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Abstract. Recent privacy laws and regulations raise the stakes in ver-
ifying that software systems respect user consent. The current state of
the art shows that privacy by design and formal methods can help. Still,
ensuring the validity of privacy properties, in particular consent proper-
ties, at different stages of software development, is hard. This paper pro-
poses a step towards solving this issue by introducing a new tool, named
CASTT, that allows software engineers to verify consent properties at two
different development stages: system modeling and code verification. To
describe the system, this paper introduces a new formal context specifi-
cation language named CSpeL, which allows to specify the key elements
involved in consent and their relationships. The tool is evaluated on two
use cases targeting different application domains: healthcare and website.
We also evaluate the correctness and the efficiency of our tool.

Keywords: Privacy · Specification Language · Formal Verification

1 Introduction
Personal data processing occurs in various application domains : website ser-
vices, voice assistants, or healthcare systems, to name but a few. Many laws and
regulations have been established around the world to govern such processing,
e.g. GDPR in Europe, the Privacy Act in Australia or the Act on The Protec-
tion of Personal Information in Japan. Failure to comply with these laws can be
punished by substantial fines, which have been recently applied to Google3 and
WhatsApp4. Hence, verifying that a system respects expected privacy properties
is crucial.

Formal methods provides a set of techniques based on logic, mathematics,
and theoretical computer science used for specifying, developing and verifying
software and hardware systems [22]. In particular, it can be used for privacy
property verification [33]. Another way to provide privacy guarantees is to follow
the privacy by design principle, which requires controllers to “both at the time of
? The views, opinions, and positions expressed in this article are those of this author
and not of the institution to which he belongs. This work was mostly done while the
author was at CEA LIST.

3 https://www.bbc.com/news/technology-46944696
4 https://www.bbc.com/news/technology-58422465

https://www.bbc.com/news/technology-46944696
https://www.bbc.com/news/technology-58422465


2 M. Clouet et al.

the determination of the means for processing and at the time of the processing
itself, implement appropriate technical and organizational measures” [15]. In this
regard, the controllers have to integrate these measures at early stages of the
development [2]. More generally, ensuring compliance of a software system with
respect to privacy requires to verify the expected privacy properties expected
hold during all the system lifecycle. It usually involves different abstraction levels
(corresponding to the development steps in the lifecycle), which complicates the
verification process.

Among all privacy properties, consent-related ones are of a particular kind as
they relate to an agreement between interested parties concerning the processing
of personal data [12]. However, these properties, even if disjointedly taken into
account by legal departments, can be ignored at design time and are usually
not checked at all at implementation and verification stages, which may lead to
serious privacy issues regarding this legal basis.

This paper proposes an approach to verify consent properties at two different
development stages, modeling and code verification, as illustrated in Fig. 1. First,
a model specification language, named CSpeL, allows engineers to formally spec-
ify key system elements with regards to two specific consent properties. Second,
this paper introduces a new tool, CASTT, that allows to verify the aforemen-
tioned properties on traces from a model (at Model Level), on traces from a
program (at Program Level), or directly on a program.

This tool has been applied on use cases from two application domains at
both model and program levels. Correctness and efficiency evaluations have been
carried out to demonstrate the usefulness of our approach.

ContextModel Level (ML)
or

Program Level (PL) System CASTT Xor
CSpeL respects consent?

Fig. 1. High-level view of the contributions: CSpeL and CASTT.
More precisely, our contributions are the following:

– CSpeL, a new formal context specification language for specifying the
key elements involved in two specific consent properties: purpose compli-
ance, stating that personal data are only processed for granted purposes,
and necessity compliance, stating that personal data are only processed when
needed.

– CASTT, a new verification tool that includes:
• a method to verify purpose and necessity compliance on traces from

a model or from a program; and
• a translation mechanism from CSpeL to the ACSL specification lan-

guage [5] that allows the user to verify the purpose and necessity com-
pliance on C source code;

– an empirical evaluation of CASTT on use cases from two different ap-
plication domains, namely healthcare and website, that illustrates the use-
fulness of the overall approach.

The paper is organized as follows: Section 2 presents the related work while
Section 3 introduces a running example used to illustrate our approach. Then,
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Section 4 details CSpeL, and shows how to use it to specify a system, while Sec-
tion 5 presents CASTT and the associated verification process. Finally, Section 6
provides the results of the experimental evaluation of CASTT, and Section 7
concludes and discusses future works.

2 Related Work
Several existing approaches allow to verify formal properties at both model and
program levels. Among them, the B method [1] allows engineers to specify behav-
iors of a system in B, and to refine this model iteratively down to a concrete ex-
ecutable model. Conversely, Greenaway et al. [18] propose a tool for abstracting
the C semantics into higher-level specifications. However, these approaches target
safety properties, expressing how the program is expected to behave. Regarding
security properties, existing approaches consider either model or program level.
For instance, Bernhard et al. [7] specify a new model of voting protocol satisfying
specific formal properties, such as secrecy [29], while Dufay et al. [14] specify a
JML-based language and use static analysis to verify a non interference property.

Table 1. Comparison of Consent-related Approaches.

Solution Formal ML PL Language Toolproperties
[3] � � × unnamed ×
[6] � � × CAPVerDE CAPVerDE
[31] � � × unnamed DataProVe
[24] � � × Prolog Prolog-based
[25] × × � unnamed Poly
[32] × × � unnamed CASTOR
[19] × × � OpenAPI OpenAPI
[21] × × � JIF JIF

[this paper] � � � CSpeL CASTT & Frama-C

Table 1 compares works on verifying formal consent-related properties at
model level (ML) or program level (PL). Consent properties target why per-
sonal data is processed and not who has access to the data and are thus comple-
mentary. Some approaches verify consent properties at model level: they rely on
smart contracts for blockchains [3], a specific architecture design and verification
based on second-order logic [6], a policy language and an architecture description
language [31], or logs to verify actions scheduling [24]. Three of those approaches
rely on tools: Bavendiek et al. [6], and Ta and Eiza [31] use their own dedicated
tool, while de Montety et al. use Prolog [24]. However, none of these approaches
check any implementation.

