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Abstract. We consider single-source shortest path algorithms that per-
form a sequence of relaxation steps whose ordering depends only on the
input graph structure and not on its weights or the results of prior steps.
Each step examines one edge of the graph, and replaces the tentative
distance to the endpoint of the edge by its minimum with the tentative
distance to the start of the edge, plus the edge length. As we prove, among
such algorithms, the Bellman–Ford algorithm has optimal complexity for
dense graphs and near-optimal complexity for sparse graphs, as a function
of the number of edges and vertices in the given graph. Our analysis
holds both for deterministic algorithms and for randomized algorithms
that find shortest path distances with high probability.

1 Introduction

Dijkstra’s algorithm finds shortest paths in directed graphs when all edge weights
are non-negative, but the problem becomes more difficult when negative edge
weights (but not negative cycles) are allowed. In this case, despite recent break-
throughs on near-linear time bounds for graphs with small integer edge weights [5],
the best strongly-polynomial time bound for single-source shortest paths remains
that of the Bellman–Ford algorithm [4,10,18], which takes time O(mn) on graphs
with m edges and n vertices, or O(n3) on dense graphs.

Both Dijkstra’s algorithm and the Bellman–Ford algorithm (as well as an
unnamed linear-time algorithm for single-source shortest paths in directed acyclic
graphs) can be unified under the framework of relaxation algorithms, also called
label-correcting algorithms [8]. These algorithms initialize tentative distances D[v]
from the source vertex to each other vertex v, by setting D[s] = 0 and D[v] = +∞
for v 6= s. Then, they repeatedly relax the edges of the graph. This means, that
for a given edge u→ v, the algorithm updates D[v] to D[u] + length(u→ v). In
Dijkstra’s algorithm, each edge u → v is relaxed once, in sorted order by the
tentative distance D[u]. In the Bellman–Ford algorithm, an edge can be relaxed
many times. The algorithm starts with the tentative distance equal to the correct
distance for s, but not for the other vertices. Whenever the algorithm relaxes an
edge u→ v in the shortest path tree, at a time when u already has the correct
distance, the tentative distance to v becomes correct as well. Thus, the goal in
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designing the algorithm is to perform these distance-correcting relaxations while
wasting as little effort as possible on other relaxations that do not correct any
distance, and on the overhead in selecting which relaxation to perform.

We would like to prove or disprove the optimality of the Bellman–Ford
algorithm among a general class of strongly-polynomial shortest path algorithms,
without restricting the types of computation such an algorithm can perform, but
such a result appears to remain far out of reach. Instead, in this work we focus only
on relaxation algorithms, asking: how few relaxation steps are needed? Note that,
without further assumptions, a shortest path algorithm could “cheat”, computing
a shortest path tree in some other way and then performing only n− 1 relaxation
steps in a top-down traversal of a shortest path tree. To focus purely on relaxation,
and prevent such cheating, we consider non-adaptive relaxation algorithms, in
which the sequence of relaxation steps is determined only by the structure of
the given graph, and not on its weights nor on the outcome of earlier relaxation
steps. Dijkstra’s algorithm is adaptive, but the linear-time DAG algorithm is
non-adaptive. Another example of a non-adaptive algorithm comes from past
work on the graphs in which, like DAGs, it is possible to relax every edge once in a
fixed order and guarantee that all tentative distances are correct [12]. As usually
described, the Bellman–Ford algorithm is adaptive. Its typical optimizations
include adaptive rules that disallow repeatedly relaxing any edge u→ v unless
the tentative distance to u has decreased since the previous relaxation, and
that stop the entire algorithm when no more allowed relaxations can be found.
However, its same asymptotic time bounds can be achieved by a non-adaptive
version of the Bellman–Ford algorithm, with a round-robin relaxation sequence,
one that merely repeats n − 1 rounds of relaxing all edges in the same order
per round. A non-adaptive asynchronous distributed form of the Bellman–Ford
algorithm is widely used in distance vector routing of internet traffic, to maintain
paths of minimum hop count between major internet gateways [13].

1.1 Known Upper Bounds

We do not require non-adaptive relaxation algorithms to be round-robin, but we
are unaware of any way to take advantage of this extra flexibility. Nevertheless,
among round-robin algorithms, there is still freedom to choose the ordering of
edges within each round, and this freedom can lead to improved constant factors
in the number of relaxation steps performed by the Bellman–Ford algorithm.

