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Abstract. Runtime Assertion Checking (RAC) is a lightweight formal
method for verifying at runtime code properties written in a formal speci-
�cation language. One of the main challenge of RAC is to check the prop-
erties e�ciently, while emitting sound verdicts. In particular, arithmetic
properties are only e�ciently veri�ed using machine integers, yet sound-
ness can only be achieved by using an exact but slower exact arithmetic
library. This paper presents how E-ACSL, a RAC tool for C programs, ap-
plies abstract interpretation for e�ciently and soundly supporting arith-
metic properties. Abstract interpretation provides sound static informa-
tion regarding the size of terms involved in runtime assertions in order to
choose at compile time whether machine integers or exact arithmetic will
be used at runtime on a case by case basis. Our speci�cation language
includes recursive user-de�ned logic functions and predicates, for which
we rely on fast �xpoint operators based on widening of abstract values.

1 Introduction

Runtime Assertion Checking (RAC) is a lightweigth formal method that consists
in checking at runtime formal properties written as code annotations [7]. For this
purpose, a RAC tool usually takes a source code (or bytecode) program p as input
and generates as output an inline monitor that observes each p's execution. An
inline monitor means that the (source, byte or binary) code of the monitor is part
of the observed program: the generated chunks of code interleave with pieces of
code of the original program [10]. This paper focuses on E-ACSL [20], the RAC
tool of Frama-C [1], an analysis framework for code written in C. The formal
properties are written in a variant of the ACSL speci�cation language [2], also
named E-ACSL and dedicated to runtime checking [9]. The E-ACSL tool takes as
input a C program annotated with E-ACSL speci�cations and generates a new C

program in which the formal annotations have been converted to C code.
E-ACSL aims at satisfying four key properties, that are quite usual for RAC

tools: expressivity, transparency, soundness, and e�ciency. Expressivity means
that the more properties a RAC tool can check the better. Transparency means
that the inline monitor must not modify the functional behavior of the original
program: when the checked properties are all satis�ed, the monitored program
must produce the same output as the unmonitored program. Transparency is
out-of-scope in this paper. Soundness means that the inline monitor must emit
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correct verdicts when checking properties. E�ciency means that the inline mon-
itor must run as e�ciently as possible: the time and memory overheads of the
monitored program with respect to the unmonitored program must remain as
low as possible. It also means that generating the code of the monitor must be
e�cient enough. In our context, being �e�cient enough� for generating the code
means being as e�cient as standard optimizing compilers.

Regarding expressivity, we focus here on integer properties only. E-ACSL
is based on integer arithmetics in Z, the set of mathematical integers, which
allows users to specify arithmetic properties without implementation details in
mind: assuming x is a C variable of type int and n is an integer constant, x
+ n can never over�ow in a formal property, although it might in C code. The
formal properties can also call user-de�ned possibly-recursive logic functions and
predicates. Such de�nitions allow users to specify once complex parameterized
computations and properties and use them several times.

Such an expressivity leads to an issue regarding e�ciency and soundness.
Indeed, using mathematical integers requires to rely on a dedicated exact arith-
metic library, such as GMP1 in C, for generating correct code, while using ma-
chine bounded integers would be much better for e�ciency. For taking the best
of both worlds and being both correct and e�cient, E-ACSL relies on a dedicated
static analysis that allows it to use e�cient machine bounded integers when it is
safe to do so and ine�cient-yet-correct exact arithmetics otherwise. The static
analysis is itself e�cient and thus allows E-ACSL to generate the e�cient code
e�ciently: even if based on abstract interpretation [8], it only uses the simple
interval domain and a fast widening operator that scale extremely well, yet is
precise enough for our need. Therefore, it reaches the goal of being as e�cient as
standard optimizing compilers, contrary to most existing abstract interpreters
that target proving properties such as absence of bugs. This paper presents
this static analysis in the presence of recursive logic de�nitions, proves
its correctness and shows experimentally how it helps E-ACSL to gen-
erate e�cient C code. Although focusing on E-ACSL, our contributions can be
applied on other contexts: they can be applied to any runtime system that must
deal with mathematical numbers, including other runtime assertion checkers,
di�erent kinds of runtime veri�cation tools, or simulators.

This work is the last item of a series of works about formalizing E-ACSL.
In particular, it extends the work of Kosmatov et al [13] to logic de�nitions.
To do so, it requires to move from a type-system based setting to an abstract-
interpretation based setting to deal with recursive de�nitions soundly and pre-
cisely. This way, we improve a recently published paper [3] that formalizes the
E-ACSL's code generator for the very same language fragment, assuming a sound
static analysis. Indeed, the static analysis is presented in detail here, while we
also prove the assumptions of [3] about soundness of the analysis and push for-
ward the experimental evaluation about e�ciency. As far as we know, no other
prior work targets recursive logic de�nitions for runtime assertion checking.

1 http://gmplib.org

http://gmplib.org
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Ly et al formalized another subset of E-ACSL, targeting memory proper-
ties [17,16]. Their works are complementary to ours. Beyond E-ACSL, Cheon [6]
was the �rst to formally study RAC, in the context of JML [14], a formal speci-
�cation language for Java. He did not focus his work on integer arithmetic since,
at that time, the JML's arithmetic was exactly the machine arithmetic. Later,
Lehner [15] formalized in Coq a large subset of the JML's semantics. He also for-
malized a RAC algorithm for the JML's assignable clause, which is independent
from, but compatible with, our integer properties. More recently, Filliâtre and
Pascutto [11] proposed Ortac, a RAC tool for OCaml. It relies on a similar mech-
anism to ours for generating e�cient arithmetic code, but without details nor
formalization for that part. They also do not deal with logic de�nitions. Re-
cently, they formally studied how to optimize referring to the pre-state from the
post-state of a function [12]. This work is complementary to ours.

Section 2 presents an overview of our work on a concrete example. Section 3
introduces the programming and speci�cation languages supporting our formal-
ization. Section 4 details our static analysis without considering logic de�nitions.
Section 5 extends it to the whole considered languages and presents our formal
results. Section 6 presents our experimental evaluation.

2 Illustrated Overview

Fig 1 shows an example of an annotated program together with a simpli�ed
version of the instrumented code generated by E-ACSL. For the sake of simplicity,
we assume that the program is executed on an 8-bit architecture, where the
type int ranges from −128 to 127, and that there is no machine integer type
greater than this. In this example, three assertions are translated. For the �rst
one, the translation is straightforward, as it su�ces to replace the assertion
with the exact same assertion in C. The second one is more complex: since
the addition it involves over�ows in the machine integers, we rely on the GMP

library, which provides exact integer arithmetic. The last assertion is the most
complex since it calls a user-de�ned recursive function. Its translation generates
a C function that specializes this ACSL function, while keeping track of the size
of the numbers involved to use either machine integers or GMP. This article
presents a static analysis based on abstract interpretation whose purpose is to
provide the information required to decide whether a particular term can soundly
be translated using machine integer or must rely on ine�cient GMP integers.

3 Language De�nition

The formal presentation of the paper focuses on a core arithmetic subset of the C
language, calledmini-C.mini-C programs may contain formal annotations written
in a subset of the ACSL speci�cation language [2], called mini-ACSL. Its main
feature is the support of user-de�ned logic functions and predicates, including
mutually recursive ones.

