a channel if it had a peak outside the threshold band for a particular state
else, a value of ‘0’ was recorded, the polarity of the peak was not considered.

The strings for each experimental repeat were stored in their respective
Boolean table. To extract state graphs, a state/node was defined as the string
of output values from each channel at each input state, transitions/edges were
defined as a change in input state. This led to a total of 448 state graphs. The
sum of products (SOP) Boolean functions were calculated for each output
channel. For each repeat there were 7 channels and 32 thresholds giving total
of 3136 individual truth tables.

See Fig. 3] for SOP extraction. If a peak is found in Fig. [Bh during an
input state then this is considered a logical 1, highlighted in yellow in table
Fig. are the thresholded values for channel 5, the resulting truth table is
then reduced to a sum products shown below the table.

3. Results

We have discovered total of 3136 4-inputs-1-output Boolean functions.
470 unique functions are presented in Supplementary Materials. Figure
shows the Boolean function distribution. The two peak values were logical
FALSE, n = 238, and logical TRUE, n = 237. The highest occurring non-
trivial gate was A+ B 4+ C + D, n = 145. The top 16 occurring non-trivial
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Figure 3: Workflow example. (a) The measurements taken by channel 5 of the DAQ in
blue, the synchronisation signal is shown red which marks the state change, threshold
band shown in green, peaks outside this band are highlighted with ‘x’ marker. (b) The
truth and the function extracted.
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Figure 4: Counts of realised Boolean functions discovered in laboratory experiments. Hor-
izontal axis is a decimal representation of functions. Vertical axis is a number of functions
discovered in experiments.

Table 1: Top 16 highest occurring Boolean functions.

Count Boolean function

145 | By A+ B+ C+ D (NAND)

83 Fy AB+AC+AD+AB+BC+BD+AC+BC+CD+AD+BD+CD
81 Fy ACD + ABC + ABC + ABD

59 F, AC+AD+AC+CD+AD+ BD+CD

55 Fy AB+ CD + AD

53 F ABCD

47 F; BD + CD + AD + BCD

46 Fy ABCD

46 | Fy, |A+B+C+D (0oR)

40 Fio AB+ AD +AB+ BD+ AD+ BD+CD

37 Fi ABCD

37 Fiy AD + AB + BC + AD + BCD

37 Fis AB+ AC + AD + AD 4+ BD + CDABC + BCD
32 Fiu AD+ AB+BD+ AC+ CD+ AD + ABC + BCD
29 Fis |C+AB+ AD+ AB+ BDAD + BD

28 Fig AB + AC + BD + BCD + ABC
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Figure 5: Space-time configurations of one-dimensional cellular automata governed by
functions from Tab.[I An automaton has 500 cells and evolves for 500 iterations. Initial
configurations has a random uniform distribution of cells in state ‘1’ where each cell takes
the state ‘1’ with a probability %

Boolean functions are listed in Tab. [I The only single gate functions found
were for NAND (A+ B+ C + D), n = 145, OR (A+ B+ C + D), n = 46, and
AND (ABCD), n =8.

Let us discuss complexity of the functions discovered (Tab. [1)) via com-
plexity of the space-time configurations of one-dimensional cellular automata
governed by the functions. We consider an array Z of finite state machines,
called cells, where every cell takes states ‘0’ or ‘1" and updates its state de-
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Figure 6: Frequency of functions from Tab. [I] versus LZ complexity, measured via com-
pressibility of the space-time configurations of cellular automata governed by the functions.
Functions Fy, Fg, Fg and Fy are not displayed because their LZ is near zero.

pending on the states of its four immediate neighbours. All cells update
their states by the same rule and in discrete time. For example, a cell with
index i, x; € Z, updates its state at time ¢ as a function of states of its four
neighbours: z*' = f(z! 5, x! | al,,, 2! ,). To map functions from Tab.
to the rules governing the cellular automata we assume that A corresponds
to zf_,, B to zl_4, C to zl,; and D to !, ,. For example, a cell z; of cel-
lular automaton governed by the function F5 (Tab. [I) updates its state as
e =T 5n 1 + T Tire + TiaTigo.

