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Abstract. In online interval scheduling, the input is an online sequence of intervals, and the
goal is to accept a maximum number of non-overlapping intervals. In the more general disjoint
path allocation problem, the input is a sequence of requests, each involving a pair of vertices of
a known graph, and the goal is to accept a maximum number of requests forming edge-disjoint
paths between accepted pairs. These problems have been studied under extreme settings without
information about the input or with error-free advice. We study an intermediate setting with
a potentially erroneous prediction that specifies the set of intervals/requests forming the input
sequence. For both problems, we provide tight upper and lower bounds on the competitive
ratios of online algorithms as a function of the prediction error. For disjoint path allocation,
our results rule out the possibility of obtaining a better competitive ratio than that of a simple
algorithm that fully trusts predictions, whereas, for interval scheduling, we develop a superior
algorithm. We also present asymptotically tight trade-offs between consistency (competitive ratio
with error-free predictions) and robustness (competitive ratio with adversarial predictions) of
interval scheduling algorithms. Finally, we provide experimental results on real-world scheduling
workloads that confirm our theoretical analysis.

Keywords: Online interval scheduling. Algorithms with prediction. Competitive analysis. Dis-
joint paths.

1 Introduction

In the interval scheduling problem, the input is a set of intervals with integral endpoints, each repre-
senting timesteps at which a process starts and ends. A scheduler’s task is to decide whether to accept
or reject each job so that the intervals of accepted jobs do not overlap except possibly at one of their
endpoints. The objective is to maximize the number of accepted intervals, referred to as the payoff of
the scheduler. This problem is also known as fixed job scheduling and k-track assignment [33].

Interval scheduling is a special case of the disjoint path allocation problem, where the input is a graph
G and a set of n requests, each defined by a pair of vertices in G. An algorithm can accept or reject each
pair, given that it can form edge-disjoint paths between vertices of accepted pairs. Interval scheduling
is the particular case when G is a path graph. The disjoint path allocation problem can be solved in
polynomial time for trees [27] and outerplanar graphs by a combination of [23,32,26], but the problem
is NP-complete for general graphs [25], and even on quite restricted graphs such as series-parallel
graphs [40]. The disjoint path problem is the same as call control/call allocation with all bandwidths
(both of the calls and the edges they would be routed on) being equal to 1 and as the maximum
multi-commodity integral flow problem with edges having unit capacity.
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In this work, we focus on the online variant of the problem, in which the set of requests is not known
in advance but is revealed in the form of a sequence I of intervals. A new request must either be
irrevocably accepted or rejected, subject to maintaining disjoint paths between accepted requests. We
analyze an online algorithm via a comparison with an optimal offline algorithm, Opt. The competitive
ratio of an online algorithm Alg is defined as infI {Alg(I)/Opt(I)}, where Alg(I) and Opt(I),
respectively, denote the payoff of Alg and Opt for intervals in I (for randomized algorithms, Alg(I)
is the expected payoff of Alg). Since we consider a maximization problem, our ratios are between
zero and one.

For interval scheduling on a path graph with m edges, the competitive ratios of the best determin-
istic and randomized algorithms are respectively m and dlogme [16]. These results suggest that the
constraints on online algorithms must be relaxed to compete with Opt. Specifically, the problem has
been considered in the advice complexity model for path graphs [13,28], trees [14], and grid graphs [15].
Under the advice model, the online algorithm can access error-free information on the input called
advice. The objective is to quantify the trade-offs between the competitive ratio and the size of the
advice.

In recent years, there has been an increasing interest in improving the performance of online algorithms
via the notion of prediction. Here, it is assumed that the algorithm has access to machine-learned
information in the form of a prediction. Unlike the advice model, the prediction may be erroneous
and is quantified by an error measure η. The objective is to design algorithms whose competitive ratio
degrades gently as a function of η. Several online optimization problems have been studied under
the prediction model, including non-clairvoyant scheduling [41,43], makespan scheduling [34], contract
scheduling [4,5], and other variants of scheduling problems [8,37,11,10]. Other online problems studied
under the prediction model include bin packing [2,3], knapsack [44,31,17], caching [38,42], matching
problems [6,35,36], and various graph problems [22,24,21,9,12]. See also the survey by Mitzenmacher
and Vassilvitskii [39] and the collection at [1].

1.1 Contributions

We study the disjoint path allocation problem under a setting where the scheduler is provided with a
set Î of intervals predicted to form the input sequence I. Given the erroneous nature of the prediction,
some intervals in Î may be incorrectly predicted to be in I (false positives), and some intervals in I
may not be included in Î (false negatives). We let the error set be the set of intervals that are false
positives or false negatives and define the error parameter η(Î , I) to be the cardinality of the largest
set of non-overlapping intervals in the error set, i.e., η(Î , I) = Opt(FP∪FN). We explain later that
this definition of η satisfies specific desired properties for the prediction error (Proposition 1). In the
following, we use Alg(Î , I) to denote the payoff of an algorithm Alg for prediction Î and input I.
We also define γ(Î , I) = η(Î , I)/Opt(I); this normalized error measure is helpful in describing our
results because the point of reference in the competitive analysis is Opt(I). Our first result concerns
general graphs:

– Disjoint-Path Allocation: We first study a simple algorithm Trust, which accepts a request
only if it belongs to the set of intervals in a given optimal solution for Î . We show that, for
any graph G, any input sequence I, and any prediction Î , Trust(Î , I) ≥ (1 − 2γ(Î , I))Opt(I)
(Theorem 1). Furthermore, for any algorithm Alg and any positive integer p,

there are worst-case input sequence Iw and prediction set Îw over a star graph with 8p leaves,
such that η(Îw, Iw) = p and Alg(Îw, Iw) ≤ (1−2γ(Îw, Iw))Opt(Iw) (Theorem 2). Thus, Trust
achieves an optimal competitive ratio in any graph that contains S8 as a subgraph, i.e., any graph
of maximum degree at least 8.
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The above result demonstrates that even for trees, the problem is so hard that no algorithm can do
better than the trivial Trust. Therefore, our main results concern the more interesting case of path
graphs, that is, interval scheduling:

– Interval Scheduling: We first show a negative result for deterministic interval scheduling algo-
rithms. Given any deterministic algorithm Alg and integer p, we show there are worst-case in-
stances Iw and predictions Îw such that η(Îw, Iw) = p and Alg(Îw, Iw) ≤ (1−γ(Îw, Iw))Opt(Iw)
(Theorem 3, setting c = 2).