Other approaches propose solutions to ensure consent at Program Level,
but they do not target verification at Model Level. Also, they do not formalize
the verified consent property, but rather follow some privacy principles, typi-
cally the GDPR’s data protection by design and by default principle [15]. These
solutions rely on extending some permission model [25], on a dedicated specifi-
cation language and static analysis [32], on extending an OpenAPI [19], or on
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information-flow control [21]. All of them rely on tools: Hayati and Abadi [21] use
an existing tool, not initially designed for privacy. Similary, Nauman et al. [25],
and Grünewald et al. [19] extend existing tools to tackle privacy concerns. Tokas
et al. [32] prefer to implement a dedicated tool from scratch.

To sum up, our solution is the only one that targets both model and program
levels for verifying consent-related properties. It is also the only one that allows
to verify a formally-specified consent property at program level.

3 Running Example
This section presents our running example, which is adapted from an example of
Petkovic et al. [26]. This example introduces a hospital information system that
processes patients’ data, named EPR (for ElectronicPatientRecord). Each EPR
contains some personal data (e.g., date of birth), and some non-personal data
(e.g., drug dosages). The medical staff may use the hospital information system
to process EPRs for two different purposes: providing treatment to patients
(Treatment) or performing a clinical trial (Research). In both cases, doctors
should ask for an access to patients’ personal data at some point during the
treatment or the clinical trial when they need them.

In the following, Section 3.1 introduces a model of this system, Section 3.2 the
key implementation elements, and Section 3.3 the goals that we aim to achieve.

3.1 Model of the Hospital Information System
At model level, we use BPMN [10] to model the hospital information system:
Fig. 2 defines a process P1 corresponding to purpose Treatment, while Fig. 3
defines another process P2 corresponding to purpose Research. Each BPMN
process Pi contains a start element Si, a final element Ei, and different tasks Tij ,
executed sequentially one after the other. Some tasks use EPR when executed.

Fig. 2. Healthcare system at ML - Process P1: Treatment.

Fig. 3. Healthcare system at ML - Process P2: Research.

Process P1 contains four tasks. Task T11 collects the patient’s symptoms,
which are part of her EPR. Then, using this data, Task T12 makes a diagno-
sis, which also uses the patient’s EPR. Next, Task T13 prescribes a medical
treatment. Finally, Task T14 corresponds to the patient’s discharge.

Process P2 only contains three tasks. Task T21 prepares the trial, which is
then performed by Task T22. This latter uses the patient’s EPR for producing
statistics. Finally, Task T23 analyzes the results.



Context Specification Language for Formal Consent Verification 5

3.2 Implementation of the Information System
Fig. 4 introduces some key elements of a C implementation of the hospital in-
formation system, 5 while Table 3.2 shows the relationships between the BPMN
models and the code, as explained below.

/*-- EPR Datatype --*/
typedef struct {char date[SIZE]; char medicine[SIZE ];} Dos;
typedef struct { int id; char name[SIZE]; char birthdate[SIZE];

Dos dosList[NB_D ];...} Patient;
typedef struct { char birthdateList[NB][SIZE];

char sexList[NB][SIZE]; Dos dosList[NB_D];
} TrialData ;

/*-- Processes ’ Tasks --*/
Patient makePrescr(Dos newd , Patient p) { ... }
TrialData getData(Patient patientList[NB]) { ... }
int computeStats(TrialData data) { ... }

/*-- Testing the system --*/
int main() {

...
patient = makePrescr(newd , patient );
TrialData d = getData(list1);
int res = computeStats(d);
return 0;

}

Fig. 4. Code snippet of the healthcare system.

Table 2. Mapping between the BPMN model and the code.

ML PL
P1 Patient makePrescr(Dos newd, Patient p)
P2 TrialData getData(Patient patientList[NB_PATIENT])

int computeStats(TrialData data)
EPR Patient, TrialData, Dos

As seen in the previous section, BPMN processes P1 and P2 perform dif-
ferent tasks, possibly handling EPR. Some of these tasks and the associated
EPR processing are manually executed (typically, by a doctor) and are thus
not present in the code. For instance, preparing the clinical study (Task T21),
or discharging the patient (Task T14) are manual unimplemented actions. The
other tasks and associated EPR processing are implemented by C functions:
task T13 is implemented by the function makePrescr while task T23 is imple-
mented by the function computeStats and uses the necessary pieces of EPRs pro-
vided by the function getData (from T22). Therefore, we can consider that the
whole process P1 is represented at code level by the single function makePrescr,
while the whole process P2 is represented by the pair of functions getData and
computeStats. Some tasks handle EPRs. At code level, an EPR is implemented
by three C data structures, namely Dos, Patient, and TrialData. Dos repre-
sents the drug dosage. By itself, it does not contain any personal dataPatient
represents a patient. It contains personal data such as the name or the date of
birth, and the list of prescribed treatments. TrialData represents data used for
5 Note to the reviewers: https://julien-signoles.fr/castt/docker.html contains instruc-
tions for downloading and running a Docker image with the implementation of our
tool CASTT and the examples presented in this paper.

https://julien-signoles.fr/castt/docker.html
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statistical computations during the clinical trial. It also contains personal data
such as collections of dates of birth and genders, and medical prescriptions.

We want to verify if a system execution respects the consent of the data
subjects: to this end we will verify consent properties on traces representing
processes executions.

3.3 Goal
In the following, we assume that the BPMN model can be simulated to generate
execution traces. Whether the code is executable only impacts the usable code-
level verification methods, as explained in Section 5.2 and it is not mandatory.
In this paper, our goal consists in checking whether the hospital information
system processes EPRs according to each patient’s consent at both model and
program levels. Checking consent properties at both levels is necessary. Indeed,
some invalid actions may relate to manual tasks that are only represented in
the model. On the other hand, invalid actions can also be introduced during the
implementation stage.

Section 4 explains how to describe the hospital information system at model
and implementation stages with the same language, named CSpeL. Then, Sec-
tion 5 introduces a tool, named CASTT, that allows to verify a consent prop-
erty on models execution traces (Section 5.1) and on a C implementation (Sec-
tion 5.2).