3.1 Formal Syntax

Figure 2 presents the syntax of the languages mini-C and mini-ACSL together, as
they mutually depend on each other. An annotated mini-C program is a sequence
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1 /*@ logic integer f (integer x) = x <= 0 ? 0 : f(x - 1) + 1; */
2 void main () {
3 //@ assert 10 + 20 == 30;
4 //@ assert 120 + 30 == 150;
5 //@ assert f (50) == 50;
6 } (a) Annotated Program
1 void _f(mpz_t *_res , int x);
2 void main(void) {
3 assert (10 + 20 == 30);
4 { mpz_t _a , _b , _c, _add; int eq;
5 mpz_init_set_si(_a, 120); mpz_init_set_si(_b, 30);
6 mpz_init_set_str(_c,"30"); mpz_init(_add);
7 mpz_add(_add , _a, _b);
8 eq = mpz_cmp(_add , _c);
9 assert (eq == 0);

10 mpz_clear(_a); mpz_clear(_b); mpz_clear(_c); mpz_clear(_add); }
11 { _mpz_t _f_1 , _x_1; int eq_2;
12 _f(& _f_1 ,50);
13 mpz_init_set_si(_x_3 ,50L);
14 eq_2 = mpz_cmp(_f_1 ,x_1);
15 assert (eq_2 == 0);
16 mpz_clear(_f_1); mpz_clear(_x_1); }
17 }
18 void _f(_mpz_t *_res , int x) {
19 if (x <= 0) { mpz_init_set_si (*res , 0); }
20 else { mpz_t _f_2 , _x;
21 _f(& _f_2 ,x - 1);
22 mpz_init_set_si(_x ,1L); mpz_init (*res);
23 mpz_add (*res ,_f_2 , _x);
24 mpz_clear(_f_2); mpz_clear(_x); }
25 }

(b) Instrumented Program

Fig. 1: Example of an Annotated Program and its Instrumented Version.

of program variables declarations, followed by a sequence of function de�nitions,
which may be either a mini-C function, or a user-de�ned logic function or pred-
icate epxressed in the mini-ACSL language. For simplicity, we assume that the
only type of mini-C is int, i.e. bounded machine integers: our results can eas-
ily be extended to a language with more bounded integer types. The program
functions are made of statements that include standard control �ow structures,
such as loops and conditionals, as well as arithmetic operations. The statements
also include logical assertions, expressed in the mini-ACSL speci�cation language.
Assertions are propositional predicates over mathematical (unbounded) integer
terms. Terms and predicates may include calls to user-de�ned logic functions
and predicates, which can be (mutually) recursive. Syntactically, no restriction
is put on the recursion scheme of functions and predicates.

3.2 Program Structure

We assume that all the programs given as inputs are syntactically well-formed
and properly typed, even if the type system is omitted here. We denote V the
set of program variables and S the set of statements, as well as L the set of
logic binders (i.e., the logic variables introduced as parameters of user-de�ned
logic functions and predicates), Z the set of logical terms and B the set of
predicates of the program. For the sake of simplicity, we consider any program
function identi�er as being a particular program variable, and any logic function
and predicate identi�er as being a particular logic binder. The partial function
F : V ⇀ V∗×S, associates to each variable denoting a program function, the list
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p ::= d∗ f∗ annotated program
d ::= int id; program declaration
f ::= int id(d∗){d∗; sc} program function
| /*@ logic τ id(δ∗) = t */ logic function
| /*@ predicate id(δ∗) = p */ predicate

sc ::= skip; empty statement
| id = e; assignment
| id = id(e∗); function call
| s s sequence
| if(e) s else s conditional
| while(e) s loop
| assert(e); program assertion
| /*@ assert p */ logic assertion
| return(e); return statement

e ::= zm machine integer
| id variable access
| e �C e �C ∈ {+; -; *; /}
| e /C e /C ∈ {<; <=; >; >=; ==; !=}

δ ::= τ id logic declaration
p ::= \true | \false truth values

| t / t / ∈ {<;≤;>;≥; ?
=; 6=}

| ! t negation
| p || p disjunction
| id(δ∗) predicate call

t ::= z integer in Z
| id variable access
| t � t � ∈ {+;−;×; /}
| p ? t : t conditional term
| id(δ∗) function call

κ ::= int | integer logic types

Fig. 2: Syntax of mini-C (left) and mini-ACSL (right).

of variables corresponding to its parameters together with the statement de�ning
its body. Similarly, we assume two partial functions F : L ⇀ L∗ × Z and P :
L⇀ L∗×B modeling respectively the set of user-de�ned logic functions and the
set of user-de�ned predicates. In practice, the assumptions made are guaranteed
by Frama-C [1], which also computes the functions F ,F and P. For any partial
function f , f{x\v} is de�ned as f{x\v}(x) = v and f{x\v}(y) = f(y) for any
y 6= x. It is also worth noting the following key remark about mini-ACSL.

Remark 1 (Accessibility of logic bindings). The only logic variables in L bounded
in a function or predicate body are its formal parameters, although global pro-
gram variables in V may also be bounded.

3.3 Concrete Semantics

This section de�nes the concrete semantics of mini-C and mini-ACSL. Let mint

and Mint be respectively the smallest and biggest integer representable in the
type int and V = Int ∪ U be the set of values that a mini-C expression may
evaluate to, where Int is the set of possible values of a variable of type int and
U is an in�nite set of arbitrary unde�ned values representing the unitialized
values. We have the following bijection for the representation of int values:
_̇ : Int ' [mint,Mint] : _

int. The use of the set U and the explicit bijection
between Int and [mint,Mint] are not necessary for the purpose of our analysis.
This details could be omited here, but we keep them to be consistent with the
semantics of [3] since we prove here assumptions of this paper. We denote by
B = {T,F} the set of truth values and by Z be the set of mathematical integers.

The semantics of our languages is evaluated in a concrete environment Ω,
which is a pair of two partial functions ΩV : V → Int and ΩL : L → Z. For the
sake of simplicity, we sometimes treat Ω as a single partial function, as deter-
mining which of the component is referred to is usually non ambiguous from the
context. The semantics of a mini-C statement s is expressed by the judgment
Ω � s ⇒ Ω′, stating that evaluating s in the environment Ω yields the envi-
ronment Ω′. Similarly, the semantics of a mini-C expression e is expressed by
the judgment Ω � e ⇒ v, with v ∈ V, the semantics of a mini-ACSL predicate
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p is expressed by the judgment Ω � p ⇒ b with b ∈ B and the semantics of a
mini-ACSL term is expressed by the judgment Ω � t ⇒ z with z ∈ Z. Fig. 3
presents the derivation rules for the semantics of mini-C. The result of a call to
function f is transmitted from the callee to the caller through a distinguished
variable resf .The rest of this semantics is fairly standard and straightforward.
Fig. 4 presents the semantics of the mini-ACSL speci�cation language. Again this
semantics is quite standard, except that terms evaluate in the set of mathemat-
ical integers Z and not in the set of machine integers.

Semantics of declarations x /∈ dom (ΩV) u ∈ U
ΩV , ΩL � int x⇒ ΩV{x\u}, ΩL

Semantics of statements

Ω � skip;⇒ Ω

ΩV(x) ∈ V ΩV , ΩL � e⇒ z

ΩV , ΩL � x = e⇒ ΩV{x\z}, ΩL

Ω � s⇒ Ω
′

Ω
′ � s′ ⇒ Ω

′′

Ω � s s′ ⇒ Ω
′′

Ω � e⇒ z z 6= 0
int

Ω � s⇒ Ω
′

Ω � if(e) then s else s
′ ⇒ Ω

′
Ω � e⇒ 0

int
Ω � s′ ⇒ Ω

′

Ω � if(e) then s else s
′ ⇒ Ω

′

Ω � if(e) then s; while(e) s else skip⇒ Ω
′

Ω � while(e) s⇒ Ω
′

Ω � e⇒ z z 6= 0

Ω � assert(e)⇒ Ω

Ω � p⇒ T

Ω � /*@ assert p */⇒ Ω

ΩV , ΩL � e⇒ z

ΩV , ΩL � return(e)⇒ ΩV{resf \z}, ΩL

F(f) = (x1, . . . , xn; b)
Ω � e1 ⇒ z1; . . . ;Ω � en ⇒ zn {x1\z1, . . . , xn\zn}, ΩL � b⇒ Ω

′
V , Ω

′
L Ω

′
V(resf ) = z

ΩV,ΩL
� c = f(e1, . . . , en)⇒ ΩV{c\z}, ΩL

Semantics of expressions

Ω � zm ⇒ zm

ΩV(x) = z

Ω � x⇒ z

Ω � e⇒ z Ω � e′ ⇒ z
′

ż / ż′

Ω � e /C e
′ ⇒ 1

int

Ω � e⇒ z Ω � e′ ⇒ z
′

ż 6 ż′

Ω � e /C e
′ ⇒ 0

int

Ω � e⇒ z Ω � e′ ⇒ z
′

mint ≤ ż � ż′ ≤ Mint not(�C = / and ż′ = 0)

Ω � e �C e
′ ⇒ (ż � ż′)

int

(/ models /C;
� models �C)

Fig. 3: Semantics of the mini-C language.