Next, we present a negative result for Trust. For any positive integer, p, we show there are
worst-case instances Iw and predictions Îw such that η(Îw, Iw) = p and Trust(Îw, Iw) = (1 −
2γ(Îw, Iw))Opt(Iw) . (Theorem 4). This suggests that there is room for improvement over Trust.

Finally, we introduce our main technical result, a deterministic algorithm TrustGreedy that
achieves an optimal competitive ratio for interval scheduling. TrustGreedy is similar to Trust
in that it maintains an optimal solution for Î , but unlike Trust, it updates its planned solution to
accept requests greedily when it is possible without a decrease in the payoff of the maintained solu-
tion. For any input I and prediction Î , we show that TrustGreedy(Î , I) ≥ (1− γ(Î , I))Opt(I)
(Theorem 5), which proves optimality of TrustGreedy in the light of Theorem 3.

– Consistency-Robustness Trade-off : We study the trade-off between consistency and robust-
ness, which measure an algorithm’s competitive ratios in the extreme cases of error-free prediction
(consistency) and adversarial prediction (robustness) [38]. We focus on randomized algorithms be-
cause a non-trivial trade-off is infeasible for deterministic algorithms (Proposition 2). Suppose that
for any input I, an algorithm Alg guarantees a consistency of α < 1 and robustness of β ≤ 1

dlogme .

We show α ≤ 1− blogmc−12 β and β ≤ 2
blogmc−1 · (1−α) (Theorem 6). For example, to guarantee a

robustness of 1
10blogmc , the consistency must be at most 19/20, and to guarantee a consistency of

2
3 , the robustness must be at most 2

3
1

blogmc−1 . We also present a family of randomized algorithms

that provides an almost Pareto-optimal trade-off between consistency and robustness (Theorem 7).

– Experiments on Real-World Data: We compare our algorithms with the online Greedy al-
gorithm (which accepts an interval if and only if it does not overlap previously accepted intervals),
and Opt on real-world scheduling data from [19]. Our results are in line with our theoretical anal-
ysis: both Trust and TrustGreedy are close-to-optimal for small error values; TrustGreedy
is almost always better than Greedy even for large values of error, while Trust is better than
Greedy only for small error values.

2 Model and Predictions

We assume that an oracle provides the online algorithm with a set Î of requests predicted to form the
input sequence I. One may consider alternative predictions, such as statistical information about the
input. While these predictions are compact and can be efficiently learned, they cannot help achieve
close-to-optimal solutions. In particular, for interval scheduling on a path with m edges, since the
problem is AOC-complete, one cannot achieve a competitive ratio c ≤ 1 with fewer than cm/(e ln 2)
bits [18].

In what follows, true positive (respectively, negative) intervals are correctly predicted to appear (re-
spectively, not to appear) in the request sequence. False positives and negatives are defined analogously
as those incorrectly predicted to appear or not appear. We let TP, TN, FP, FN denote the four sets
containing these different types of intervals. Thus, I = TP∪FN and Î = TP∪FP. We use η(Î , I),
to denote the error for the input formed by the set I, when the set of predictions is Î . When there is
no risk of confusion, we use η instead of η(Î , I).
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The error measure we use here is η = Opt(FP∪FN), and hence, the normalized error measure is
γ = Opt(FP∪FN)/Opt(I). Our error measure satisfies the following desirable properties, the first
two of which were strongly recommended in Im, et al. [30]: η(I, Î ) ≤ Opt(FP∪FN). In Section 2, we
discuss natural error models, such as Hamming distance between the request sequence and prediction,
and explain why these measures do not satisfy our desired properties.

– Monotonicity: This property ensures that increasing the number of true positives or negatives
does not increase the error. To be more precise, if we increase |TP | by one unit (decreasing |FN |
by one unit) or increase |TN | by one unit (decreasing |FP | by one unit), the error must not
increase. Formally, for any I, Î , the following must hold.

• For any x ∈ I \ Î , η(I, Î ∪{x}) ≤ η(Î , I).

• For any y ∈ Î \I, η(I, Î \{y}) ≤ η(Î , I).

– Lipschitz property: Let Opt(I) denote the number of requests in an optimal solution for the input
sequence, and Opt(Î ) denote the number of requests in an optimal solution for a set of predicted
requests. The Lipschitz property requires the error to be at least equal to the net difference between
Opt(I) and Opt(Î ), that is,

η(Î , I) ≥ |Opt(I)−Opt(Î )| .

Note that this property ensures that the error is not “too small”. In particular, we should not be
able to decrease the error to an arbitrarily small value by adding “dummy requests”. For example,

false discovery rate, defined as |FP |
|FP |+|TP | , does not satisfy Lipschitz property: an adversary can

construct a bad input and then add a lot of intervals to I ∩ Î , contributing to |TP |, that neither
the algorithm nor Opt will choose, driving down the error.

– Lipschitz completeness (or simply completeness): We need the error measure to ensure that the
error is not “too large”. Consider the following example for the disjoint paths problem. The input
is formed by a set I = A∪B of requests, with A = {A1, A2, . . . , Ak} and B = {B1, B2, . . . , Bk−1},
where the Ai’s are disjoint, the Bi’s are disjoint, and Bi overlaps Ai and Ai+1. The true optimal
solution is then Opt(I) = |A| = k. Suppose the prediction is Î = (A\{A1, A2})∪B, and note that
Opt(Î ) = |B| = k− 1. The optimal solutions for I and Î are disjoint but |Opt(I)−Opt(Î )| = 1,
FP = 0 and FN = 2. In this case, the error should be relatively small, independent of k. More
generally, the error measure must not grow with the dissimilarity between the optimal solutions
for I and Î , but rather with the size of the optimal solution for FP and FN. This is guaranteed
by the Lipschitz completeness, which requires

η(I, Î ) ≤ Opt(FP∪FN).

Proposition 1. The error measure η(Î , I) = Opt(FP∪FN) satisfies the properties of monotonicity,
Lipschitz, and Lipschitz completeness.