Yen [21] described a method based on the following idea. Choose an arbitrary
linear ordering for the vertices, and partition the edges into two subsets: the edges
that are directed from an earlier vertex to a later vertex in the ordering, and the
edges that are directed from a later vertex to an earlier vertex. Both of these two
edge subsets define directed acyclic subgraphs of the given graph, with the chosen
linear ordering or its reverse as a topological ordering. Use a round-robin edge
ordering that first relaxes all of the edges of the first subgraph, in its topological
order, and then relaxes all of the edges of the second subgraph, in its topological
order. If any shortest path is divided into contiguous subpaths that lie within one
of these two DAGs, then each two consecutive subpaths from the first and second



DAG will be relaxed in order by each round of the algorithm. In the worst case,
there is a single shortest path of n− 1 edges, alternating between the two DAGs,
requiring dn/2e rounds of relaxation. For complete directed graphs, this method
uses

(
1
2 + o(1)

)
n3 relaxation steps, instead of the

(
1 + o(1)

)
n3 that might be

used by a less-careful round-robin method.
As we showed in earlier work [2], an additional constant factor savings can be

obtained by a randomized algorithm that selects from a random distribution of
non-adaptive relaxation sequences, and that obtains a correct output with high
probability rather than with certainty. To do so, use Yen’s method, but choose
the vertex ordering as a uniformly random permutation of the vertices, rather
than arbitrarily. In any shortest path tree, each vertex with more than one child
reduces the number of steps from the source to the deepest leaf by one, reducing
the number of alternations between the two DAGs. For each remaining vertex
with one child in the tree, the probability that it lies between its parent and
child in the randomly selected ordering is 1

3 , and when this happens, it does not
contribute to the bound on the number of alternations. With high probability, the
number of these non-contributing vertices is close to one third of the single-child
vertices. Therefore, with high probability, the maximum number of alternations
between the two DAGs among paths on the shortest path tree is

(
2
3 + o(1)

)
n,

and an algorithm that uses this method to perform
(
1
3 + o(1)

)
n3 relaxation steps

will find the correct shortest paths with high probability.
The worst-case asymptotic time of these methods remains O(n3) for complete

graphs, and O(mn) for arbitrary graphs with m vertices and n edges. Both Yen’s
method and the randomized permutation method can also be used in adaptive
versions of the Bellman–Ford algorithm, with better constant factors and in the
randomized case leading to a Las Vegas algorithm rather than a Monte Carlo
algorithm, but it is their non-adaptive variants that concern us here.

1.2 New Lower Bounds

We provide the following results:

– Any deterministic non-adaptive relaxation algorithm for single-source shortest
paths on a complete directed graph with n vertices must use

(
1
6 − o(1)

)
n3

relaxation steps.
– Any randomized non-adaptive relaxation algorithm for shortest paths on a

complete directed graph with n vertices, that with high probability sets all
distances correctly, must use

(
1
12 − o(1)

)
n3 relaxation steps.

– For anym and n with n ≤ m ≤ 2
(
n
2

)
, there exists a directed graph onm edges

and n vertices on which any deterministic or high-probability randomized
non-adaptive relaxation algorithm for shortest paths must use Ω(mn/ log n)
relaxation steps. When m = Ω(n1+ε) for some ε > 0, the lower bound
improves to Ω(mn).

These lower bounds hold even on graphs for which all edges weights are zero
and one, for which an adaptive algorithm, Dial’s algorithm, can find shortest
paths in linear time [9].



1.3 Related Work

Although we are not aware of prior work in the precise model of computation that
we use, variants of the Bellman–Ford algorithm have been studied and shown
optimal for some other related problems:

– The k-walk problem asks for a sequence of exactly k edges, starting and one
vertex and ending at the other, allowing repeated edges. The Bellman–Ford
algorithm can be modified to find the shortest k-walk between two vertices in
time O(kn2), non-adaptively. In any non-adaptive relaxation algorithm, the
only arithmetic operations on path lengths and edge weights are addition and
minimization, and these operations are performed in a fixed order. Therefore,
the sequence of these operations can be expanded into a circuit, with two
kinds of gates: minimization and addition. The resulting (min,+)-circuit
model of computation is somewhat more general than the class of relaxation
algorithms, because the sequence of operations performed in this model does
not need to come from a sequence of relaxation steps. The k-walk version of
the Bellman–Ford algorithm is nearly optimal in the (min,+)-circuit model:
circuit size Ω

(
k(n− k)n

)
is necessary [14]. However, this k-walk problem is

different from the shortest path problem, so this bound does not directly
apply to shortest paths.