4 Specifying a System with CSpeL
CSpeL is a language that allows to formally specify both a system in a privacy
context and an execution trace, in order to verify consent properties. Section 4.1
presents how to formally model a system. and Section 4.2 how to represent a
system execution. Next, Section 4.3 formalizes the consent properties verified
in our approach. Finally, Section 4.4 introduces the CSpeL grammar used in
practice.

4.1 Model of a System
In our setting, the model of a system is defined through the notion of context,
formally defined as follows. In the following, we use > (resp. ⊥) to denote the
Boolean value “true” (resp. “false”).

Definition 1 (Context). A context C is a 6-tuple (S,D, P, γ, π, ν) where S is
a set of processes, D a set of personal data, and P a set of purposes.

The total function γ , D × P → bool represents the data subject consent
for the use of each piece of personal data, for each purpose. The total functions
π , S → P(P ) and ν , S → P(D) return, for each process of the system, the
purposes of the process, and the personal data needed respectively.

Example 1. The BPMN model introduced in Section 3.1 can be represented by
the following context:

S , {P1;P2}; π , P1 7→ {Treatment}
D , {EPR}; P2 7→ {Research};
P , {Treatment;Research}; ν , P1 7→ {EPR}
γ , (EPR, Treatment) 7→ > P2 7→ {EPR};

(EPR,Research) 7→ ⊥;
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In this instance, the user consented to the use of his personal data for Treat-
ment purposes only. Similarly, we can define a context representing the system
at code level introduced in Section 3.2:
S , {makePrescr; getData; computeStats}; π , makePrescr 7→ {Treatment}
D , {Patient, T rialData}; getData 7→ {Research}
P , {Treatment;Research}; computeStats 7→ {Research};
γ , (Patient, T reatment) 7→ > ν , makePrescr 7→ {Patient}

(Patient,Research) 7→ ⊥; getData 7→ {Patient, T rialData}
(TrialData, Treatment) 7→ ⊥; computeStats 7→ {TrialData}.
(TrialData,Research) 7→ ⊥;

Our formalism allows to model the necessary elements for verifying the de-
sired consent properties. In particular, modeling purposes apart from processes
is important to accurately verify consent. Indeed, user consent is defined via
purposes, but there is no one-to-one correspondence between processes and pur-
poses. As processes are the entities handling personal data, they are the ones to
be verified, thus the need for function π.

4.2 Execution Traces
We check system behavior w.r.t consent properties through trace analysis. This
section introduces the notion of traces, while the consent properties will be de-
fined in Section 4.3. Our traces are abstract enough to be generated either from
a model (usually, by simulation) or from a program run, yet expressive enough
to allow us to formally specify consent properties.
Definition 2 (Execution Trace). Let C = (S,D, P, γ, π, ν) be a context,
{σi}i∈N ⊆ S, and {di}i∈N be a set of (personal or non personal) data. The
execution traces of C are defined by the following grammar:

T ::= ε | Handle(σi, di);T .

Trace ε is the empty trace, while event Handle(σi, di);T indicates that σi pro-
cesses data di.

It is worth noting that data in execution traces can be personal or non-
personal. Also, only one piece of data at a time is processed in each event.

Example 2. Consider the BPMN model introduced in Section 3.1. The trace
Handle(P1, EPR); ε (resp. Handle(P2, EPR); ε) denotes the handling of EPR
by process P1 (resp. P2), while the traceHandle(P1, EPR);Handle(P2, EPR); ε
denotes the handling of EPR by process P1 followed by the handling of EPR
by process P2. At code level, the trace

Handle(makePrescr, Patient);Handle(makePrescr, Dos); ε
denotes the execution of function makePrescr on a patient for delivering some
prescription.As function makePrescr processes two pieces of data, namely Patient
and Dos, the trace is composed with two events. Similarly,

Handle(getData, Patient);Handle(getData, T rialData);

Handle(computeStats, T rialData); ε
denotes the execution of function getData, with two distinct events as two pieces
of data are processed, before computing statistics with computeStats.
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4.3 Consent Properties
Our goal consists in verifying that an execution trace T respects a consent prop-
erty Prop in a context C, noted C,Prop ` T . Consent refers to many different
yet related notions [30]. In this paper, we focus on the notions of purpose and
data necessity. More precisely, when some personal data is processed, we would
like to check that the data subject agreed to at least one of the process’s purposes
and that the personal data is necessary to the process. We formally express these
properties through the notions of purpose compliance and necessity compliance.

Definition 3 (Purpose Compliance). An event of data processing
Handle(σ, d) is purpose-compliant with respect to a context C , (S,D, P, γ, π, ν)
if and only if consent was granted to at least one of the process’ purposes, i.e.:

C, PurposeComp ` Handle(σ, d) ⇐⇒
{
d 6∈ D ; or
∃p ∈ π(σ), γ(d, p) = >.

Definition 4 (Necessity Compliance). An event of data processing
Handle(σ, d) is necessity-compliant with respect to a context C , (S,D, P, γ, π, ν)
if and only if the personal data is necessary for the processing, i.e.:

C, NecessityComp ` Handle(σ, d) ⇐⇒
{
d 6∈ D ; or
d ∈ ν(σ).

These notions of purpose compliance and necessity compliance are extended
to execution traces thanks to the inference rules given in Fig. 5. The empty trace
is purpose-compliant ( resp. necessity-compliant) with respect to any context,
while a non-empty trace is purpose-compliant (resp. necessity-compliant) if and
only if all its events are purpose-compliant (resp. necessity-compliant).

C, P rop ` ε
C, P rop ` Handle(σ, d) C, P rop ` T

C, P rop ` Handle(σ, d);T

with Prop ∈ {PurposeComp;NecessityComp}
Fig. 5. Trace Consent Compliance.

Example 3. In our running example, at model level, consent was granted to
process EPR for purpose Treatment but not Research. The purpose of P1
is Treatment and the purpose of P2 is Research. Thus Handle(P1, EPR); ε
is purpose-compliant and Handle(P2, EPR); ε is not purpose-compliant 6. As
EPR is needed for P1 and for P2, both of these traces are necessity-compliant .