Proof. We check all properties listed above:

– Monotonicity: First, consider increasing the number of true positives. Let x ∈ I \ Î . Since x is a
false negative, it may or may not have been counted in Opt(FP∪FN), but removing it from FN
(thus adding it to TP) cannot make Opt(FP∪FN) larger, i.e.,

η(I, Î ∪{x}) = Opt(FP∪(FN \{x})) ≤ Opt(FP∪FN) = η(I, Î ) .

Similarly, for any y ∈ Î \I, Opt((FP \{y})∪FN) cannot be larger than Opt(FP∪FN) = η(I, Î ),
so

η(I, Î \{y}) = Opt((FP \{y}) ∪ FN) ≤ Opt(FP∪FN) = η(I, Î ) .



Online Interval Scheduling with Predictions 5

– Lipschitz property: We need to show that

Opt(FP∪FN) ≥ |Opt(I)−Opt(Î )| .

We note that

Opt(I) = Opt((Î \FP) ∪ FN)

≤ Opt(Î ∪FN)

≤ Opt(Î ) + Opt(FN) ,

which implies
Opt(I)−Opt(Î ) ≤ Opt(FN) ≤ Opt(FP∪FN).

– Lipschitz completeness: Follows trivially with the suggested bound, since η = Opt(FP∪FN). ut

Alternative Error Measures. In what follows, we review a few alternative error measures that do
not satisfy our desired properties of monotonicity, Lipschitz, and Lipschitz completeness (or simply
completeness).

– Hamming distance between the bit strings representing the request sequence and the predictions:

|FP |+ |FN | = |I ∪ Î | − |I ∩ Î | = |(I ∪ Î ) \ (I ∩ Î )|

It fails completeness.

– Using Opt(I) and Opt(Î ) instead of I and Î in the above measure:∣∣(Opt(I) ∪Opt(Î )
)
\
(
Opt(I) ∩Opt(Î )

)∣∣
also fails completeness, according to the example given in connection with the definition of com-
pleteness.

– Either |FP | or |FN | fails Lipschitz property.

– Normalizing the Hamming distance, we obtain the Jaccard distance:

|I ∪ Î | − |I ∩ Î |
|I ∪ Î |

This measure is sensitive to dummy requests: The adversary can construct a bad input and then
add a lot of intervals to I ∩ Î that neither the algorithm nor Opt will choose, driving down the
error.

– We also considered normalizing by the total number of possible intervals (order m2), but this
measure fails the Lipschitz property, as we can make the error arbitrarily small by “scaling up”
each edge to an arbitrarily long path, without changing algorithms’ payoffs.

3 Disjoint-Path Allocation

In this section, we show that a simple algorithm Trust for the disjoint path allocation problem has
an optimal competitive ratio for any graph of maximal degree at least 8. Trust simply relies on the
predictions being correct. Specifically, it computes an optimal solution I ∗ in Î before processing the
first request. Then, it accepts any interval in I ∗ that arrives and rejects all others.
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We first establish that, on any graph, Trust(Î , I) ≥ Opt(I) − 2η(Î , I) = (1 − 2γ(Î , I))Opt(I).
The proof follows by observing that (i) false negatives cause a deficit of at most Opt(FN) in the
schedule of Trust compared to the optimal schedule for I ∗, (ii) false positives cause a deficit of
at most Opt(FP) in the optimal schedule of I ∗, compared to the optimal schedule for I, and (iii)
Opt(FP) + Opt(FN) ≤ 2Opt(FP∪FN) = 2η.

Theorem 1. For any graph G, any prediction Î , and input sequence I, we have Trust(Î , I) ≥
(1− 2γ(Î , I))Opt(I) .

Proof. Since I ∗ is an optimal selection from TP∪FP, the largest number of intervals that Opt
would be able to accept from I compared to I ∗ would be an optimal selection from FN. Thus,
Opt(I) ≤ Opt(I ∗) + Opt(FN), and so Opt(I ∗) ≥ Opt(I)−Opt(FN).

Similarly,

the largest number of intervals that can be detracted from Trust is realized when intervals that it
planned to accept from I ∗ do not appear is Opt(FP). Therefore, Trust(Î , I) ≥ Opt(I ∗)−Opt(FP).
Now,

Trust(Î , I) ≥ Opt(I ∗)−Opt(FP)
≥ Opt(I)−Opt(FN)−Opt(FP)
≥ Opt(I)− 2Opt(FP∪FN)

= Opt(I)− 2η(Î , I)

= (1− 2γ(Î , I))Opt(I)

ut

The following result shows that Theorem 1 is tight for star graphs of degree 8. One can conclude
that Trust is optimal for any graph that contains stars of degree 8 as a subgraph, i.e., any graph of
maximal degree at least 8.

Theorem 2. Let Alg be any deterministic algorithm and p be any positive integer. On the star graph,
S8p, there exists a set of predicted intervals Îw and a request sequence Iw such that η(Îw, Iw) = p and

Alg(Îw, Iw) ≤ (1− 2γ(Î , I))Opt(Iw) .

Proof. We consider the non-center vertices of S8p in p groups of eight, and handle them all identically,
one group at a time, treating each group independently. The prediction is fixed, but the input sequence
depends on the algorithm’s actions. For each group, we show that the error in the prediction is 1, and
the payoff of Opt is at least 2 units more than that of Alg. Given that groups do not share edges
between themselves, the total error and algorithms’ payoffs are summed over all groups. Hence, the
total error will be equal to η(Îw, Iw) = p, and we can write Alg(Iw) ≤ Opt(Iw) − 2η(Îw, Iw), that
is, Alg(Iw) ≤ (1− 2γ(Îw, Iw))Opt(Iw).

Next, we explain how an adversary defines the input for each group. For group 0 ≤ i ≤ s − 1, the
non-center vertices are 8i + j, where 1 ≤ j ≤ 8, but we refer to these vertices by the value j. Let
Îw = {(1, 2), (2, 3), (3, 4), (4, 5), (6, 7), (7, 8)} be the part of the prediction relevant for the current
group of eight vertices. Both (6, 7) and (7, 8) are always included in the input sequence, with (6, 7)
arriving immediately before (7, 8). Alg accepts at most one of them. This is discussed in the cases
below. The first request in the input is always (2, 3), and Alg can either accept or reject it.