– Under conditional hypotheses that are standard in fine-grained complexity
analysis, the O(km) time of Bellman–Ford for finding paths of at most k
steps, for graphs of m edges, is again nearly optimal: neither the exponent
of k nor the exponent of m can be reduced to a constant less than one. For
large-enough k, the shortest path of at most k steps is just the usual shortest
path, but this lower bound applies only for choices of k that are small enough
to allow the result to differ from the shortest path [15].

– Another related problem is the all hops shortest path problem, which asks
to simultaneously compute k paths, having distinct numbers of edges from
one to a given parameter k. Again, this can be done in time O(km) by a
variant of the Bellman–Ford algorithm, and it has an unconditional Ω(km)
lower bound for algorithms that access the edge weights only by path length
comparisons, as Bellman–Ford does [6,11]. Because it demands multiple paths
as output, this lower bound does not apply to algorithms that compute only
a single shortest path.

– Meyer et al. [17] study a version of the Bellman–Ford algorithm, in which
edges are relaxed in a specific (adaptive) order. They construct sparse graphs,
with O(n) edges, on which this algorithm takes Ω(n2) time, even in the
average case for edge weights uniformly drawn from a unit interval. This
bound applies only to this algorithm and not to other relaxation orders.

2 Deterministic Lower Bound for Complete Graphs

The simplest of our results, and the prototype for our other results, is a lower
bound on the number of relaxations needed by a deterministic non-adaptive



relaxation algorithm, in the worst case, on a complete directed graph with n
vertices.

Theorem 1. Any deterministic non-adaptive relaxation algorithm for single-
source shortest paths on a complete directed graph with n vertices must use at
least

(
1
6 − o(1)

)
n3 relaxation steps.

Proof. Fix the sequence σ of relaxation steps chosen by any such algorithm.
We will find an assignment of weights for the complete directed graph, such
that the distances obtained by the relaxation algorithm are not all correct until(
1
6 − o(1)

)
n3 relaxation steps have taken place. Therefore, in order for the

algorithm to be correct, it must make this many steps. For the weights we choose,
the shortest path tree will form a single directed path, of n− 1 edges, starting
at the source vertex. In order for the relaxation algorithm to achieve correct
distances to all vertices, its sequence of relaxations must include a subsequence
consisting of all path edges in order. The weights of these edges are unimportant
(because we are considering only non-adaptive algorithms) so we may set all path
edges to have weight zero and all other edges to have weight one.

To determine this path, we choose one at a time its edges in even positions:
its second, fourth, sixth, etc., edge. These chosen edges include every vertex
in the path, so choosing them will also determine the edges in odd positions.
When choosing the ith edge (for an even number i), we make the choice greedily,
to maximize the position in σ of the step that relaxes this edge and makes its
endpoint have the correct distance. Let si denote this position, with s0 = 0 as a
base case recording the fact that, before we have relaxed any edges, the source
vertex already has the correct distance. Then the length of σ is at least equal to
the telescoping sum

(s2 − s0) + (s4 − s2) + (s6 − s4) + · · · .

When choosing edge i, for an even position i, there are i− 1 earlier vertices,
whose position in the shortest path is already determined, and n− i+1 remaining
vertices. Between step si−2 and step si of the relaxation sequence σ, it must relax
all n− i+ 1 edges from the last endpoint of edge i− 2 to one of these remaining
vertices, and all 2

(
n−i+1

2

)
edges between pairs of the vertices that remain to be

corrected. For, if it did not do so, there would be an edge that it had not relaxed,
and choosing this edge next would cause si to be greater; but this would violate
the greedy choice of edge i to make si as large as possible. Therefore,

si − si−2 ≥ (n− i+ 1) + 2

(
n− i+ 1

2

)
= (n− i+ 1)2.