The semantics presented here is blocking, that is only correct programs with
correct annotations can be ascribed a semantics using these rules. In particular,
terms and predicates calling logic de�nitions with ill-formed recursion schemes
have no semantics, since as soon as a call is non-terminating, there is no �nite
derivation tree to ascribe a semantics to it. Constructs that would lead to runtime
errors, which are restricted to division by zero in our arithmetic context, have also
no semantics. In practice, E-ACSL embeds a mechanism that checks at runtime
potential runtime errors such as divisions by zero in terms and predicates before
executing them [9]. It allows E-ACSL to not add executable unde�ned behaviors
in the generated code. This mechanism is not presented here.

3.4 Collecting Semantics

Our static analysis is based on abstract interpretation. Proving its correctness
in Section 5 requires to show that its result includes the results from all concrete
executions. A common way to proceed is to �rst de�ne the collecting semantics
that computes all these results at once. Since our analysis focuses on terms, we
only de�ne it for such constructs, not for the others. Let us denote Ξ ∈ P(L⇀ Z)
a collecting environment, i.e. a set of partial functions from binders to integers



Abstract Interpretation for RAC of recursive functions 7

Rules for terms

Ω � z ⇒ z

ΩL(x) = z

Ω � x⇒ z

x ∈ Int ΩV(v) = x

Ω � v ⇒ ẋ

Ω � t⇒ z Ω � t′ ⇒ z
′ not (� = / and z′ = 0)

Ω � t � t
′ ⇒ z � z

′

Ω � p⇒ T Ω � t⇒ z

Ω � p ? t : t
′ ⇒ z

Ω � p⇒ F Ω � t′ ⇒ z
′

Ω � p ? t : t
′ ⇒ z

′

F(f) = (x1, . . . , xn; b)
ΩV , ΩL � t1 ⇒ z1; . . . ;ΩV , ΩL � tn ⇒ zn ΩV , {x1\z1, . . . , xn\zn} � b⇒ z

ΩV , ΩL � f(t1, . . . , tn)⇒ z

Rules for predicates

Ω � \true⇒ T Ω � \false⇒ F

Ω � p⇒ F

Ω � ! p⇒ T

Ω � p⇒ T

Ω � ! p⇒ F

Ω � t⇒ z Ω � t′ ⇒ z
′

z / z
′

Ω � t / t
′ ⇒ T

Ω � t⇒ z Ω � t′ ⇒ z
′

z 6 z
′

Ω � t / t
′ ⇒ F

Ω � p⇒ T

Ω � p || p
′ ⇒ T

Ω � p⇒ F Ω � p′ ⇒ z

Ω � p || p
′ ⇒ z

P(p) = (x1, . . . , xn; b)
ΩV , ΩL � t1 ⇒ z1; . . . ;ΩV , ΩL � tn ⇒ zn ΩV , {x1\z1, . . . , xn\zn} � b⇒ z

ΩV , ΩL � p(t1, . . . , tn)⇒ z

Fig. 4: Semantics of the mini-ACSL language.

(otherwise said, a set of logic environments). The collecting semantics C(Ξ, t) of
a term t in an environment Ξ is then de�ned as follows:

C(Ξ, t) ≡ {z | ∃ΩL ∈ Ξ,∃ΩV : V ⇀ [mint,Mint], ΩV , ΩL � t⇒ z}.

4 Abstract Interpretation without Logic Functions

This section presents our static analysis based on abstract interpretation, assum-
ing there is no logic de�nition: they will be added in Section 5. We only analyze
mini-ACSL annotations: no static analysis is performed on the mini-C code. Our
aim is to provide an interval associated to each term, so that a monitor generator
can decide whether the term can be safely monitored with machine integers. If
the interval contains integers that do not �t into machine integers, the monitor
will perform the computation in arbitrary precision arithmetic for soundness.
The monitor generator that uses the interval computed here is presented in [3].

4.1 Lattice of Intervals

Our analysis is only based on the integer interval domain, presented here. Indeed,
while more evolved domains might provide more precise answers, it would be less
e�cient and could prevent E-ACSL to be as fast as optimizing compilers. The
precision of the interval domain is enough in practice. Would a more precise
domain be necessary in the future, our analysis could easily be adapted.
I denotes the set of (possibly empty) integer intervals with possibly in�nite

bounds. We denote by ⊥ the empty interval and > the interval with in�nite lower
and upper bounds, which is Z itself. I and the set inclusion ⊆ as partial order is
a lattice. The join operator ∨ (resp. meet operator ∧) is the set union ∪ (resp.

set intersection ∩). We introduce the pair of maps P(Z) I.
α

γ
with the

map α being de�ned by α(X) = [minX,maxX], assuming that maxX = +∞
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(resp. minX = −∞) if X has no upper (resp. lower) bound. For the empty set,
we de�ne α(∅) = ⊥. α is named the abstraction map. γ, de�ned by γ(I) = I,
is named the concretization map. This pair of maps is a Galois connection, i.e.
for each X ∈ P(Z) and I ∈ I, X ⊆ γ(I) if and only if α(X) ⊆ I. It allows us
to convert data from the concrete world to the abstract world through α and
conversely through γ, possibly by introducing approximations. Given an opera-
tor ? on P(Z), we denote ?] the corresponding operator on intervals, de�ned by
I ?] I ′ = α(γ(I) ? γ(I ′)). This abstract operator allows us to lift operators � on
concrete values to operators �] = �]set in the abstract world, where �set is de�ned
by X �set Y = {x � y | x ∈ X, y ∈ Y }. We will also use abstract environments
Γ : L ⇀ I that abstract concrete environments by mapping logic variables to
intervals. In order to ensure that the static analysis always terminates quickly,
even in the presence of non-terminating functions, we will use a widening oper-
ator ∇, introduced in Section 6. For the time being, it is enough to know that it
satis�es the two following properties, quite usual in abstract interpretation [8]:

(W1) For every pair of intervals I and I ′, we have I ⊆ I∇I ′ and I ′ ⊆ I∇I ′
(W2) For every increasing sequence (Ji), the sequence de�ned by I0 = J0 and

In+1 = In∇Jn+1 stabilizes.

4.2 Inference Rules

This section presents the inference rules for the derivation of interval judgments.
We introduce an environment of logic functions ∆ : F→ (L⇀ I)× I. For each
function f already encountered, it keeps track of the intervals inferred for each
of f 's parameters and the interval of the f 's return value. This environment
is useless right now in the absence of logic de�nitions: it will only be used in
Section 5, but introducing it right now allows for rules of this section to remain
unchanged.

In the absence of logic de�nition, our static analysis is a simple interval
inference introduced by the judgment Γ |∆ ` t : I de�ned in Fig. 5. It means
that the values of the mini-ACSL term t belong to the interval I.

Γ |∆ ` z : [z, z] Γ |∆ ` x : Γ (x) Γ |∆ ` v : [mint,Mint]

Γ |∆ ` t : I Γ |∆ ` t′ : I′

Γ |∆ ` t � t
′
: I �] I′

Γ |∆ ` t : I Γ |∆ ` t′ : I′

Γ |∆ ` p ? t : t
′
: I ∪] I′

Fig. 5: Interval inference for the function-free core of the mini-ACSL language.

The rules are quite straightforward. The �rst rule associates to a constant
the corresponding singleton interval. The second rule associates to a logic binder
x, its interval stored in the environment Γ . The third rule associates to a C

variable v the interval of integers representable in the type int. The fourth rule
associates to an operation the result of its corresponding abstract operation.
The last rule joins the results of both branches of a conditional. These rules are
similar to the ones of [13], even if expressed here in another formalism.

4.3 Improving Precision for Conditionals

The rule for conditionals can be improved by taking into account that the con-
dition is necessarily true in the positive branch and false in the negative one.
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When these properties can be encoded in the interval domain (e.g., when com-
paring a variable to a constant), it is possible to re�ne this rule to improve the
precision of the analysis. Such an optimization is implemented in practice, even
if the details are omitted here. For instance, when the condition is x >= 0, the
rule can be re�ned to the following one:

Γ{x\Γ (x) ∧ [0,+∞]}|∆ ` t : I Γ{x\Γ (x) ∧ [−∞,−1]}|∆ ` t′ : I′

Γ |∆ ` x >= 0 ? t : t
′
: I ∪] I′

.