At program level, the trace
Handle(makePrescr, Patient);Handle(makePrescr, Dos); ε

is purpose-compliant , because consent was granted for the processing of Patient
for purpose Treatment associated with makePrescr and Dos is not a personal
data. However the trace

Handle(getData, Patient);Handle(getData, T rialData);

Handle(computeStats, T rialData); ε

6 Proof of this claim and the following ones are in Appendix B.
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is not purpose-compliant , because the purpose of getData is Research and con-
sent for the use of Patient (or TrialData) is not granted for this purpose.

As makePrescr needs Patient, the first trace is necessity-compliant . Similarly,
getData needs Patient, TrialData, and computeStats needs TrialData, thus the
second trace is also necessity-compliant .

4.4 Concrete Language
The formalism introduced so far allows to define the generic notions of purpose
compliance and necessity compliance for any executable system. However, since
these notions over the system are specified by a quite abstract notion of context,
they are not convenient for working engineers. To circumvent this issue, this sec-
tion introduces the practical language CSpeL linking these notions to executable
systems. It can be used either at model level, or at program level.

Fig. 6 gives the formal syntax of CSpeL. Literals d, σ, and p are strings that
respectively denote a data element, a process and a purpose. A CSpeL model M
is a context C, possibly followed by a trace T .

M ::= C | CT
C ::= \context{PR,PD,PU ,G,HP ,N ,IS}

| \context{PR,PD,PU ,G,HP ,N}
PR ::= \process{ΣSet}
PD ::= \personalData{DSet}
PU ::= \purposes{PSet}
G ::= \isGranted{TSet}

HP ::= \hasPurposes{APSet}
N ::= \needData{ADSet}
IS ::= \init{ΣSet}
T ::= \trace { PCSet }

ΣSet ::= σ | σ,ΣSet
DSet ::= d | d, DSet
PSet ::= p | p, PSet
TSet ::= (d:p) | (d:p), TSet

APSet ::= (σ:{PSet}) | (σ:{PSet}), APSet
ADSet ::= (σ:{DSet}) | (σ:{DSet}), ADSet
PCSet ::= \handle(σ, d); PCSet | VOID

Fig. 6. CSpeL grammar.

A context (keyword \context), contains elements matching those in Defini-
tion 1: PR for S, PD for D, PU for P , G for γ, HP for π, and N for ν. It may
also contain a process set to specify where the elements are initialized, IS.

The set S (resp. D, and P ) of processes is introduced by the keyword
\process (resp. \personalData, and \purposes). Similarly, the total function γ
(resp. π, and ν) is introduced by the keyword \isGranted (resp. \hasPurposes,
and \needData). Each keyword allows to map elements from the function’s do-
main to elements from the function’s co-domain. Currently, there is no check
that the functions defined in this way are total.

A trace is introduced by the keyword \trace. It is a sequence PCSet of data
processing. The empty sequence is VOID. An event of data processing in a trace
is introduced by the keyword \handle and associates a process to a data.

Example 4. The model defined in Example 1 could be specified in CSpeL as:
\model{\context{\process { P1; P2 },

\personalData { EPR },
\purposes { Treatment; Research },
\isGranted { (EPR:Treatment) },
\hasPurposes { (P1: { Treatment }),(P2: { Research })},
\needData { (P1: { EPR }),(P2: { EPR }) }},

\trace{\handle(P1,EPR); VOID }}
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As we have seen, CSpeL allows to formally specify both a system in a privacy
context and an execution trace, independently of its level of abstraction (Model
or Program). Thanks to this, we can easily verify consent properties.

5 Verifying Consent with CASTT

We develop the CASTT tool as a Frama-C plug-in in order to verify consent
properties from a specification written in CSpeL. Frama-C [4] is an open source
extensible analysis platform for C code. It provides many plug-ins for analyzing C
source code extended with formal annotations written in the ACSL specification
language [5]. Its three main verification plug-ins are E-ACSL [28], Eva [9] and
WP [8]. E-ACSL is a runtime assertion checker [11] that verifies ACSL properties
during concrete program runs, Eva is a static tool based on abstract interpreta-
tion [27] that raises alarms on any potential undefined behavior and invalid ACSL
property, and WP relies on deductive methods [20] for proving ACSL properties
thanks to associated provers, such as Alt-Ergo [13]. As explained later, we use
all of them on our case studies, together with CASTT.

CASTT can be used in two ways: to check either a trace written in CSpeL, or a
C code w.r.t. a CSpeL file. The first usage targets offline runtime verification [16]
of traces representing system executions at model or code level. The second one
specifically targets verification of C code, either statically or dynamically.

First, Section 5.1 details CASTT’s offline runtime verification. Then, Sec-
tion 5.2 explains CASTT’s translation to ACSL.

5.1 CSpeL Offline Runtime Verification

Offline runtime verification allows to verify properties on complete system ex-
ecutions (e.g. traces or logs). As shown in Fig.7, CASTT can verify that some
specific trace of a system, described in CSpeL, satisfies the consent properties
expressed in Definition 3 and in Section 4.3. Currently, the traces are manually
written, but they could be automatically generated from a simulated model or
from concrete program runs.

CSpeL

CASTT Xor
respects consent?\context{. . .}

\trace{. . .}

Fig. 7. Use of CASTT.