Automaton governed by Fi, Fg, Fy fall into absorbing state where all cells
are in state ‘0’. The automaton governed by rule Fy falls into the state where
all cells are in state ‘1’. Space-time configurations, random initial conditions
and absorbing boundaries, of automata governed by other rules are shown in
Fig.[5l We characterise a complexity of the space-time patterns via Lempel-
Ziv complexity (compressibility) LZ. The LZ complexity is evaluated by a
size of concentration profiles saved as PNG files of the configurations. This
is sufficient because the 'deflation’ algorithm used in PNG lossless compres-
sion [42}, 22], [13] is a variation of the classical Lempel-Ziv 1977 algorithm [53].
The frequency of the functions occurrence in the experimental circuit mining
versus LZ complexity of the functions is shown in Fig. [f, We can see that
there is no correlation between how often a function can be found and how
complexity the function is. Thus, e.g. the function Fi3 (Tab. 1)) generates
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most complex space-time configuration (Fig. ) yet it is in the mid-range
of the frequency of experimental occurrence. The less complex functions Fj,
F;, Fia, Fi5 span the interval [29,55] counts of occurrences in experimental
laboratory mining.

Let us consider positions of the functions Tab. [1] in the Wolfram classi-
fication [50] of cellular automaton behaviour. Functions Fi, Fy, Fg, Fy and
F11 belong to the class I, the class of automata exhibiting a dull dynamics
and evolving to a stable state where all cells are in the same state. Functions
Fy, Fr, Fio, 1y, Fis belong to the class II: the automata fall into global cells
do not update their state or update them cyclically from ‘0’ to ‘1’. Functions
Fy, Fio and Fi3 belong to class I1I: the space-time dynamics is characterised
by quasi-random behaviour and difficult predictability of the successions of
the global states. These functions generate the most complex, as evaluated
by LZ measure, space-time configurations. Function F;, shows an interesting
example of the function belonging to classes II and III. Two functions F3 and
Fi6 belong to class IV: the space-time dynamics of automata show gliders
(compact patterns translating in space) with non-trivial interactions between
the gliders. The automata governed by rules Fj and F'g are computationally
universal, because it is possible to implement an arbitrary logical circuit via
collisions between the gliders, see e.g. [30, 29].

4. Discussion

Mycelium bound composites transform electrical signals in a non-linear
manner due to mem-fractive and capacitive properties of the fungal tissue [5].
Whilst exact biophysical mechanisms of the signal transformation by the
mycelium remain unknown we can explore the non-linear properties of this
living substrate to implement logical circuits. In experimental laboratory
studies we demonstrated that mycelium bound composites implement a wide
range of Boolean circuits. Analyses of the functions extracted in terms of
space-time dynamics of cellular automata helped us to order the functions in
several classes of complexity and pinpoint the functions supporting a univer-
sal computation. The first ever prototype of the fungal reservoir computer,
presented in the paper, demonstrates that a computation can be embedded
into living materials. The research presented also pinpointed a high degree
of variability in the logical circuits implemented by the fungi. This is be-
cause the live mycelium remain in the continuous process of growth and
reconfiguration. To decrease the variability of the results we could consider



to functionalise the mycelium networks with semi-conductive particles and
polymers and allow the mycelium to dry. The resulting networks will have a
permanent structure which will guarantee repeatability of the experimental
circuits discovered. This will be a topic of our future studies.
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4-inputs-1-output logical functions discovered in experiments with mycelium
bound composites.
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ABD
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C + (AB) + (AD) + (B

(AD) + (BA) + (BC) + (DA)
(BC) + (DC) + ( ADB
B+C+A+D

(ABC) + (BCA) + (BCD) + (ACDB) + (BCD)
(DA) + (ABC) + (ABD)
A+B+C+D

(AB) + (ACD) + (BCAD)
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(DA) + (DB) + (ACD) + (CAB)
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