Case Alg accepts (2,3): The next interval to arrive is (6, 7). If Alg rejects this interval, the next to
arrive is (7, 8). If Alg also rejects this interval, then the intervals (1, 2) and (3, 4) also arrive, but (4, 5)
is a false positive (see Figure 1a). Then, Opt accepts {(1, 2), (3, 4), (6, 7)}, Alg only accepts {(2, 3)},
and Opt(FN∪FP) = 1. Thus, we may assume that Alg accepts at least one of (6, 7) and (7, 8),
which we call (7, x) where x ∈ {6, 8}. We call the other of these two edges (7, y). Then, the intervals



Online Interval Scheduling with Predictions 7

1
2

3

4
5

8

7

6

1
2

3

4
5

8

7

6

Alg Opt

(a) Alg accepts (2, 3), rejects (6, 7) and (7, 8).
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(b) Alg accepts (2, 3), (7, x); here x = 6 , y = 8.
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(c) Alg rejects (2, 3), accepts (3, 4), and rejects
both (6, 7) and (7, 8).
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(d) Alg rejects (2, 3), accepts (3, 4) and (7, x); here
x = 6 and y = 8.
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(e) Alg rejects (2, 3), (3, 4), accepts (7, x) and
(1, 2); here x = 6 and y = 8.
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(f) Alg rejects (2, 3), (3, 4), accepts (7, x), and re-
jects (1, 2); here x = 6 and y = 8.

Fig. 1: Illustration of the proof of Theorem 2. Highlighted edges indicate paths between accepted pairs.

(1, 2) and (3, 4) also arrive, along with a false negative (5, x). The interval (4, 5) is a false positive and
is not in the input (see Figure 1b). Since (4, 5) and (5, x) share an edge, Opt(FN∪FP) = 1. Alg
accepts {(2, 3), (7, x)}, and Opt accepts {(1, 2), (3, 4), (5, x), (7, y)}. To conclude, the error increases
by 1, and Alg’s deficit to Opt increases by 2.

Case Alg rejects (2,3): The next interval to arrive is (3, 4).

Subcase Alg accepts (3,4): As in the previous case, we consider which of (6, 7) and (7, 8) Alg
accepts. If neither is accepted, in addition to (2, 3), (4, 5) arrives, but (1, 2) is a false positive (Fig-
ure 1c). Again, payoffs of Alg and Opt are respectively 1 and 3, and Opt(FN∪FP) = 1. The error
is increased by 1, and the net advantage of Opt over Alg is increased by at least 2.

Next, we assume that Alg accepts (7, x) and rejects (7, y). Then, in addition to the intervals (2, 3)
and (3, 4), (4, 5) arrives, along with a false negative (1, x) (Figure 1d). The interval (1, 2) is a false
positive and is not in the input. Since (1, 2) and (1, x) share an edge, Opt(FN∪FP) = 1. Alg accepts
{(3, 4), (7, x)}, and Opt accepts {(1, x), (2, 3), (4, 5), (7, y)}. Again, the error is increased by 1, and
the net advantage of Opt over Alg is increased by 2.

Subcase Alg rejects (3,4): The next interval to arrive is (1, 2).

Regardless of whether Alg accepts or rejects (1, 2), as in the previous cases, we consider which of
(6, 7) and (7, 8) Alg accepts. If neither is accepted, then (2, 3) and (3, 4) have already arrived, but
(4, 5) is a false positive. The payoff of Alg is at most 1 if it accepts (1, 2) and 0 otherwise, while
Opt accepts {(1, 2), (2, 3), (3, 4)}, and Opt(FN∪FP) = 1. Thus, the error is increased by 1, and the
net advantage of Opt over Alg is increased by 2. In what follows, we assume Alg accepts (7, x) for
x ∈ {6, 8}.
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Subsubcase Alg accepts (1,2): Then, in addition to the intervals (2, 3) and (3, 4), a false negative,
(5, x), arrives. The interval (4, 5) is a false positive and is not in the input. Since (4, 5) and (5, x) share
an edge, Opt(FN∪FP) = 1. Alg accepts {(1, 2), (7, x)}, and Opt accepts {(1, 2), (3, 4), (5, x), (7, y)}
(Figure 1e). As before, the error is increased by 1, and the net advantage of Opt over Alg is increased
by 2.

Subsubcase Alg rejects (1,2): In this case, the interval (4, 5) is a false positive, and there are no
false negatives. Thus, the payoffs of Alg and Opt are respectively 1 and 3, and |Opt(FN∪FP)| = 1
(Figure 1f). That is, the error is increased by 1, and Alg’s deficit compared to Opt is increased by 2.

This completes the proof for one group of eight vertices. Repeating it independently for each of the s
groups of eight vertices gives the claimed result. ut

4 Interval Scheduling

In this section, we show tight upper and lower bounds on the competitive ratio of a deterministic
algorithm for interval scheduling. As an introduction to the difficulties in designing algorithms for the
problem, we start by proving a general lower bound. We show that for any deterministic algorithm
Alg, there exists an input sequence Iw and a set of predictions Îw such that Alg(Îw, Iw) = Opt(Iw)−
η(Îw, Iw), and that this can be established for any positive integer error. We also show that the
competitive ratio of Alg is arbitrarily small.

Theorem 3. Let Alg be any deterministic algorithm. For any positive integers p and c ∈ [2,m],
there are instances Iw and predictions Îw such that p ≤ η(Îw, Iw) ≤ (c − 1)p and Alg(Îw, Iw) =
(1− γ(Îw, Iw))Opt(Iw) ≤ 1

c Opt(Iw) .

Proof. Alg will be presented with p intervals of length c, and the remainder of the sequence will
depend on which of these it accepts. The prediction, however, will include the following 2p requests:
Î =

⋃p−1
i=0

{
(ci, c(i+ 1)), (ci, ci+ 1)

}
.

The input Iw is formed by p phases, i ∈ [0, p − 1]. The ith phase starts with the true positive
(ci, c(i+ 1)). There are two cases to consider:

– If Alg accepts (ci, c(i+ 1)), then the phase continues with
{(ci+ j, ci+ (j + 1)) | 0 ≤ j ≤ c− 1} . The first of these requests is a true positive, and the other
c − 1 are false negatives. Note that Alg cannot accept any of these c requests. The optimal
algorithm rejects the original request (ci, c(i + 1)) and accepts all of the c following unit-length
requests.