Summing over all b(n− 1)/2c choices of edges in even positions gives, as a
lower bound on the total number of relaxation steps,∑

i=2,4,6,...

si − si−2 ≥
∑

i=2,4,6,...

(n− i+ 1)2 =
n3 − n

6
,

where the closed form for the summation follows easily by induction.



3 Randomized Lower Bound for Complete Graphs

It does not make much sense to consider expected time analysis for non-adaptive
algorithms, because these algorithms have a fixed stopping time (determined as
a function of the given graph), and we want their output to be correct with high
probability rather than in any expected sense. Nevertheless, it is often easier to
lower-bound the expected behavior of randomized algorithms, by using Yao’s
principle [20], according to which the expected cost of a randomized algorithm on
its worst-case input can be lower bounded by the cost of the best deterministic
algorithm against any random distribution of inputs.

In order to convert high-probability time bounds into expectations, we consider
randomized non-adaptive algorithms that are guaranteed to produce the correct
distances, and we define the reduced cost of such an algorithm to be the number of
relaxations that it performs until all distances are correct, ignoring any remaining
relaxations after that point.

Lemma 1. If a randomized non-adaptive relaxation algorithm A takes s(G) steps
on any weighted input graph G and computes all distances from the source vertex
correctly with probability 1− o(1), then there exists a randomized non-adaptive
relaxation algorithm B that is guaranteed to produce correct distances and whose
expected reduced cost, on weighted graphs G with n vertices and m edges, is at
most s(G) + o(mn).

Proof. Construct algorithm B by using the relaxation sequence from algorithm
A, appending onto it the sequence of relaxations from a conventional non-
adaptive deterministic Bellman–Ford algorithm. Then with probability 1− o(1)
the relaxed cost of B counts only the relaxation sequence from algorithm A, of
length s(G). With probability o(1) the relaxed cost extends into the deterministic
Bellman–Ford part of the sequence, of length O(mn). Because this happens with
low probability, its contribution to the expected reduced cost is o(mn).

Corollary 1. Any lower bound on expected reduced cost is also a valid lower
bound, up to an additive o(mn) term, on the number of relaxation steps for a
randomized non-adaptive relaxation algorithm that produces correct distances with
high probability.

With this conversion to expected values in hand, we may now formulate Yao’s
principle as it applies to our problem. We need the following notation:

Definition 1. For any graph G, with a specified source vertex, let WG be the
family of assignments of real weights to edges of G. Let DG be the family of
probability distributions of weights in WG, and let ΣG be the class of relaxation
sequences on G that are guaranteed to produce correct distances from the specified
source vertex. For any randomized non-adaptive relaxation algorithm A and
weight vector w ∈WG, let rG(A, w) denote the expected reduced cost of running
algorithm A on G with edges weighted by w. For σ ∈ ΣG and D ∈ DG let ρG(σ,D)
be the expected reduced cost of sequence σ on weight vectors drawn from D.



Lemma 2 (Yao’s principle). For any graph G with specified source vertex,
and any randomized non-adaptive relaxation algorithm A,

min
A

max
w∈WG

rG(A, w) = max
D∈DG

min
σ∈ΣG

ρG(σ,D).

Proof. This is just the minimax principle for zero-sum games, applied to a game
in which one player chooses a relaxation sequence σ ∈ ΣG, the other player
chooses a weight vector w ∈ WG, and the outcome of the game is the reduced
cost for σ on w. According to that principle, the value of the best mixed strategy
for the sequence player, against its worst-case pure strategy (the left hand side
of the equality in the lemma) equals the value of the best mixed strategy for the
weight player, against its worst-case pure strategy (the right hand side).

Corollary 2. For any weight distribution D ∈ DG, minσ∈ΣG
ρG(σ,D) is a valid

lower bound on the expected reduced cost of any randomized non-adaptive relax-
ation algorithm that is guaranteed to produce correct distances.

Proof. An arbitrary algorithm A can only have a greater or equal value to the
left hand side of Lemma 2, and an arbitrary weight distribution D can only have
a smaller or equal value to the right hand side. So the expected reduced cost of
the algorithm, on a worst-case input, can only be greater than or equal to the
value given for D in the statement of the corollary.

Theorem 2. Any randomized non-adaptive relaxation algorithm for shortest
paths on a complete directed graph with n vertices, that with high probability sets
all distances correctly, must use at least

(
1
12 − o(1)

)
n3 relaxation steps.