Algorithm 1 illustrates trace analysis in order to reach this goal. It is imple-
mented in CASTT. For each event in the trace, it verifies whether the data being
processed is in the personal data set. If so, the algorithm checks whether the
data subject previously agreed to one of the purposes associated to the process:
the trace is invalid if there is no such agreement. It also checks whether the data
is necessary to the processing: the trace is invalid if the data is not necessary.
The evaluation continues until all events have been checked. The trace is valid
only if all events are valid. For completeness, we do not stop the algorithm at
the first invalid event. The complexity of this algorithm is linear.
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Algorithm 1: Trace Evaluation
Input: A context and a trace
Output: Evaluation result

1 is_valid = True ; // void trace is valid
2 while trace is not void do
3 (process, data) ← trace.current event;
4 trace ← trace.next();
5 if data ∈ context.personal data then
6 is_consented = False ; // purpose compliance
7 foreach purpose ∈ context.hasPurposes(process) do
8 if context.isGranted(data, purpose) then
9 is_consented = True ;

10 is_necessary = False ; // necessity compliance
11 if data ∈ context.needData(process) then
12 is_necessary = True ;

13 is_valid = is_valid && is_consented && is_necessary

14 return is_valid;

5.2 Consent Verification on C Source Code

Context

System

C

CSpeL

CASTT

translate

translate ghost
code

ACSL
properties Frama-C Verification

Frama-C
gen.
C Xor

specification

source code annotate

add

add

respect

consent?

Fig. 8. Functional View of CASTT for Verifying Consent on C Code.

Fig. 8 shows the functional view of CASTT, together with Frama-C, for veri-
fying our properties defined in Section 4.3 on a C source code. CASTT takes as
inputs a consent specification written in CSpeL and a C source code in order to
generate a new C source code extended with ACSL annotations that encode the
CSpeL specification. Then, any Frama-C analyzer can be used to verify the ACSL
annotations embedded in this generated code. Verifying all of them implies that
the original properties are satisfied. In practice, the user can rely on E-ACSL,
Eva, WP, or a combination of them, for verifying the generated code.

We do not detail how the code and the ACSL annotations are generated from
a given CSpeL file and a C source code: we just give a few insights, in Table 3. The
sets of personal data and purposes, respectively specified by \personalData and
\purposes, are translated to enumeration types in the generated code. Based on
these sets, CASTT generates a matrix Consent that specifies, for each personal
data, for which purposes the data subject has granted consent. This matrix is
declared as ghost code, which is a set of stateful ACSL annotations that do not
interfere with the user’s C code: ghost code cannot modify the state of the original
program [17]. The command \isGranted is used to generate ghost statements
that initialize this ghost matrix in the processes specified with \init. Similarly
the matrix Need is initialized thanks to the command \needData. This matrix
specifies which data are necessary for each process.
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CSpeL Definition Generated Code Snippet
\personalData enum _PersonalData {TRIALDATA = 0, PATIENT = 1}

typedef enum _PersonalData PersonalData;
\purposes enum _Purposes {RESEARCH = 0, TREATMENT = 1}

typedef enum _Purposes Purposes;
\personalData /*@ ghost bool Consent[2][2];*/
& \purposes
\process /*@ ghost bool Need[3][2];*/
& \personalData
\personalData /*@ ghost Consent[PATIENT][RESEARCH] = 0; */
& \purposes /*@ ghost Consent[PATIENT][TREATMENT] = 1; */
& \isGranted /*@ ghost Consent[TRIALDATA][RESEARCH] = 0; */
& \init /*@ ghost Consent[TRIALDATA][TREATMENT] = 0; */
\process /*@ ghost Need[MAKEPRESCR][PATIENT] = 1; */
& \personalData /*@ ghost Need[MAKEPRESCR][TRIALDATA] = 0; */
& \needData /*@ ghost Need[GETDATA][PATIENT] = 1; */
& \init /*@ ghost Need[GETDATA][TRIALDATA] = 1; */
\personalData /*@ assert Consent[PATIENT][TREATMENT] == 1; */

& \hasPurposes
\personalData /*@ assert Need[MAKEPRESCR][PATIENT] == 1; */

For each statement in the program functions (i.e., process), if it corresponds
to processing of a personal data, ACSL assert clauses, that correspond to our
properties, are generated. For purpose compliance, the clause checks that consent
was granted to process this data for at least one of the function purposes. For
necessity compliance,the clause checks that the data is necessary to this func-
tion. These are defined by the user in the CSpeL file through \personalData and
\hasPurposes. Thereafter, for any ACSL annotation /*@ assert Consent[d][p]
≡ 1;*/ (resp. /*@ assert Need[σ][d] ≡ 1;*/) with d a personal data, p a pur-
pose and σ a function name, the used Frama-C verification plug-in(s) will try to
check that these properties are satisfied. This way, it ensures that the user agreed
to the processing of data d for purpose p (resp. that the data d is necessary for
the function σ).

6 Experimentation and Evaluation

This section presents our experimentation for evaluating our tool CASTT. First,
Section 6.1 presents our use cases. Then, Section 6.2 (resp. 6.3) evaluates CASTT’s
trace analysis (resp. verification process at code level) on these use cases. The
first use case is the healthcare running example already introduced in Section 3.
The second use case is a website system, focusing on two purposes: keeping track
of purchases and targeted advertising. For each use case and each abstraction
level (model or code), a file specifying the CSpeL context is provided as input to
CASTT. At code level, the use case’s source code is also given as input. Even if
our evaluation is still preliminary, it allows us to come to a few positive conclu-
sions. Future work includes extending our evaluation to larger examples.

The evaluations were performed on a PC with a 2 GHz Intel Xeon CPU
and 32 GB of RAM. We used CASTT with the public development version of
Frama-C7 as of 9/29/2022 (git commit 3c453a2b).

7 https://git.frama-c.com/pub/frama-c

https://git.frama-c.com/pub/frama-c
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Our evaluation relies on a home-made shell script executing the necessary
commands for running CASTT and the Frama-C verification tools, as well as a
Python script for generating the graphics presented in this Section. We have also
implemented a trace and a function call generators that allows us to evaluate our
tool on examples containing traces with up to 1, 000, 000 events, and programs
with up to 3, 000 function calls. 8

6.1 Examples used
We successfully executed our analysis using CASTT, both at model and program
level, on the running example presented in Section 3. All the valid and invalid
executions were detected.

Our running example Healthcare is a simplified version of the example of
Petkovic et al. [26]. For our offline runtime verification evaluation we use the com-
plete version, called Purpose Control in the following, that is more complex
(with pools containing various tasks, events, conditional branches and message
transfers), using the trace verification functionality of CASTT.