– If Alg rejects (ci, c(i+ 1)), the phase ends with no further requests. In this case, (ci, ci+ 1) is a
false positive.

The contribution, ηi, of phase i to |FP∪FN | is ηi = c− 1 in the first case and ηi = 1 in the second.

Since the intervals in FP∪FN are disjoint, we can write Opt(FP∪FN) =
∑p−1
i=0 ηi and it follows

that p ≤ Opt(FP∪FN) ≤ (c − 1)p. Moreover, the net advantage of Opt over Alg in phase i is
at least ηi: in the first case, Opt accepts ηi + 1 and Alg accepts one request, and in the second
case, Opt accepts ηi = 1 and Alg accepts no requests. Given that there are p phases, we can write
Alg(Îw, Iw) ≤ Opt(Iw)−

∑p−1
i=0 ηi = Opt(Iw)−Opt(FP∪FN) = (1− γ(Îw, Iw))Opt(Iw).

In phases where Alg accepts the first request, Opt accepts c times as many requests as Alg. In
phases where Alg rejects the first request, Opt accepts one interval, and Alg accepts no intervals.
Thus, Opt(Iw) ≥ c ·Alg(Îw, Iw) . ut

For c = 2, we get η(Îw, I) = p and Alg(Îw, Iw) = (1− γ(Îw, Iw))Opt(Îw). The next theorem shows
that the competitive ratio of Trust compared to the lower bound of Theorem 3 is not tight. The
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proof follows from an adversarial sequence similar to that of Theorem 3 in which the payoff of Opt
and η grow in phases while the payoff of Trust stays 0.

Theorem 4. For any integer p ≥ 1, there exists a prediction Îw and an input sequence Iw so that
η(Îw, Iw) = p and Trust(Îw, Iw) = (1− 2γ(Îw, Iw))Opt(Iw) .

Proof. Let the prediction be

Îw =
⋃p−1
i=0

{
(3i, 3i+ 2), (3i+ 1, 3i+ 3)

}
.

Trust chooses an optimal solution I ∗ from Îw. For each i, I ∗ will contain either (3i, 3i + 2) or
(3i+ 1, 3i+ 3). If (3i, 3i+ 2) is in I ∗, that interval will be in FP, and Opt will select (3i+ 1, 3i+ 3),
which will be a TP-interval in Iw. Further, Iw will contain the FN-interval, (3i, 3i+ 1).

If, instead, (3i+ 1, 3i+ 3) is in I ∗, that interval will be in FP, and Opt will select (3i, 3i+ 2), which
will be a TP-interval in Iw. Further, Iw will then contain the FN-interval, (3i+ 2, 3i+ 3).

Thus, Opt(Iw) = 2p, and for each i, the interval in FP and the interval in FN overlap, that so
Opt(FN∪FP) = p. Since I ∗ = FP, Trust does not accept any intervals, so

Trust(Î , Iw) = 0 = Opt(I)− 2Opt(FN∪FP) = (1− 2γ(Îw, Iw))Opt(Iw).

ut

4.1 TrustGreedy

In this section, we introduce an algorithm TrustGreedy, TG, which achieves an optimal competitive
ratio for interval scheduling.

The algorithm. TG starts by choosing an optimal solution offline set I ∗ of the schedules in Î ,
and plans to accept those intervals in I ∗ and reject all others, and it just follows its plan, except
possibly when the next request is in FN. TG maintains an updated plan, A. Initially, A is I ∗. When
a request, r, is in FN, TG accepts if r overlaps no previously accepted intervals and can be accepted
by replacing at most one other interval in A that ends no earlier than r. In that case, r is added to A,
possibly replacing an overlapping interval to maintain the feasibility of A (no two intervals overlap).
As a comment, only the first interval from FN that replaces an interval r in the current A is said
to “replace” it. There may be other intervals from FN that overlap r and are accepted by TG, but
they are not said to “replace” it. We let U denote the set of intervals in I ∗ ∩FP that are not replaced
during the execution of TG.

Analysis. Let TG denote the set of intervals chosen by TrustGreedy on input I and prediction Î ,
and Opt the intervals chosen by the optimal algorithm. We define the following subsets of TG and
Opt:

– TGFN = TG∩FN and OptFN = Opt∩FN

– TGTP = TG∩ Î = TG∩TP and OptTP = Opt∩ Î = Opt∩TP

Lemma 1. Each interval i ∈ OptTP overlaps an interval in I ∗ extending no further to the right than
i.

Proof. Assume to the contrary that there is no interval in I ∗ that overlaps i and ends no later than
i. If i does not overlap anything in I ∗, we could have added i to I ∗ and have a feasible solution
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(non-overlapping intervals), contradicting the fact that I ∗ is optimal. Thus, i must overlap an interval
r in I ∗, which, by assumption, must end strictly later than i. This contradicts the construction of I ∗,
since i would have been in I ∗ instead of r. ut

We define a set OFN consisting of a copy of each interval in OptFN and let F = OFN ∪ U . We define
a mapping f : Opt→ TG∪F as follows. For each i ∈ Opt:

1. If there is an interval in I ∗ that overlaps i and ends no later than i, then let r be the rightmost
such interval.

(a) If r ∈ U ∪TGTP, then f(i) = r.

(b) Otherwise, r has been replaced by some interval t. In this case, f(i) = t.

2. Otherwise, by Lemma 1, i belongs to OptFN.

(a) If there is an interval in TGFN that overlaps i and ends no later than i and an interval in U
that overlaps i’s right endpoint, let r be the rightmost interval in TGFN that overlaps i and
ends no later than i. In this case, f(i) = r.

(b) Otherwise, let oi be the copy of i in OFN. In this case, f(i) = oi.

We let F denote the subset of F mapped to by f and note that in step 1a, intervals are added to
F ∩ U when r ∈ U . In step 2b, all intervals are added to F ∩OFN.

Lemma 2. The mapping f is an injection.