Proof. We apply Corollary 2 to a weight distribution D defined as follows: we
choose a random permutation of the vertices of the given complete graph, starting
with the source vertex, we make the weight of edges connecting consecutive
vertices in order along this permutation zero, and we make all other weights one.
Thus, each weighting of the complete graph drawn from this distribution will
have a unique shortest path tree in the form of a single path, with all paths from
the source vertex equally likely. For any weight vector w drawn from D, let πw
be this path.

Let σ be any relaxation sequence in ΣD. As in the proof of Theorem 1, we
define si (for a weight vector w to be determined) to be the step at which the
second endpoint of the ith edge of πw has its shortest path distance set correctly.

Let Ci denote the conditional probability distribution obtained from D by
fixing the choice of the first i edges of πw. Under condition Ci, the remaining
n− i− 1 vertices remain equally likely to be permuted in any order. There are
2
(
n−i−1

2

)
choices for edge i + 2, each of which is equally likely. Therefore, the

expected value of si+2 − si is greater than or equal to the average, among these
edges, of their distance along sequence σ from position si. (It is greater than or
equal, rather than equal, because this analysis does not take into account the
requirement that edge i+ 1 must be relaxed first, before we relax edge i+ 2.)
Sequence σ can minimize this average if, in σ, the next 2

(
n−i−1

2

)
relaxation
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Fig. 1. Schematic view of the graphs used for our lower bound construction

steps after si are exactly these distinct edges. When σ packs the edges in this
minimizing way, the average is 2

(
n−i−1

2

)
/2; for other sequences it can only be

greater. Therefore,

E[si+2 − si | Ci] ≥
(
n− i− 1

2

)
.

Summing these expected differences, over the sequence of values si for even i,
and applying Corollary 1 and Corollary 2, gives the result.

4 Lower Bounds for Incomplete Graphs

In our lower bounds for complete graphs, the edges in even and odd positions of
the shortest paths perform very different functions. The edges in even positions
are the ones that, at each step in the shortest path, force the relaxation sequence
to have a large subsequence of relaxation steps. Intuitively, this is because there
are many possible choices for the edge at the next step and all of these possibilities
(in the deterministic bound) or many of these possibilities (in the randomized
bound) must be relaxed before reaching the edge that is actually chosen. The
edges in odd positions, on the other hand, do not contribute much directly to
the length of the sequence of relaxation steps. Instead, they are used to connect
the edges in the even positions into a single shortest path.

To construct graphs that are not complete, for which we can prove analogous
lower bounds, we make this dichotomy more explicit. For a chosen “capacity”
parameter c, we will construct graphs that have two designated subsets of c
vertices, S and T (with the source vertex contained in subset S). We will connect
the vertices in T to the vertices in S by a biregular bipartite directed graph of
some degree d ≈ m/2c, a graph in which each vertex in T has exactly d outgoing
neighbors and each vertex in S has exactly d incoming neighbors. This biregular



graph will perform the function of the even position edges in our complete graph
lower bounds: it will have many edges to choose from, forcing any relaxation
algorithm to make a long subsequence of relaxations between each two chosen
edges. The detailed structure of this graph is not important for our bounds. In
the other direction, from S to T , we will construct a special graph with the
property that, no matter which sequence of disjoint edges we choose from the
biregular graph, we can complete this sequence to a path. A schematic view of
this construction is depicted in Fig. 1. We begin the more detailed description
of this structure by defining the graphs we need to connect from S to T . The
following definition is standard:

Definition 2. A rearrangeable non-blocking network of capacity c is a directed
graph G with c vertices labeled as inputs, and another c vertices labeled as outputs,
with the following property. For all systems of pairs of inputs and outputs that
include each input and output vertex at most once, there exists in G a system of
vertex-disjoint paths from the input to the output of each pair.

Observation 3. A complete bipartite graph Kc,c, with its edges directed from
c input vertices to c output vertices, is a rearrangeable non-blocking network of
capacity c, with 2c vertices and c2 edges. In this case, the disjoint paths realizing
any system of disjoint input-output pairs is just a matching, formed by the edges
from the input to the output in each pair.