5 Abstract Interpretation with Logic Functions

We now extend our static analysis to handle recursive functions. We do not for-
malize the support for recursive predicates: it is very similar to recursive func-
tions and even simpler since their body are Boolean values, which leads to a triv-
ial �nite lattice. Yet, they are handled in our evaluation, in Section 6. Throughout
this section, we consider a function f such that F(f) = (x1, . . . , xn; b), meaning
that its parameters are x1, . . . xn and its body is b.

5.1 Inference Rules

When encountering a function call, we need to extend the abstract environment
in order to associate the interval of each argument to the corresponding function's
parameter. We also need to update the abstract environment when encountering
recursive calls up to reaching a �xpoint. Given an environment for logic functions
∆ and a function f , we denote by ∆args(f) and ∆res(f) respectively the �rst and
second component of ∆(f) in such a way that ∆(f) = (∆args(f), ∆res(f)). Given
a list of intervals I1, . . . , In, we de�ne ∆〈f∇I1, . . . , In〉 as follows:

∆〈f∇I1, . . . , In〉 ≡ ∆{f\(Γ{x1\Γ (x1)∇I1, . . . , xn\Γ (xn)∇In}, ∆(f)res)}
where Γ = ∆args(f).

This de�nition directly uses ∆args(f) in place of the abstract environment
Γ , without taking care of any potential existing binding. Said otherwise, this
de�nition does not depend on any abstract environment Γ ′. This is possible since
the only bounded logic variables in a function body are its formal parameters
according to Remark 1, while the interval of any program variable is constant
(directly derived from their types, which is necessarily int, as made explicit in
Fig. 5), so we do not need to store them in the abstract environment.

Fig. 6 presents the inference rules for the interval inference for logic functions.
It depends on a second judgment, denoted ∆ `f f : I, which means that the
result of the function f �ts into the interval I in ∆. By convention, we consider
that f not being in the domain of ∆, is equivalent to having ∆(f) = (Γ,⊥) with
Γ the constant function equal to ⊥. As such, this rule system is not deterministic
since the premises of the rules (Fun) and (Init) overlap, and so do those of the
rules (Base) and (Ind). For determining the inference algorithm, we always
apply (Fun) over (Init) and (Base) over (Ind). The rules (Base) and (Ind)
only depend on an environment of logic functions ∆ and does not depend on any
abstract environment Γ for the above-mentioned reason. Altogether, these rules
compute two �xpoints: one over the inputs and one over the result of a function
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call. The rule (Fun) states that, when the �xpoint for the inputs is reached,
the result of a function call is the interval computed for its body and stored
in the environment ∆. The rule (Init) initiates a �xpoint computation for the
output of the function call, assuming widened intervals associated to each formal
parameter before computing the function body. Such a computation also relies
on a �xpoint: the rule (Base) returns the interval computed for the body when
the �xpoint is reached, while the rule (Ind) is the recursive case that widens the
previously computed interval for the body before computing it again.

Γ |∆ ` t1 : I1 . . . Γ |∆ ` tn : In ∀i, Ii ⊆ ∆args(f)(xi)

Γ |∆ ` f(t1, . . . , tn) : ∆res(f)
(Fun)

Γ |∆ ` t1 : I1 . . . Γ |∆ ` tn : In ∆〈f∇I1, . . . , In〉 `f f : I

Γ |∆ ` f(t1, . . . , tn) : I
(Init)

∆args(f)|∆ ` b : I I ⊆ ∆res(f)

∆ `f f : ∆res(f)
(Base)

∆args(f)|∆ ` b : I
′

∆{f\(∆args(f), ∆res(f)∇I′)} `f f : J

∆ `f f : J
(Ind)

Fig. 6: Interval inference for recursive functions in mini-ACSL.

5.2 Example of Derivation

We illustrate our analysis by computing the derivation tree explicitly on a par-
ticular program. Fig. 7 shows the derivation tree for the term f(50) at line 6 in
the example of Fig. 1, starting from an empty environment, and assuming that
our widening operator satis�es the following equations

⊥∇[50, 50] = [50, 50] [50, 50]∇[49, 49] = [0, 50] ⊥∇[0, 0] = >.
These assumptions are not realistic for an actual choice of widening operator, but
are taylor made for the example to converge quickly, so that we can construct
a reasonably sized derivation tree. The derivation uses the following abstract
environments and environments for logic functions:

Γ1 = {x : [50, 50]} ∆1 = {f : (Γ1,⊥)} ∆2 = {f : (Γ1, [0,+∞])}
Γ2 = {x : [0, 50]} ∆3 = {f : (Γ2,⊥)} ∆4 = {f : (Γ2, [0,+∞])}
Γ3 = {x : [1, 50]}.

For the sake of simplicity, c denotes the condition x <= 0, r denotes the recursive
term f(x - 1) and b denotes the body of the function, in such a way that
b = c ? 0 : r + 1. We also omit the environments in the abstract judgments
for constants, and sometimes we also omit the whole judgment for constants,
typically for most increment and decrement operations.

In this example, we can look at the environments ∆i that appear in the
derivation tree to understand how the �xpoints are computed both for the
(unique) argument and the result of the function. The �xpoint for the argu-
ment is reached at the interval [0, 50], while the �xpoint for the result is [0,+∞].
This allows us to have an argument of type int in the generated code, but is
not precise enough to store the result in an int: a GMP integer is required. This
observation generalizes: In practice, for recursive functions, it is much more com-
mon that our analysis gives useful information on the arguments of a function
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50 : [50, 50]

.

.

.

Γ1|∆1 ` b : [0,+∞]

1

Γ1|∆2 ` x : [50, 50]

Γ1|∆2 ` x-1 : [49, 49]

.

.

.

∆4 `f f : [0,+∞]

2

Γ1|∆2 ` r : [0,+∞]

Γ1|∆2 ` r+1 : [1,+∞]

Γ1|∆2 ` b : [0,+∞]

∆2 `f f : [0,∞]

∆1 `f f : [0,+∞]

{}|⊥ ` f(50) : [0,+∞]

1

Γ1|∆1 ` x-1 : [49, 49]

0 : [0, 0]

Γ3|∆3 ` x : [1, 50]

Γ3|∆3 ` x-1 : [0, 49]

Γ3|∆3 ` r : ⊥

Γ3|∆3 ` r+1 : ⊥

Γ2|∆3 ` b : [0, 0]

.

.

.

∆4 `f f : [0,+∞]

2

∆3 `f f : [0,+∞]

Γ1|∆1 ` r : [0,+∞]

Γ1|∆1 ` r+1 : [1,+∞]

Γ1|∆1 ` b : [0,+∞]

2

0 : [0, 0]

Γ3|∆4 ` x : [1, 50]

Γ3|∆4 ` x-1 : [0, 49] [0, 49] ⊆ [0, 50]

Γ3|∆4 ` r : [0,+∞] 1 : [1, 1]

Γ3|∆4 ` r+1 : [1,+∞]

Γ2|∆4 ` b : [0,+∞] [0,+∞] ⊆ ∆4
res(f)

∆4 `f f : [0,+∞]

Fig. 7: Example of Interval Inference for a Recursive Function Call.

than on its output, and most of the time saved comes from performing internal
computations with the arguments using machine integers. Indeed, in the presence
of recursive functions, useful bounds for the results can unlikely be inferred.

5.3 Termination of the Static Analysis

With the strategy of always chosing the rule (Fun) over (Init) and (Base) over
(Ind), our rule system is deterministic and de�nes an inference algorithm. This
inference algorithm always terminates, as stated by the theorem below.

Theorem 1. The rule system for intervals on mini-ACSL terms yields a termi-
nating algorithm of interval inference.

Proof (sketch). The proof is done by de�ning a well-founded order on the judge-
ments, and showing that the judgements decrease for this order along any deriva-
tion tree. This order is de�ned as follows: �rst, we say that an environment ∆
widens another one ∆′ when, for every f ∈ dom (∆) and x in dom (∆args(f)),
there is an interval If,x such that ∆args(f)(x) = ∆′args(f)(x)∇If,x and there
exists an interval If such that ∆res(f) = ∆′res(f)∇If . The chosen order relation
on judgments is the lexicographic order induced by this relation and the relation
of being a structural subterm:

Γ |∆ ` t : _ ≺ Γ ′|∆′ ` u : _⇔

{
∆ 6= ∆′ and ∆ widens ∆′

∆ = ∆′ and t is a structural subterm of u.
.
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We also establish by convention that
Γ |∆ ` t : _ ≺ ∆′ `f f : _ ⇔ ∆ widens ∆′

∆ `f f : _ ≺ Γ |∆ ` t : _ ⇔ t is the body of f or a structural subterm of it.