Proof. Intervals in U ∪TGTP are only mapped to in step 1a. Note that U and TG are disjoint. If an
interval i ∈ Opt is mapped to an interval r ∈ U ∪TG in this step, i overlaps the right endpoint of r.
There can be only one interval in Opt overlapping the right endpoint of r, so this part of the mapping
is injective. Intervals in TGFN are only mapped to in steps 1b and 2a. In step 1b, only intervals that
replace intervals in I ∗ are mapped to. Since each interval in TGFN replaces at most one interval in
I ∗ and the right endpoint of each interval in I ∗ overlaps at most one interval in Opt, no interval is
mapped to twice in step 1b. If, in step 2a, an interval, i, is mapped to an interval, r, i overlaps the
right endpoint of r. There can be only one interval in Opt overlapping the right endpoint of r, so no
interval is mapped to twice in step 2a.

We now argue that no interval is mapped to in both steps 1b and 2a. Assume that an interval, i1,
is mapped to an interval, t, in step 1b. Then, there is an interval, r, such that r overlaps the right
endpoint of t and i1 overlaps the right endpoint of r. This means that the right endpoint of i1 is no
further to the left than the right endpoint of t. Assume for the sake of contradiction that an interval
i2 6= i1 is mapped to t in step 2a. Then, i2 overlaps the right endpoint of t, and there is an interval,
u ∈ U , overlapping the right endpoint of i2. Since i2 overlaps t, i2 must be to the left of i1. Since i2 is
mapped to t, t extends no further to the right than i2. Thus, since r overlaps both t and i1, r must
overlap the right endpoint of i2, and hence, r overlaps u. This is a contradiction since r and u are
both in I ∗. Intervals in F ∩ OFN are only mapped to in step 2b and no two intervals are mapped to
the same interval in this step. ut

Lemma 3. The subset F of F mapped to by f is a feasible solution.

Proof. We first note that F ∩U is feasible since F ∩U ⊆ U ⊆ I ∗ and I ∗ is feasible. Moreover, F ∩OFN

is feasible since the intervals of F ∩OFN are identical to the corresponding subsets of Opt. Thus, we
need to show that no interval in F ∩ U overlaps any interval in F ∩OFN.

Consider an interval u ∈ F ∩U mapped to from an interval i ∈ Opt. Since i is not mapped to its own
copy in F , its copy does not belong to F . Since i ∈ Opt, no interval in F ∩OFN overlaps i. Thus, we
need to argue that F ∩OFN contains no interval strictly to the left of i overlapping u.
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Assume for the sake of contradiction that there is an interval ` ∈ F ∩OFN to the left of i overlapping
u. Since ` ended up in F although its right endpoint is overlapped by an interval from U , there is no
interval in I ∗ (because of step 1 in the mapping algorithm) or in TGFN (because of step 2a in the
mapping algorithm) overlapping ` and ending no later than `. Thus, I ∗ ∪TGFN contains no interval
strictly to the left of u overlapping `. This contradicts the fact that u has not been replaced since the
interval in OptFN corresponding to ` could have replaced it. ut

The following theorem follows from Lemmas 2 and 3.

Theorem 5. For any prediction Î and any input sequence I, we have

TrustGreedy(Î , I) ≥ (1− γ(Î , I))Opt(I) .

Proof. We show that

TG(Î , I) ≥ Opt(I)−Opt(FP∪FN) = (1− γ(Î , I))Opt(I) :

Opt(I) ≤ |TG |+ |F |, since, by Lemma 2, f is an injection

≤ |TG |+ Opt(F), since, by Lemma 3, F is feasible

≤ |TG |+ Opt(FP∪FN), since U ⊆ FP and OptFN ⊆ FN

ut

5 Consistency-Robustness Trade-off

We study the trade-off between the competitive ratio of the interval scheduling algorithm when pre-
dictions are error-free (consistency) and when predictions are adversarial (robustness). The following
proposition shows an obvious trade-off between the consistency and robustness of deterministic algo-
rithms.

Proposition 2. If a deterministic algorithm has non-zero consistency, α, it has robustness β ≤ 1
m .

Proof. Consider a prediction that indicates the input to be one long interval, Î = (0,m). In order to
have non-zero consistency, α, the algorithm must accept this interval, if it is first in some sequence
because it might be the only interval in that sequence.

Suppose an input σ is (0,m), (0, 1), (1, 2), (2, 3), . . . , (m− 1,m) . Clearly, Opt accepts the m intervals
of length 1, giving robustness 1

m . ut

The more interesting case is randomized algorithms. The proof of the following was inspired by the
proof of Theorem 13.8 in [16] for the online case without predictions, and that Ω(logm) result was
originally proven in [7].

Theorem 6. If a (possibly randomized) algorithm Alg is both α-consistent and β-robust, then α ≤
1− blogmc−12 β and β ≤ 2

blogmc−1 · (1− α).

Proof. Let r = blogmc − 1 and let m′ = 2r+1. Consider a prediction σ = 〈Î 0, Î 1, . . . , Î r, Î
′
〉, where

Î
′

= 〈(0, 1), (1, 2), . . . , (m′ − 1,m′)〉 and, for 0 ≤ i ≤ r, Î i = 〈(0,m′/2i), (m′/2i, 2m′/2i), . . . , (m′ −
m′/2i,m′)〉. Note that Î i consists of 2i disjoint intervals of length m′/2i. For 0 ≤ i ≤ r, let σi =
〈Î 0, Î 1, . . . , Î i〉.
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In order to maximize the number of small intervals that can be accepted if they arrive, an algorithm
would minimize the (expected) fraction of the line occupied by the larger intervals, to leave space
for the small intervals, while maintaining β-robustness. Since Opt(σ0) = 1 and Alg is β-robust,
E[Alg(σ0)] ≥ β. For σi with i ≥ 1, Opt accepts all intervals in Î i, so Opt(σi) = 2i. To be β-robust,
the expected number of intervals of length at most m′/2i that Alg accepts is at least 2iβ. Inductively,
for i ≥ 1, by the linearity of expectations, this is at least 2i−1β intervals of length m′/2i, and these

intervals have a total expected size of at least 2i−1β × m′/2i = m′

2 β. Again, by the linearity of

expectations, for σr, the expected sum of the lengths of the accepted intervals is at least
∑r
i=0

m′

2 β =
m′(r+1)

2 β.