Since they do not provide a C implementation, we have implemented another
use case for concerning a different application domain (website) for evaluating
the CASTT’s code verification functionality. In this use case, some functions have
various purposes (and not just one as the previous example).

6.2 Offline Runtime Verification Evaluation
We evaluate CASTT’s offline runtime verification with the following Research
Questions in mind:

RQ1 Can CASTT verify a consent property on a trace from a model?
RQ2 Can CASTT verify a consent property on a trace from a program?
RQ3 Can CASTT detect invalid traces?
RQ4 Is CASTT usable on large traces?

For answering the questions RQ1, RQ2,RQ3 we run a correctness script
using CASTT. This script executes the following command on various CSpeL
files, corresponding to various applicative domains and different levels (ML and
PL): frama-c -castt-verify-trace -castt-consent-file <file.cspel>
where file.cspel is the name of the test file.

Table 4. Experimental Results for CASTT’s Trace Analysis.

Example LVL NbTests Size of traces Valid traces Invalid traces
detected detected

Healthcare ML 6 1 to 3 events � �
PL 6 2 to 6 events � �

Website ML 9 1 to 5 events � �
PL 9 5 to 24 events � �

Purpose Control ML 10 1 to 20 events � �

Each experiment instantaneously (i.e., in less than a second) provides its
results, which are summarized in Table 4. This table presents, for each use case
and each abstraction level, the number of analyzed CSpeL files, the minimum
8 All the resources to run our experimentation are available in CASTT repository.
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and maximum number of events in the trace, and whether the validity statuses
were correctly detected. Our experiments include as many valid traces as invalid
traces. These results demonstrate that CASTT always provides the expected
verdict on our examples, both at model and program level. Therefore, we can
positively answer Research Questions RQ1, RQ2, and RQ3.

Fig. 9. Time for the trace verification by the size of the analyzed trace
To answer Question RQ4, we run a script measuring time efficiency. This

script executes the previous command on various CSpeL files. These files cor-
respond to one use case, but with various sizes of generated trace (containing
from 10 to 1, 000, 000 events). The script executes the verification 10 times for
the same size and calculates the mean of the verification time. The results are
shown on Fig. 9. It verifies that the trace verification algorithm is time linear. It
also shows that large traces, i.e. with 1, 000, 000 events, are verified by CASTT
in less than 4 seconds. Therefore, we can positively answer RQ4.

6.3 Translation Mechanism Evaluation
We evaluate the translation mechanism of CASTT with the following Research
Questions in mind:

RQ5 Can CASTT translate a CSpeL file for a PL tool (ex: Frama-C)?
RQ6 Can CASTT be used to verify systems at PL?
RQ7 Can CASTT be used to detect invalid traces w.r.t. purpose compliance?
RQ8 Does CASTT reduce the number of hard-written specifications?
RQ9 Is CASTT usable on large code (i.e. with many lines and function calls)?

To answer the questions RQ5, RQ6, RQ7, we run a correctness script. This
script executes the following commands: frama-c <source_file.c>
-castt-annotate -castt-consent-file <context.cspel> -then-last
-print -ocode <annotated_file.c>
and then frama-c -<analyzer> <annotated_file.c> on various use cases.
Here, option -analyzer is either -eva for running Eva or -wp for running
WP. We also monitor the code generated by CASTT with E-ACSL for dynamic
verification. In this case, we run: e-acsl-gcc.sh -c <annotated_file.c> -O
<monitored_binary> and then ./<monitored_binary>.e-acsl
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Table 5. Frama-C Code Verification Experimental Results.
Plug-in Expected Result Meaning Evaluation

WP all goals are proved
Valid

�
Eva all assertions are valid �

E-ACSL no error is raised at runtime �
WP some goals are not proved

Invalid
�

Eva some assertions are invalid �
E-ACSL an error is raised at runtime �

All experiments instantaneously provide their results, which are summarized
in Tables 5 and 6. The first table shows, for each Frama-C plug-in, its expected
meaning of this result for our approach, whether this result is compliant with
our expectations. For this evaluation with Eva and WP, we manually check the
results in the Frama-C GUI. For E-ACSL, the raised error at runtime specifies
which ACSL annotation is not satisfied at runtime. Our experimentation shows
that CASTT, combined with any of the three main Frama-C’s verification plug-
ins, can successfully verify consent compliance of the provided code. Therefore,
we can positively answer Research Questions RQ4, RQ5, RQ6, and RQ7.
Table 6 presents, for each test case, the number of lines of code in the original
source file, the number of lines generated by CASTT, the number of lines needed
for WP, and the length of the CSpeL model. An example of CASTT generated
file is given in Appendix A. As shown in the Table, in our examples, CSpeL files
are used to generate files 3 to 5 times their size in lines. These generated lines
amount to 60% to 75% of the source file. Thus, we can positively answer RQ8.

Table 6. CASTT’s Code Generation Experimental Results.

Example Healthcare Website
T1 T2 T3 T1 T2 T3

# original lines of code 53 54 50 121 122 121
# generated lines by CASTT 33 35 33 92 94 90
# lines in CSpeL file 10 18 × 3-5

60-75%

To answer Question RQ9, we run a script measuring efficiency. This script
executes the previous commands on a same C source file (except for the number
of function calls) and a same CSpeL file. We use a function call generator to
increase the number of function calls in the main function of the source file.
Because the WP plug-in is not designed to managed this kind of test, we do not
include it in our results (WP is modular and does not depend on the main).

Figure 10 shows our results obtained from files containing between 10 to
100, 000 function calls. For each size, we execute the test 10 times to calculate
the time mean. We compute the time for the verification with and without the
annotations generated by CASTT, to calculate the overhead generated by our
approach. This evaluation shows that the time for CASTT annotation generation
is negligible compared to the time of the verification plug-ins. It also shows that
our generated annotations do not slow down too much the verification process
(usually less than 10% for Eva and usually less than 5% for E-ACSL), and the
bigger the size of the original program the smaller the overhead. In particular,
our evaluation includes a code with 1, 000, 000 function calls. In this case, the
overhead for Eva is about 1.6%, while it is 0.50% for E-ACSL. CASTT runs much
faster than Eva or E-ACSL. In particular, it is always at least 5 times faster as
soon as you exceed 5, 000 events. Therefore, we can positively answer RQ9.