This partial order ≺ is well-founded2.

5.4 Interval Inference

Our rule system de�nes a deterministic inference algorithm that always termi-
nates as stated in Theorem 1. Given an abstract environment Γ , we denote
I(Γ, t) the result of this inference on the term t in environment Γ |⊥. However,
we need to handle speci�cally the function's arguments that are widened. For
such an argument t of a function f appearing in a term u representing a func-
tion call, we infer the result of the function call by building the derivation of
Γ |⊥ ` f(t) : J . In the corresponding derivation tree, consider the top-most ap-
plication of the rule (Fun) for term u. It has necessarily an hypothesis of the
form Γ |∆ ` t : I ′, where the interval I ′ is widened to the interval I associated
to t in the environment ∆args. We de�ne I(Γ, t) to be this interval I for such
function arguments. For instance, considering the term f(50) at line 6 of Fig. 1,
for which the derivation tree is shown in Fig. 7, we have I({}|⊥, 50) = [0, 50].
Indeed, even though we �rst derive the interval [50, 50] for its argument, it is
later widened to [0, 50] in the derivation tree, as witnessed in ∆4.

As explained in the introduction, this paper extends the type system of [13]
(and changes its theoretical framework for relying on abstract interpretation)
in order to formalize the assumed static analysis of [3] and prove its assump-
tions, namely type soundness and convergence. The above-mentioned operator I
matches the one of this latter paper. Theorem 1 ensures convergence, while
soundness is proved in the next section.

5.5 Soundness of the Static Analysis

We now prove that the static analysis is sound. Since both the inference and
the semantics require an environment, we �rst de�ne a relation between such
environments. We say that an interval environment Γ abstracts an environment
for binders Ω, which is denoted Ω / Γ , if for every binder x ∈ dom (Ω), we have
x ∈ dom (Γ ) and ΩL(x) ∈ Γ (x). For a semantic environment Ω = (ΩV , ΩL), we
de�ne Ω / Γ if and only if ΩL / Γ . For a collecting environment Ξ, we say that
Γ abstracts Ξ and we write Ξ J Γ when Ω / Γ for every Ω ∈ Ξ.
Theorem 2. For every mini-ACSL term t, every collecting environment Ξ, and
every abstract environment Γ such that Ξ J Γ , we have C(Ξ, t) ⊆ I(Γ, t).

Proof (Sketch). The proof is done by induction. It is trivial without recursive
de�nitions. With them, the main di�culty consists in �nding the right invariants.
For this, we provides a rule system, denoted Ξ �∆ t ∈ X and de�ning the set X
of possible values for a term t in a collecting environment Ξ and an environment
of logic functions ∆. When ∆ = ⊥, it over-approximates the collecting semantics
de�ned in Section 3.4 (i. e. if the judgment Ξ �∆ t ∈ X is derivable, then X
contains the collecting semantics) and allows us to perform a per-case reasoning.
The following Lemma gives the right invariants, proved by mutual induction.
2 The proof details are in Appendix 7.
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Lemma 1. The judgments for the interval inference and �xpoint algorithm sat-
isfy respectively each of the following property:

1. If the judgment Γ |∆ ` t : I is derivable in the abstract semantics, then for
every collecting environment Ξ such that Ξ J Γ and every derivation of the
judgment Ξ �∆ t ∈ X, we have X ⊆ I.

2. If the judgment ∆ `f f : I is derivable in the abstract semantics, then
denoting by b the body of the function, for every collecting environment Ξ
such that Ξ J ∆args and every derivation of the judgment Ξ �∆res{f\I} b ∈ X
in the collecting semantics augmented by ∆res{f\I}, we have X ⊆ I.

This theorem implies the soundness corollary below.

Corollary 1 (Interval Soundness). For every mini-ACSL term t in an envi-
ronment Ω such that there is a derivation of the semantics Ω � t ⇒ z, and for
every abstract environment Γ such that Ω / Γ , we have z ∈ I(Γ, t).

6 Experimental Evaluation

This section deals with the practical aspects of implementing our static analysis
to analyse user-de�ned logic de�nitions and generate e�cient monitors.

6.1 Practical Widening Operators

Our formal presentation is agnostic to the chosen widening operator, as long
as it satis�es the properties mentioned in Section 4.1. However, in practice, the
choice of this operator matters since it results in generating monitors with di�er-
ent e�ciency. The choice is always a trade-o� between e�ciency and precision:
depending on the widening operator, the �xpoint algorithm will converge in a
small or large number of steps to a precise or unprecise interval. Our experimen-
tation compares three di�erent widening operators, presented below. The �rst
two operators are extreme cases, which are only introduced for being compared
against the third one, which is better and used by default in E-ACSL.

� The �naive widening�, de�ned by the following formula

I1∇naiveI2 =

{
I2 if I1 = ⊥
> otherwise

This widening strategy makes the �xpoint reached in at most two itera-
tions. Yet, it is extremely imprecise. In fact, it often returns > for recursive
functions: only non-recursive functions are handled precisely.

� The �precise widening�, de�ned by the following formula

I1∇preciseI2 =

{
I1 ∨ I2 if I1 ∨ I2 ⊆ [mint,Mint]

> otherwise

This widening strategy is quite opposite to the naive one: it converges ex-
tremely slowly, but is very precise. In practice, the convergence is too slow for
any practical application, and the monitor generation even takes too much
time on minimal examples.
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� The �smart widening�, de�ned by I1∇smartI2 = [a, b] where

a =


min I1 if min I2 ≥ min I1

mint if mint ≤ min I2 ≤ min I1

−∞ otherwise;

b =


max I1 if max I2 ≤ max I1

Mint if Mint ≥ max I2 ≥ max I1

+∞ otherwise

When the function is not decreasing, this operator leaves the lower bound
unchanged. Otherwise, it directly approximates it tomint if the lower bounds
of both operands are bigger and goes to −∞ otherwise. The behavior is
similar for the upper bound and an increasing function. In practice, E-ACSL
generalises it to a family of C types, and not only one by jumping from the
boundary of one type to the other (e.g., from int to long).

6.2 Evaluation and Comparison of Widening Choices

The static analysis formalized in this paper is implemented within E-ACSL [20],
the runtime assertion checker of Frama-C [1]. It supports the three widening
operators of Section 6.1. It is used to optimize the code of the generated monitor,
as formalized on the same mini-C and mini-ACSL languages in [3]. It is worth
noting that the language supported by E-ACSL is much larger than mini-C and
mini-ACSL [19], and so is the implementation of our static analysis.

We have run a few di�erent examples to evaluate our static analysis and
the widening strategy. The precise strategy is quite unusable even in simple
tests since the monitor generation is dramatically slow in that case. Hence we
only present the results of the experimental evaluation of the smart widening
against the naive one. We ran the test on 4 di�erent annotated C �les3: linear.c
contains de�nitions of typical recursive logic functions, where f(n) is an a�ne
function of f(n − 1), fibonacci.c contains the de�nition and various calls to
the Fibonacci function, mergesort.c contains a C implementation of merge sort
as well as a few recursive predicates that assert that the resulting array contains
the same elements as the original one and is sorted, and �nally complex.c con-
tains arbitrary recursive functions with complex recursion schemes. We ran the
benchmark on a laptop equipped with a 16-core AMD Ryzen 7 processor and
32GB of RAM. For each �le, we measured the time for generating the monitor
and for running it, with both the naive and the smart widening strategies. Each
measure was performed with the hyper�ne4 software and repeated 10 times. The
results are displayed in Fig. 8, where the mean of the 10 runs is written along
with the standard deviation (all the durations are given in seconds). They are
also compared to runs (named GMP) for which the static analysis was not used,
so that only GMP operations are used at runtime. For each test case, the column
gen is the time for generating the code, while the column exe is the time for
executing the generated monitor. The last two lines show the gain of the smart
widening operator with respect to using GMP only, or using the naive strategy.
Fig. 9 graphically presents these results.