From σr, the expected number of intervals Alg must have accepted is at least 2rβ. If σ is the
actual input sequence, then the predictions are correct, so for Alg to be α-consistent, we must have

E[Alg(σ′)] ≥ m′α. Since also 2rβ + (m′ − m′(r+1)
2 β) ≥ E[Alg(σ′)], we can combine these two

inequalities and obtain 2r

m′ β + 1 − r+1
2 β ≥ α. Since 2r

m′ = 1
2 , this reduces to α ≤ 1 − r

2β. Solving for
β, β ≤ 2

r (1− α). ut

Note that as α approaches 1 (optimal consistency), β goes to 0 (worst-case robustness) and vice-versa.
Next, we present a family of algorithms, RobustTrust, which has a parameter 0 ≤ α ≤ 1 and works
as follows. With a probability of α, RobustTrust applies TG. (Applying Trust, instead of TG,
gives the same consistency and robustness results.) With probability 1 − α, RobustTrust ignores
the predictions, and applies the Classify-and-Randomly-Select (Crs) algorithm described in Theorem
13.7 in [16]. Crs is strictly dlogme-competitive (they use ratios at least one). A similar algorithm was
originally proven O(logm)-competitive in [7].

For completeness, we include the Crs algorithm. To avoid the problem of m possibly not being a
power of 2, we define j = dlogme and m′ = 2j . Thus, the algorithm will define its behavior for a
longer line and some sequences that cannot exist.

We define a set of dlogme levels for the possible requests. Since m′ is a power of two, there is an
odd number of edges, so the middle edge, e1, in the line is well defined. The set E1 = {e1} and
Level 1 consists of all intervals containing e1. After Levels 1 through i are defined, we define Ei+1

and Level i + 1 as follows: After removing all edges in E1 ∪ E2 ∪ · · · ∪ Ei from the line, we are left
with 2i segments, each consisting of 2j−i vertices. The set Ei+1 consists of the middle edges of these
segments, and Level i+ 1 consists of all intervals, not in any of the Levels 1 through i, but containing
an edge in Ei+1. Thus, the levels create a partition of all possible intervals.

The algorithm Crs initially chooses a level i between 1 and j, each with probability 1
j . It accepts

any interval in Level i that does not overlap an interval it already has accepted. Any intervals not in
Level i are rejected.

When RobustTrust applies TG and the predictions are correct, it accepts exactly as many intervals
as there are in the optimal solution. From these observations, we can get the following results.

Theorem 7. RobustTrust (Rt) with parameter α has consistency at least α and robustness at
least 1−α

dlogme .

Proof. We investigate the RobustTrust when all predictions are correct (the consistency) and when
some predictions may be incorrect (robustness).

Suppose all predictions are correct. RobustTrust applies TG with probability α. Since TG is optimal
when all predictions are correct, the expected payoff of RobustTrust is at least α ·Opt. Therefore,
the competitive ratio (consistency) of RobustTrust is at least α.

Suppose some predictions are incorrect. If the intervals in Level i are the only intervals given, and Crs
chooses that level, Crs accepts as many intervals as Opt does, since each interval in Level i contains
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an edge in Ei, and no intervals containing more than one edge in Ei exist. Since the number of levels
is dlogme, the expected number of intervals from Opt’s configuration that Crs accepts on any given
level is 1

dlogme times the number of intervals Opt accepted from that level, so by the linearity of

expectations, this totals 1
dlogme Opt. Crs is chosen with probability 1 − α, so the robustness is at

most 1−α
dlogme . ut

6 Experimental Results

We present an experimental evaluation of Trust and TrustGreedy in comparison with the Greedy
algorithm, which serves as a baseline online algorithm, and Opt, which serves as the performance upper
bound. We evaluate our algorithms using real-world scheduling data for parallel machines [19]. Each
benchmark from [19] specifies the start and finish times of tasks as scheduled on parallel machines with
several processors. We use these tasks to generate inputs to the interval scheduling problem; Table 1
details the interval scheduling inputs we generated from benchmarks of [19]. For each benchmark with
N tasks, we create an instance I of an interval scheduling problem by randomly selecting n = bN/2c
tasks from the benchmark and randomly permuting them. This sequence serves as the input to all
algorithms. To generate the prediction, we consider 1000 equally distanced values of d ∈ [0, n]. For each
value of d, we initiate the prediction set Î with the set of intervals in I, remove |FN | = d randomly
selected intervals from Î and add to it |FP | = d randomly selected intervals from the remaining N−n
tasks in the benchmark. The resulting set Î is given to Trust and TrustGreedy as prediction Î .

For each value of d, we compute the normalized error γ(Î , I) = Opt(FN∪FP)
Opt(I) , and report the payoff of

Trust and TrustGreedy as a function of γ.

Figure 2 shows the results for two representative benchmarks from [19], namely, LLNL (the workload
of the BlueGene/L system installed at Lawrence Livermore National Lab), SDSC (the workload log
from San Diego Supercomputer Center), NASA-iPSC (scheduling log from Numerical Aerodynamic
Simulation -NAS- Systems Division at NASA Ames Research Center) and CTC-SP2 (Cornell Theory
Center IBM SP2 log). These four benchmarks are selected to represent a variety of input sizes and
interval lengths. These four benchmarks are selected to represent a variety of input sizes and interval
lengths. The results are aligned with our theoretical findings: Trust quickly becomes worse than
Greedy as the error value increases, while TrustGreedy degrades gently as a function of the
prediction error. In particular, TrustGreedy is better than Greedy for almost all error values. We
note that Greedy performs better when there is less overlap between the input intervals, which is
the case in LLNL compared to SDSC. In an extreme case, when no two intervals overlap, Greedy is
trivially optimal. Nevertheless, even for LLNL, TrustGreedy is not much worse than Greedy for
extreme values of error: the payoff for the largest normalized error of γ = 1.87 was 5149 and 5198
for TrustGreedy and Greedy, respectively. Note that for SDSC, where there are more overlaps
between intervals, TrustGreedy is strictly better than Greedy, even for the largest error values. It
is worth noting that, in an extreme case, where FP = FN = n, the predictions contain a completely

different set from the input sequence. In that case, |FP∪FN | = 2n, and γ = Opt(FP∪FN)
Opt(I) takes values

in [1.5, 2].

name input size (N) no. timesteps (m) max. length avg. length

LLNL-uBGL-2006-2 13,225 16,671,553 14,403 1,933.92

NASA-iPSC-1993-3.1 18,066 7,947,562 62,643 772.21

CTC-SP2-1996-3.1 77,205 8,986,769 71,998 11,279.61

SDSC-DS-2004-2.1 84,893 31,629,689 6,589,808 7,579.36

Table 1: Details on the benchmarks from [19] used in our experiments.
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(a) LLNL-uBGL-2006-2 (b) SDSC-DS-2004-2.1-cln