16 M. Clouet et al.

Fig. 10. Execution time by number of function calls
7 Conclusion and Perspectives
This paper presents two consent properties, purpose compliance and necessity
compliance, and the CSpeL context specification language that formally describes
systems targeting these properties. CSpeL is used by its companion tool, CASTT,
in order to verify these properties at both model and program levels.

CASTT can be used to check these consent properties either for some given
execution traces, with an ad-hoc offline runtime verification algorithm-based
verifier, or for a C source code. Since CASTT is based on Frama-C, it benefits
from existing Frama-C verification plug-ins, such as E-ACSL, Eva, and WP. We
have evaluated our tool on two use cases, healthcare and website, at both model
and code levels. CASTT is able to successfully verify the valid examples and
detect the invalid ones. We have also evaluated our tool on large traces and
large code. CASTT is able to handle traces with 1, 000, 000 events in less than
4s, and adds a small overhead during the verification process using the Frama-
C verification-based tool even on code with more than 100, 000 function calls.
The current version of CASTT translates CSpeL to C code. A similar translation
could be defined towards other mainstream programming languages for which an
ACSL-like specification language exists, such as Java with JML annotations, or
towards models (targetting for instance IAT [23], a tool for verifying executions of
distributed systems). Another research direction consists in extending CSpeL and
CASTT for specifying and verifying other consent and privacy properties such as
consent evolution, or storage limitation. CSpeL could also be extended to allow
users to define their own properties of interest depending on their particular use.
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Appendix

This appendix provides optional additional materials for the reader. Section A
displays a file generated by CASTT. Section B proves our claims in Example 3.
Section C presents the CSpeL specification for the running example at code level.

A Example of generated file

Fig. 11 shows an example of a C file generated by CASTT, from a context spec-
ification written in CSpeL and a C source file. For simplicity, some pieces of
code generated by Frama-C and not directly related to our translation have been
replaced by “. . . ”.

B Proof of Properties of Example 3

This section proves purpose compliance for the traces of Example 3 (or purpose
non-compliance, depending on traces). For each trace t, and according to Defi-
nition 3, we need to check that at least one of the purposes of some process p
used in t is granted before a personal data is handled by p.

B.1 Traces at Model Level

We would like to prove that the trace Handle(P1, EPR); ε is purpose compliant,
while the traceHandle(P2, EPR); ε is not purpose compliant for the first context
C = (S,D, P, γ, π, ν) of Example 1, defined by:

S , {P1;P2};
D , {EPR};
P , {Treatment;Research};

γ ,

{
(EPR, Treatment) 7→ >
(EPR,Research) 7→ ⊥;

π ,

{
P1 7→ {Treatment}
P2 7→ {Research};

ν ,

{
P1 7→ {EPR}
P2 7→ {EPR}.

Let us prove that the first trace is purpose compliant, i.e.:
C ` Handle(P1, EPR); ε.

1. According to the second inference rule of Fig. 5, this property holds if and
only both C ` Handle(P1, EPR) and C ` ε holds.

2. The latter case (empty trace) is the axiom of the inference system, so it
holds. Let us demonstrate the former.

3. By definition of purpose compliance, C ` Handle(P1, EPR) holds if and
only if either EPR /∈ D, or γ(EPR, p) = > for some purpose p in π(P1).
We prove the right part of the disjunction.
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...
#include "stdio.h"
enum _Purposes {RESEARCH = 0,TREATMENT = 1};
typedef enum _Purposes Purposes;
enum _PersonalData {TRIALDATA = 0,PATIENT = 1};
typedef enum _PersonalData PersonalData;
/*@ ghost int \ghost Consent[2][2]; */

struct __anonstruct_Dos_1 {char date[20] ;char medicine[20] ;};
typedef struct __anonstruct_Dos_1 Dos;
struct __anonstruct_Patient_2 {
int id ;char name[20] ;char lastname[20] ;char birthdate[20] ;
char address[20] ;char sexe[20] ;Dos dosList[20] ;};

typedef struct __anonstruct_Patient_2 Patient;
struct __anonstruct_TrialData_3 {
char birthdateList[20][20] ;
char sexeList[20][20] ;Dos dosList[20] ;};

typedef struct __anonstruct_TrialData_3 TrialData;

Patient makePrescr(Dos newd, Patient p_makePrescr)
{
/*@ assert Need[MAKEPRESCR][PATIENT] ≡1; */
/*@ assert Consent[PATIENT][TREATMENT] ≡1; */
return p_makePrescr;

}

TrialData getData(Patient patientList[3])
{
/*@ assert Need[GETDATA][PATIENT] ≡1; */
/*@ assert Consent[PATIENT][RESEARCH] ≡1; */
Patient p_getData = *(patientList + 0);
/*@ assert Need[GETDATA][TRIALDATA] ≡1; */
/*@ assert Consent[TRIALDATA][RESEARCH] ≡1; */
TrialData d = {.birthdateList = {...}, .genderList = {...},

.dosList = {...}};
/*@ assert Need[GETDATA][TRIALDATA] ≡1; */
/*@ assert Consent[TRIALDATA][RESEARCH] ≡1; */
return d;

}

int computeStats(TrialData data)
{
...
return __retres;

}

int main(void)
{
int __retres;
/*@ ghost Consent[PATIENT][RESEARCH] = 0; */
/*@ ghost Consent[PATIENT][TREATMENT] = 1; */
/*@ ghost Consent[TRIALDATA][RESEARCH] = 0; */
/*@ ghost Consent[TRIALDATA][TREATMENT] = 1; */
/*@ ghost Need[MAKEPRESCR][TRIALDATA] = 0; */
/*@ ghost Need[MAKEPRESCR][PATIENT] = 1; */
/*@ ghost Need[GETDATA][TRIALDATA] = 1; */
/*@ ghost Need[GETDATA][PATIENT] = 1; */
/*@ ghost Need[COMPUTESTATS][TRIALDATA] = 1; */
/*@ ghost Need[COMPUTESTATS][PATIENT] = 0; */
Patient patient =
{.id = 0,
.name = {(char)’J’, (char)’o’, (char)’h’, (char)’n’, (char)’\000’},
.lastname = {(char)’D’, (char)’o’, (char)’e’, (char)’\000’},
.birthdate = {(char)0, ..., (char)0},
.address = {(char)0, ..., (char)0},
.sexe = {(char)0, ..., (char)0},
.dosList = {...}};

Dos newdos =
{.date = {(char)’0’,...,(char)’\000’},
.medicine = {(char)’T’,...,(char)’\000’}};

patient = makePrescr(newdos,patient);
__retres = 0;
return __retres;

}

Fig. 11. Example of generated file.
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4. Consider p = Treatment. Since, Treatment ∈ π(P1) and
γ(EPR, Treatment) = >, the property holds.