3 source �les and scripts of at https://thibautbenjamin.github.io/software/
benchmarks-tap23.zip, the version of Frama-C/E-ACSL at https://thibautbenjamin.
github.io/software/frama-c-tap23.zip.

4 https://github.com/sharkdp/hyper�ne

https://thibautbenjamin.github.io/software/benchmarks-tap23.zip
https://thibautbenjamin.github.io/software/benchmarks-tap23.zip
https://thibautbenjamin.github.io/software/frama-c-tap23.zip
https://thibautbenjamin.github.io/software/frama-c-tap23.zip
https://github.com/sharkdp/hyperfine
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linear.c fibonacci.c mergesort.c complex.c

gen exe gen exe gen exe gen exe

GMP 1.217±
0.008

96.034±
1.450

1.270±
0.007

75.617±
0.900

1.305±
0.009

71.196±
1.189

1.214±
0.006

Fails

naive 1.210±
0.007

95.866±
1.177

1.267±
0.005

75.454±
0.342

1.305±
0.007

62.170±
1.046

1.231±
0.010

52.453±
0.827

smart 1.207±
0.008

59.141±
0.363

1.294±
0.006

35.620±
0.366

1.300±
0.006

63.291±
0.552

1.217±
0.009

50.644±
0.217

vs. GMP N/A 38% N/A 53% N/A 11% N/A Fails

vs. naive N/A 38% N/A 53% N/A N/A N/A N/A

Fig. 8: Experimental Evaluation With Di�erent Widening Strategies.

Fig. 9: Evaluation of Monitor E�ciency.

Overall, running the �xpoint algorithm with the smart widening as opposed
to the naive one comes with no noticeable cost for the monitor generation. As
already mentioned, the cost of generating the monitor using the precise widening
is prohibitive on all these examples, and therefore not displayed here. In terms
of e�ciency when running the generated monitor, the smart widening performs
signi�cantly better on every case than with no analysis at all. In particular,
on the �le complex.c, without analysis, the generated program sometimes fails
to execute properly because it is too resource intensive and exceeds the mem-
ory limit. The widening strategy is also signi�cant: on the �les linear.c and
fibonacci.c, the smart widening performs respectively 38% and 53% better
than the naive widening, which does not perform better than the systematic use
of GMP. On the contrary, for the mergesort and complex examples, the smart
widening and the naive widening leads to similar e�ciency, which is better than
the systematic use of GMP. Indeed, the �le complex.c contains complicated re-
cursion schemes, on which the heuristics implemented in the smart widening fail,
and the �le mergesort.c contains mostly calls to functions whose arguments are
C variables, whose intervals are already �xpoints of the function.
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6.3 Further Improvements to Widening

As illustrated by our evaluation, the widening strategy is important in practice.
It is also impactful for the e�ciency of monitor generator. The current �smart�
strategy is based on the intuition that, in practice, the boundary of C types are
likely to be values of importance, where the function may change behavior, and
thus are good candidates for looking for �xpoints. Few other heuristics might
also be used, even if not yet experimented with nor implemented. First, one
could also widen to the boundary of C types plus (or minus for the lower bound)
a small o�set, in order to take into account typical o�-by-one.This case might
be frequent enough that adding those values to the candidates might give good
results. Another possible improvement for the widening strategy could be to run
a small syntactic analysis to look for important constants, and add those to our
widening steps. For this idea to be viable, the analysis has to be very lightweight
in order to ensure that it does not induce a signi�cant overhead on the monitor
generation. In all of these suggestions, we are adding more widening steps, which
makes the convergence slower. It is likely that the most satisfying solution is to
keep our �smart� widening strategy as a default, and run other more precise ones
only on a case by case basis for the particular functions where the default is not
good enough. It is possible in practice since E-ACSL allows choosing di�erent
widening strategies for di�erent logic de�nitions. Last, we could also bene�t
from existing analysis on the C code, such as EVA [5], to gain precision of the C
program variables used in the logic de�nitions.

7 Conclusion and Further Work

This article has presented a static analysis based on abstract interpretation for
infering intervals in logic de�nitions used in formal code annotations. We have
proved its termination and soundness properties and evaluated its practical ef-
�ciency, which depends on a widening strategy that have been discussed. It
extends the work of [13] to logic de�nitions. This static analysis is used for gen-
erating e�cient monitor for runtime assertion checking of arithmetic properties
by allowing the code generator to soundly and e�ciently choose between ma-
chine bounded integers and exact mathematical integers. How the monitors are
generated based on our analysis is formalized in [3].

Three di�erent widening strategies have been explored in this paper: inves-
tigating others strategies is left to future work, as well evaluating other abstract
domains. Extending our formalization to rational numbers [13], memory proper-
ties [16], multi-state properties [18,12] or how to deal with unde�ned terms such
as division by zero [9] is also left to future work. Our formalization e�ort would
also greatly bene�t from using a proof assistant, such as Coq [4]. Last, our static
analysis might be complemented by a mechanism that would decide at runtime
to use machine or mathematical integers. Such mechanisms already exist on top
of exact arithmetic libraries, e.g., ZArith5 for OCaml.

5 https://github.com/ocaml/Zarith/

https://github.com/ocaml/Zarith/
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Appendix: Proof of the theorems

This appendix contains the proof of the technical results contained in the article
as well as the additional lemmas needed to prove them.

Explicit Description of the Collecting Semantics

We recall the de�nition of the collecting semantics

C(Ξ, t) ≡ {z | ∃ΩL ∈ Ξ,∃ΩV : V → [mint,Mint], ΩV , ΩL � t⇒ z}.

Fig. 10 gives an explicit set of rules that computes the collecting semantics.
We denote Ξ � t ∈ X the judgment for this rule system, and we show it to be
equivalent to the collecting semantics. These rules are the ones we use in practice,
when we work with the collecting semantics. To introduce these rules, we use
some notations: Given an arithmetic operator �, we introduce the corresponding
operator �set on P(Z), de�ned by the following formula:

X �set Y = {x � y | x ∈ X and y ∈ Y }

We also de�ne, given a collecting environment Ξ, a new collecting environment
{x1\t1, . . . , xn\tn}Ξ , de�ned by

{x1\t1, . . . , xn\tn}Ξ = {{x1\z1, . . . , xn\zn} | z1 ∈ C(Ξ, t1), . . . , zn ∈ C(Ξ, tn)}

Ξ � z ∈ {z} Ξ � x ∈ {ΩL(x) | ΩL ∈ Ξ}

Ξ � v ∈ [mint,Mint]

Ξ � t ∈ X Ξ � t′ ∈ X′

Ξ � t � t
′ ∈ X � X

′

Ξ � t ∈ X Ξ � t′ ∈ X′

Ξ � p ? t : t
′ ∈ X ∪X′

F(f) = (x1, . . . , xn; b) {xi\ti}Ξ � b ∈ X
Ξ � f(t1, . . . , tn) ∈ X

Where the collecting environment {xi\ti}Ξ is de�ned as

{xi\ti}Ξ = {{x1\z1, . . . , xn\zn} | ∃Ω,Ω / Ξ and ∀i ∈ {1, . . . , n}, Ω � ti ∈ zi}

Fig. 10: Rules for the Collecting Semantics of the mini-ACSL Language
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Theorem 3. The rules given in Fig. 10 compute an over-approximation of the
collecting semantics. If a judgment Ξ � t ∈ X then necessarily C(Ξ, t) ⊆ X.

Proof. We proceed by structural induction on the term.

� If the term is a constant z, its concrete semantics is given by the rule

Ω � z ⇒ z

Hence C(Ξ, z) = {z}, which is given exactly by the explicit rule for constants.
� If the term is a binder x, then its semantics is obtained by application of the
following rule

ΩL(x) = z

Ω � x⇒ z

Hence the we have the collecting semantics C(Ξ, x) = {ΩL(x) | ΩL ∈ Ξ},
which corresponds exactly to the explicit rule for binders.

� If the term is amini-C variable v, then its semantics is obtained by application
of the following rule

x ∈ Int ΩV(v) = x

Ω � v ⇒ ẋ

Since we are free to chose an environment Ω where ΩV(v) takes any ar-
bitrary value in [mint,Mint], the collecting semantics is given by C(Ξ, v) =
[mint,Mint], which corresponds exaclty to the rule given for mini-C variables.