(c) CTC-SP2-1996-3.1-cln (d) NASA-iPSC-1993

Fig. 2: Payoff as a function of normalized error value

(a) LLNL-uBGL-2006-2, no FP (b) LLNL-uBGL-2006-2, no FN

(c) SDSC-DS-2004-2.1-cln, no FP (d) SDSC-DS-2004-2.1-cln, no FN

Fig. 3: Payoff as a function of normalized error value in the absence of false positives (a), (c) and false
negatives (b), (d).
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We also experiment in a setting where false positives and negatives contribute differently to the error
set. We generate the input sequences in the same way as in the previous experiments. To generate
the prediction set Î , we consider 1000 equally-distanced values of d in the range [0, n] as before. We
first consider a setting in which all error is due to false negatives; for that, we generate Î by removing
d randomly selected intervals from I. In other words, Î is a subset of the intervals in I. Figures 3a
and 3c illustrate the payoff of Trust and TrustGreedy in this case. We note that TrustGreedy is
strictly better than both Trust and Greedy. In an extreme case, when d = n, Î becomes empty and
TrustGreedy becomes Greedy; in other words, Greedy is the same algorithm as TrustGreedy
with the empty predictions set Î .

We also consider a setting in which there are no false negatives. For that, we generate Î by adding d
intervals to Î . In other words, Î will be a superset of intervals in I. Figures 3a and 3c illustrate the
payoff of Trust and TrustGreedy in this case. In this case, the payoff of Trust and TrustGreedy
is similar to the setting where both false positives and negatives contributed to the error set. In
particular, Trust quickly becomes worse than Greedy as the error increases, while TrustGreedy
degrades gently as a function of the prediction error.

7 Related Problems: Matching and Independent Set

In [27], the authors observe that finding disjoint paths on stars is equivalent to finding maximal
matchings on general graphs, where each request in the input to the disjoint path selection bijects to
an edge in the input graph for the matching problem. Therefore, we can extend the results of Section 3
to the following online matching problem. The input is a graph G = (V,E), where V is known, and
edges in E appear in an online manner; upon arrival of an edge, it must be added to the matching
or rejected. The prediction is a set Ê that specifies edges in E. As before, we use FP and FN to

indicate the set of false positives and false negatives and define γ(Ê , E) = Opt(FP∪FN)
Opt(E) , where Opt(S)

indicates the size of the matching for graph G = (V, S).

The correspondence between the two problems is as follows: Consider a set of intervals on a star.
Each such interval is a pair of vertices. We can assume no pair contains the star’s center since all such
intervals should be accepted if they can be. For the matching problem, the pairs of vertices from the
disjoint paths problem on the star can be the edges in the graph. A feasible solution to the disjoint
paths problem corresponds to matching and vice versa. One can similarly consider an instance of a
matching problem, and the endpoints of the edges can be the non-center vertices of the star in the
disjoint paths problem.

Using this correspondence between disjoint paths on a star and matchings in general graphs, for the
star S8, we get the following graph for matching: G = (V,E), where V = {1, 2, 3, 4, 5, 6, 7, 8} and

E = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (5, 8), (1, 6), (1, 8)} .

See also Figure 4. Note that the edges in this graph correspond to the intervals that are used in the
proof of Theorem 2. The proof can be simulated in this new setting so that the number of intervals
accepted in the different cases in Theorem 2 is the same as the number of edges in the matchings
found in the corresponding subgraphs of G. Thus, the same result holds for matchings in any graph
class containing this graph.

All edges have one even-numbered endpoint and one odd, so this includes the bipartite graph class.
It is also planar but not an interval or chordal graph.

Given the correspondence between interval scheduling and the matching problem, the following is
immediate from Theorems 1 and 2.

Proposition 3. For any instance G = (V,E) of the online matching problem under the edge-arrival
model and a prediction set Ê , there is an algorithm Trust that matches at least (1−2γ(Ê , E))Opt(G)
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Fig. 4: Left: The graph, G, giving a correspondence between disjoint paths on a star and matchings
in general graphs. Right: The line graph, G′, corresponding to G, where the two digits in a vertex
name in G′ indicate the edge (given by its two endpoints) from G that the vertex corresponds to; the
dashed ellipse indicates the contraction of the two vertices.

edges. Moreover, there are instances Gw = (V,Ew) of the matching problem, along with predictions
Êw for which any deterministic algorithm matches at most (1− 2γ(Ê , E)w)Opt(Gw) edges.

Using the correspondence between matchings in a graph, G, and an independent set in the line graph
of G, we can get the same result for the independent set. The line graph of a graph, G, has a vertex
for each edge in G and an edge between two vertices if the corresponding edges in G share a vertex.

The line graph G′ = (V ′, E′) of the graph above used for matching is defined by

V ′ = {12, 23, 34, 45, 56, 67, 78, 18, 16, 58} ,

where, for brevity, we use the notation 12 to denote the vertex corresponding to the edge (1, 2) from G.
The set of edges is then

E′ = {(12, 23), (23, 34), (34, 45), (45, 56), (56, 67), (67, 78), (78, 18), (18, 16),
(16, 12), (58, 18), (58, 78), (58, 56), (58, 45), (12, 18), (16, 67), (16, 56)}

Intervals from the proof in Theorem 2 correspond to vertices here. See also Figure 4.

We note that the graph G′ is planar, but not outerplanar, since, contracting 67 and 78 into one vertex,
67-78, the sets {16, 58} and {18, 56, 67-78} form a K2,3 minor, which is a so-called forbidden subgraph
for outerplanarity [20,29]. Also, it is not chordal. However, the lower bound from Theorem 3, that
for any deterministic algorithm Alg, there are instances I and predictions Î such that Alg(Î , I) =
Opt(I)−Opt(FP∪FN) clearly holds for independent sets in interval graphs, too, by considering the
interval graph corresponding to a set of intervals on the line.

Using the correspondence between matchings in a graph, G, and the independent set in the line graph
of G, we can get a similar result for the independent set under the vertex-arrival model.
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