Therefore the first trace is purpose compliant in the context C. Let us now prove
that the second trace is not purpose compliant, i.e.:

C 6` Handle(P2, EPR); ε.
We prove this property by contradiction, so let us assume that this trace is
purpose compliant, i.e.:

C ` Handle(P2, EPR); ε.

1. From this property and according to the second inference rule of Fig. 5,
C ` Handle(P2, EPR) holds.

2. Therefore, by definition of purpose compliance, either EPR /∈ D
or γ(EPR, p) = > for some purpose p in π(P2).

3. The former case contradicts the definition of D: EPR is a personal data in
C.

4. Consider the latter case. By definition of π, Research is the only purpose of
P2. However, γ(EPR,Research) = ⊥, which contradicts
γ(EPR,Research) = >.

5. Each case leads to a contradiction, so the initial hypothesis.
C ` Handle(P2, EPR); ε does not hold.

Therefore the second trace is not purpose compliant in the context C.

B.2 Traces at Program Level

We would like to prove that the trace Handle(P1, EPR); ε is purpose compliant,
while the trace Handle(P2, EPR); ε is not purpose compliant for the second
context C = (S,D, P, γ, π, ν) of Example 1, defined by:

S , {makePrescr; getData; computeStats};
D , {Patient, TrialData};
P , {Treatment,Research};

γ ,


(Patient, T reatment) 7→ >
(Patient,Research) 7→ ⊥
(TrialData, Treatment) 7→ ⊥;
(TrialData,Research) 7→ ⊥;

π ,

makePrescr 7→ {Treatment}
getData 7→ {Research}
computeStats 7→ {Research};

ν ,

makePrescr 7→ {Patient}
getData 7→ {Patient, T rialData}
computeStats 7→ {TrialData}.

Let us prove that the first trace is purpose compliant, i.e.:
C ` Handle(makePrescr, Patient);Handle(makePrescr, Dos); ε.
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1. According to the second inference rule of Fig. 5, this property holds if and
only both C ` Handle(makePrescr, Patient) and
C ` Handle(makePrescr, Dos); ε holds.
Let us prove first the left-hand side of this conjunction.

2. By definition of purpose compliance,
C ` Handle(makePrescr, Patient) holds if and only if either Patient /∈ D,
or γ(Patient, p) = > for some purpose p in π(makePrescr). We prove the
right part of the disjunction.

3. Consider p = Treatment. Since, Treatment ∈ π(makePrescr) and
γ(Patient, T reatment) = >, the property holds.

4. Let us now prove the right-hand side of the conjunction at item 1, which is
C ` Handle(makePrescr, Dos); ε holds. According to the second inference
rule of Fig. 5, this property holds if and only both
C ` Handle(makePrescr, Dos) and C ` ε holds.

5. The latter case (empty trace) is the axiom of the inference system, so it
holds. Let us demonstrate the former.

6. By definition of purpose compliance,
C ` Handle(makePrescr, Dos) holds if and only if either Dos) /∈ D, or
γ(Dos), p) = > for some purpose p in π(makePrescr). The former case
corresponds to the definition of D: Dos is not a personal data in C.

Therefore the first trace is purpose compliant in the context C.

Let us now prove that the second trace is not purpose compliant, i.e.:
C 6`Handle(getData, Patient);Handle(getData, T rialData);

Handle(computeStats, T rialData); ε.
We prove this property by contradiction, so let us assume that this trace is
purpose compliant, i.e.:

C `Handle(getData, Patient);Handle(getData, T rialData);
Handle(computeStats, T rialData); ε.

1. From this property and according to the second inference rule of Fig. 5,
C ` Handle(getData, Patient) holds.

2. Therefore, by definition of purpose compliance, either Patient /∈ D or
γ(Patient, p) = > for some purpose p in π(getData).

3. The former case contradicts the definition of D: Patient is a personal data
in C.

4. Consider the latter case. By definition of π, Research is the only pur-
pose of getData. However, γ(Patient,Research) = ⊥, which contradicts
γ(Patient,Research) = >.
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5. Each case leads to a contradiction, so the initial hypothesis
C `Handle(getData, Patient);Handle(getData, T rialData);

Handle(computeStats, T rialData); ε
does not hold.

Therefore the second trace is not purpose compliant in the context C.

C Instantiations using CSpeL

This section presents the CSpeL’s specification for the running example at code
level. The corresponding context, which is the second context of Example 1, can
be specified as follows.

\context {
\process { makePrescr; getData; computeStats },
\personalData { Patient, TrialData },
\purposes { Treatment, Research },
\isGranted { (Patient: Treatment) },
\hasPurposes { (makePrescr: { Treatment }),

(getData: { Research }),
(computeStats: { Research })

},
\needData { (makePrescr: { Patient }),

(getData: {Patient, TrialData }),
(computeStats: {TrialData })

},
}

Additionnally, we can write in CSpeL the code level’s traces of Example 2 as
follows.

– For the first trace:

\trace {
\handle(makePrescr, Patient);
\handle(makePrescr, Dos);
VOID

}

– For the second trace:

\trace {
\handle(getData, Patient);
\handle(getData, TrialData);
\handle(computeStats, TrialData);
VOID

}
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