� If the term is the application of an arithmetic operator of the form t�t′, then
its semantics is necessarily obtained by application of the following rule

Ω � t⇒ z Ω � t′ ⇒ z′ not(� = / and z′ = 0)

Ω � t � t′ ⇒ z � z′

Thus, we have the equality

C(Ξ, t � t′) = {z � z′ | z ∈ C(Ξ, t), z′ ∈ C(Ξ, t′)} = C(Ξ, t) �set C(Ξ, t′)

This is exactly given by the explicit rule for operators.
� If the term is a conditional of the form p ? t : t′, then the semantics is
obtained by either of the following rules

Ω � p⇒ 1 Ω � t⇒ z

Ω � p ? t : t′ ⇒ z

Ω � p⇒ 0 Ω � t′ ⇒ z′

Ω � p ? t : t′ ⇒ z′

Thus the collecting semantics is obtained satis�es the equation

C(Ξ, p ? t : t′) = A ∪B

where

{
A = {z | ∃ΩL ∈ Ξ,∃ΩV , ΩV , ΩL � p⇒ T and ΩV , ΩL � t⇒ z}
B = {z | ∃ΩL ∈ Ξ,∃ΩV , ΩV , ΩL � p⇒ F and ΩV , ΩL � t′ ⇒ z}
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By de�nition of the collecting semantics, we have A ⊆ C(Ξ, t) and B ⊆
C(Ξ, t′), thus C(Ξ, p ? t : t′) ⊆ C(Ξ, t)∪C(Ξ, t′). Suppose that Ξ � p ? t : t′ ∈
X ∪X ′ is derivable from derivations of Ξ � t ∈ X and Ξ � t′ ∈ X ′, then we
have by induction C(Ξ, t) ⊆ X and C(Ξ, t′) ⊆ X ′. This gives the following
inclusion

C(Ξ, p ? t : t′) ⊆ C(Ξ, t′) ∪ C(Ξ, t′) ⊆ X ∪X ′ = C(Ξ, p ? t : t′)

� If the term is a function call of the form f(t1, . . . , tn), with F(f) = (x1, . . . , xn; b),
then the semantics is obtained by application of the following rule

ΩV , ΩL � t1 ⇒ z1 . . . ΩV , ΩL � tn ⇒ zn ΩV , {x1\z1, . . . , xn\zn} � b⇒ z

ΩV , ΩL � f(t1, . . . , tn)⇒ z

This gives exactly the following inductive relation satis�ed by the collecting
semantics C(Ξ, f(t1, . . . , tn)) = C({xi\ti}Ξ , f(t1, . . . , tn)). The explicit rule
for function gives exactly this relation.

We thus have proved that the explicit rules de�ne satisfy the exact same in-
ductive relation as the collecting semantics, except for the conditional terms,
where they over-approximate the relation. Hence these rules over-approximate
the collecting semantics.

For the rest of the proofs, when we mention the collecting semantics, we refer
to this explicit set of rules, which is slightly less precise but su�cient for our
purpose.

Properties of the Abstract Semantics

Theorem 1. The rule system for intervals on mini-ACSL terms yields a termi-
nating algorithm of interval inference.

Proof. We de�ne an order relation on the interval judgments that does not allow
for in�nite decreasing chains, and show that throughout the construction of a
derivation tree by the inference algorithm, the judgments are always decreasing
for this order. This shows that the inference algorithm only tries to construct
�nite derivation trees, and thus it terminates. Indeed, either it manages to con-
struct the valid tree, or it fails to do so, which can be observed in �nite time
since the tree is �nite. First, we say that an environment ∆ widens another one
∆′ when for every f ∈ dom (∆), for every x in dom (∆args(f)), there exists an
interval If,x such that ∆args(f)(x) = ∆′args(f)(x)∇If,x and there exists an inter-
val If such that ∆res(f) = ∆′res(f)∇If . The order relation that we consider on
judgments is the lexicographic order induced by this relation and the relation of
being a structural subterm:

Γ |∆ ` t : _ ≺ Γ ′|∆′ ` u : _⇔

{
∆ 6= ∆′ and ∆ widens ∆′

∆ = ∆′ and t is a structural subterm of u
.
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We also establish by convention that

Γ |∆ ` t : _ ≺ ∆′ `f f : _ ⇔ ∆ widens ∆′

∆ `f f : _ ≺ Γ |∆ ` t : _ ⇔ t is the body of f or a structural subterm of it

We �rst show that this order relation does not allow for in�nite decreasing se-
quences, since it is constructed as the lexicographic product of two orders that
do not allow for in�nite decreasing sequences. First it is clear that the relation
of being a structural subterm does not allow for such sequences: by construction
a term is constructed from a �nite amount of data. So it su�ces to check that
the relation of widening on environments does not allow for in�nitely decreasing
sequences. This is a direct consequence of the property (W2) about the widen-
ing operator. Hence this relation on judgments prevents the existence of in�nite
decreasing sequences.

We now check that during the run of the interval inference algorithm, the
derivation tree that is being constructed is such that all the judgments are de-
creasing as we go from the conclusion to the premices. There is nothing to prove
for the three rules without premices, and the result is immediate for the inference
rules for arithmetic operation and conditionals since the premices are all in the
same environment and in a structural subterm of the conclusion. So we just have
to check that this holds for every application of the rules for functions (Fun),
(Init), (Base) and (Ind). In the rules (Fun) and (Base), all the judgments
that appear in the premices are smaller than the conclusion, because they con-
cern structural subterms of it. There is one judgment which does not concern a
structural subterm in both the rule (Init) and (Ind). They are respectively the
judgments ∆〈f∇I1, . . . , In〉 `f f : I and ∆args{f\I∇I ′} `f f : J . We show that
in both of these judgment, the environment widens ∆. This is a consequence
of our strategy of always trying the rules (Fun) and (Base) over (Init) and
(Ind). Indeed, in every application of either of these rules, the rules (Fun) and
(Base) cannot apply, thus the inclusion of the intervals is not satis�ed, and
hence the environment constructed for these judgments is di�erent from the one
in the conclusion, by (W1). By construction, this environment thus widens the
one from the conclusion, and the judgment is thus smaller.

Lemma 2. Consider a binary operation ? on P(Z) preserving the inclusion re-
lation, along with two subsets X,X ′ of Z and two intervals I, I ′ such that X ⊆ I
and X ′ ⊆ I ′, then we have X ?X ′ ⊆ I ?] I ′.

Proof. For the sake of this proof, we write the concretization map γ explicitly.
Our assumption is thusX ⊆ γ(I) andX ′ ⊆ γ(I ′). Since the operation ? preserves
the inclusion realtion, we have X ? X ′ ⊆ γ(I) ? (I ′). Since α is a morphism of
lattice, it preserves the inclusion, thus α(X ? X ′) ⊆ α(γ(I) ? γ(I ′)) = I ?] I ′.
Since (α, γ) is a Galois connection, this is equivalent to X ?X ′ ⊆ γ(I ?] I ′).

Lemma 3. For every derivation of a judgment of the form ∆ `f f : I, we have
∆res(f) ⊆ I

Proof. We prove this result by induction of the derivation
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� For a derivation obtained by application of the rule (Base) of the following
form

∆args(f)|∆ ` b : I I ⊆ ∆res(f)

∆ `f f : ∆res(f)

we have ∆res(f) ⊆ ∆res(f).
� For a derivation obtained by application of the rule (Ind) of the following
form

∆args(f)|∆ ` b : I ′ ∆res(f) = I ∆args{f\I∇I ′} `f f : J

∆ `f f : J

we have by induction hypothesis that I∇I ′ ⊆ J . By the property (W1) of
the widening I ⊆ I∇I ′, and thus I ⊆ J .

Given an environment for functions ∆, we de�ne the collecting semantics
augmented by ∆ to be the semantics expressed with the judgment Ξ � t ∈
X given with the explicit rules, to which we add, for every function f , with
arguments x1, . . . , xn, the following rule

Ξ �∆ t1 ∈ ∆args(f)(x1) . . . Ξ �∆ tn ∈ ∆args(f)(xn)

Ξ �∆ f(t1, . . . , tn) ∈ ∆res(f)

The addition of these rules may result in an undeterministic rule system, since
these newly added rules may overlap with the rule for functions that is already
present. We use the convention that the rules coming from ∆ always take prece-
dence over the rule for functions.

Lemma 4. The judgments for the interval inference and �xpoint algorithm sat-
isfy respectively each of the following property:

1. If the judgment Γ |∆ ` t : I is derivable in the abstract semantics, then for
every collecting environment Ξ such that Ξ J Γ and every derivation of the
judgment Ξ �∆ t ∈ X, we have X ⊆ I.

2. If the judgment ∆ `f f : I is derivable in the abstract semantics, then
denoting by b the body of the function, for every collecting environment Ξ
such that Ξ J ∆args and every derivation of the judgment Ξ �∆res{f\I} b ∈ X
in the collecting semantics augmented by ∆res{f\I}, we have X ⊆ I.

Proof. We prove those two propoerties together by mutual induction on the
derivation, following the induction scheme given by the ordering in the judgments
that we gave in the proof of Theorem 1.

1. Consider a derivation of the judgment Γ |∆ ` t : I, together with a collecting
environment Ξ such that Ξ J Γ and a derivation of Ξ � t ⇒ X in the
concrete semantics augmented by ∆. We show that X ⊆ I by induction on
the derivation of the interval judgment.
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� If the abstract semantics is obtained by application of the rule for con-
stant, then the term t is the constant z. We have an application of the
two following rules for the collecting and the bastract semantics

Ξ � z ∈ {z} Γ |∆ ` z : [z, z]

� If the abstract semantics is obtained by application of the rule for binders,
then the term is a binder x, then its collecting semantics and its abstract
semantics are respectively obtained by the following rules

Ξ � x ∈ {Ψ(x) | Ψ ∈ Ξ} Γ |∆ ` x : Γ (x)

By hypothesis, we have Ξ J Γ , thus for every Ψ ∈ Ξ, we have Ψ(x) ∈
Ξ(x). This proves that {Ψ(x) | Ψ ∈ Ξ} ⊆ Ξ(x).

� If the abstract semantics is obtained by application of the rule for mini-C

variables, then the term t is a mini-C variable v, and its collecting seman-
tics and its abstract semantics are respectively obtained by application
of the following rules

Ξ � v ∈ [mint,Mint] Γ |∆ ` x : [mint,Mint]

� If the abstract semantics is obtained by application of the rule for oper-
ations, then the term is the application of an arithmetic operator of the
form u � u′, then its collecting semantics and its abstract semantics are
respectively obtained by application of the following rules

Ω � u ∈ Y Ω � u′ ∈ Y ′

Ω � u � u′ ∈ Y � Y ′
Γ |∆ ` u : J Γ |∆ ` u′ : J ′

Γ |∆ ` u � u′ : J �] J ′

By induction hypothesis, we have Y ⊆ J and Y ′ ⊆ J ′. Since the opera-
tion � on P(Z) preserves the inclusion, Lemma 2 implies Y �Y ′ ⊆ J �]J ′.

� If the abstract semantics is obtained by application of the rule for con-
ditionals, then the term is a conditional of the form p ? u : u′, and
the collecting semantics and the abstract semantics are respeictively ob-
tained by application of the following rules

Ξ � t ∈ Y Ξ � t′ ∈ Y ′

Ξ � p ? t : t′ ∈ Y ∪ Y ′
Γ |∆ ` t : J Γ |∆ ` t′ : J ′

Γ |∆ ` p ? t : t′ : J ∪] J ′

By induction hypothesis, we have Y ⊆ J and Y ′ ⊆ J ′. Since the ∪
operation on P(Z) preserves the inclusion, Lemma 2 implies that Y ∪
Y ′ ⊆ J ∪] J ′.
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� If the abstract semantics is obtained by application of the rule (Fun) of
the following form

Γ |∆ ` t1 : I1 . . . Γ |∆ ` tn : In ∀i, Ii ⊆ ∆args(xi)

Γ |∆ ` f(t1, . . . , tn) : ∆res(f)

From the rules of the collecting semantics augmented by∆, such a deriva-
tion always comes from premises of the form Ω � t1 ⇒ Y1, . . . , Ω � tn ⇒
Yn. By induction hypothesis, we necessarily have Y1 ⊆ I1, . . . , Yn ⊆ In.
By using the last premise of our application of the rule (Fun), this im-
plies that we have Y1 ⊆ ∆args(x1), . . . , Yn ⊆ ∆args(xn). The precedence
of the rules from ∆ in the augmented collecting semantics implies that
the derivation of Ω �∆ f(t1, . . . , tn) ∈ X necessarily comes from a rule
given by ∆, which implies that X = ∆res(f).

� If the abstract semantics is obtained by application of the rule (Init) of
the following form

Γ |∆ ` t1 : I1 . . . Γ |∆ ` tn : In ∆〈f∇I1, . . . , In〉 `f f : I

Γ |∆ ` f(t1, . . . , tn) : I

Then the judgment in the collecting semantics augmented by ∆ is ob-
tained either by application of a rule of the collecting semantics, or of a
rule coming from ∆. If the applied rule comes from ∆, then this implies
thatX = ∆res(f) and thus by Lemma 3, we haveX ⊆ I. If the derivation
is obtained by application of the function rule of the collecting semantics,
then we have a derivation for all the following premices in the collect-
ing semantics augmented by ∆: Ξ �∆ t1 ∈ Y1, . . . , Ξ �∆ tn ∈ Yn and
{xi\zi}Ξ �∆ b ∈ X. By induction hypothesis, we have Y1 ⊆ I1, . . . , Yn ⊆
In. This implies in particular that {xi\Ii}Ξ J ∆〈f∇I1, . . . , In〉. Note
that the inlcusion of the intervals given by the widening relation∆args(f)(xi) ⊆
∆args(f)(xi)∇Ii and Lemma 3 imply that any rule in the collecting se-
mantics augmented by ∆ is also valid in the collecting semantics aug-
mented by ∆〈f∇I1, . . . , In〉{f\I}. This implies in particular that we
have a derivation of {x1\z1, . . . , xn\zn} �∆ b ∈ X in the collecting se-
mantics augmented by ∆〈f∇I1, . . . , In〉{f\I} and thus by the mutual
induction hypothesis, X ⊆ I.

2. Consider a function f with body b, such that we have a derivation of the
judgment ∆ `f f : I, together with a collecting environment Ξ such that
Ξ J ∆args(f), and a derivation of Ξ �∆args{f\I} b ∈ X in the collecting
semantics augmented by∆args{f\I}. We show by induction on the derivation
tree of the �xpoint judgment that X ⊆ I.
� For a derivation obtained by application of the rule (Base) of the fol-
lowing form

∆args(f)|∆ ` b : I I ⊆ ∆res(f)

∆ `f f : ∆res(f)

By mutual induction hypothesis, we have X ⊆ I. Since I ⊆ ∆res(f), this
implies X ⊆ ∆res(f).
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� For a derivation obtained by application of the rule (Ind) of the following
form

∆args(f)|∆ ` b : I ′ ∆res(f) = I ∆args{f\I∇I ′} `f f : J

∆ `f f : J

We have by induction hypothesis on the last premice that X ⊆ J .

Theorem 2. For every mini-ACSL term t, every collecting environment Ξ, and
every abstract environment Γ such that Ξ J Γ , we have C(Ξ, t) ⊆ I(Γ, t).

Proof. Since the oracle I always return a superset of or the interval derivation,
it su�ces to show that this property holds for the interval derivation. This is a
special case of Lemma 4, taking ∆ to be the empty environment ⊥, in which
case the collecting semantics augmented by ∆ is simply the collecting semantics.

Corollary 1 (Interval Soundness). For every mini-ACSL term t in an envi-
ronment Ω such that there is a derivation of the semantics Ω � t ⇒ z, and for
every abstract environment Γ such that Ω / Γ , we have z ∈ I(Γ, t).

Proof. Consider the collecting interval interval {ΩL}, which satis�es both Ω /
{ΩL} and {ΩL} J Γ . By application of Theorem 2, we thus have z ∈ C({ΩL}, t) ⊆
I(Γ, t).
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