Lemma 4. For any capacity c, there exist rearrangeable non-blocking network
of capacity c with O(c log c) vertices and edges.

Pippenger [19] credits the proof of Lemma 4 to Beizer [3], who used a recursive
construction. A more recent construction of Alon and Capalbo [1] is based on
blowing up an expander graph, producing enough copies of each vertex that a
system of edge-disjoint paths in the expander can be transformed into a system
of vertex-disjoint paths in the non-blocking network. Their networks are non-
blocking in a stronger sense (the vertex-disjoint paths can be found incrementally
and efficiently), but we do not need that additional property. A simple counting
argument shows that o(c log c) edges is not possible: to have enough subsets of
edges to connect c! possible systems of pairs, the number of edges must be at
least log2 c!. For non-blocking networks with fewer vertices and more edges we
turn to an older construction of Clos [7]:

Lemma 5 (Clos [7]). Suppose that there exists a rearrangeable non-blocking
network Gc of capacity c with n vertices and m edges. Then there exists a
rearrangeable non-blocking network of capacity c2 with 3cn − 2c2 vertices and
3cm edges.

Proof. Construct 3c copies ofGc, identified as c input subunits, c internal subunits,
and c output subunits. The input subunits have together c2 input vertices, which
will be the inputs of the whole network. Similarly, the output subunits have
together c2 output vertices, which will be the outputs of the whole network.
Identify each output vertex of an input subunit with an input vertex of an



Fig. 2. Three rearrangeable non-blocking networks of capacity 16. Each network’s input
vertices are in its left column and its output vertices are in the right column. Left:
Complete bipartite graph. Center: Three-stage Clos network, with pairs of input and
output vertices in consecutive stages connected by edges rather than being identified as
single vertices. Right: Nine-stage network obtained by expanding each subunit of the
center network into a three-stage network.

internal subunit, in such a way that each pair of these subunits has exactly one
identified vertex. Similarly, identify each output vertex of an internal subunit
with an input vertex of an output subunit, in such a way that each pair of these
subunits has exactly one identified vertex.

An example of this network, for c = 4 and Gc = K4,4, can be seen in an
expanded form as the middle network of Fig. 2. For greater legibility of the figure,
instead of identifying pairs of vertices between subunits, these pairs have been
connected by added edges. Contracting these edges would produce the network
described above.

To produce vertex-disjoint paths connecting any system of disjoint pairs of
inputs and outputs, consider these pairs as defining a multigraph connecting the
input subunits to the output subunits of the overall network. This multigraph has
maximum degree c (each input or output subunit participates in at most c pairs),
and we may apply a theorem of Dénes Kőnig according to which every bipartite
multigraph with maximum degree c has an edge coloring using c colors [16]. These
colors may be associated with the c internal subunits, and used to designate
which internal subunit each path should pass through. Once this designation is
made, each subunit has its own system of disjoint pairs of inputs and outputs
through which its paths should go, and the paths through each subunit can be
completed using the assumption that it is rearrangeable non-blocking.

Corollary 3. For any constant ε > 0 and any integer c ≥ 1, there exist rear-
rangeable non-blocking networks of capacity c with O(c) vertices and O(c1+ε)
edges.

Proof. We prove the result by induction on the integer i = dlog2 1/εe. As a base
case this is true for ε = 1 (for which i = 0) and for arbitrary c, using the complete
bipartite graph as the network. For smaller values of ε, apply the induction



hypothesis with the parameters 2ε and d
√
ce, to produce a rearrangeable non-

blocking network N of capacity d
√
ce with O(

√
c) vertices and O(c1/2+ε) edges.

Applying Lemma 5 to N produces a rearrangeable non-blocking network of
capacity ≥ c with O(c) vertices and O(c1+ε) edges, as desired. Deleting excess
vertices to reduce the capacity to exactly c completes the induction.

Theorem 3. For any m and n with n ≤ m ≤ 2
(
n
2

)
, there exists a directed graph

on m edges and n vertices on which any deterministic or high-probability random-
ized non-adaptive relaxation algorithm for shortest paths must use Ω(mn/ log n)
relaxation steps. When m = Ω(n1+ε) for some ε > 0, the lower bound improves
to Ω(mn).

Proof. We construct a graph according to the construction outlined above, in
which we choose a capacity c, set up two disjoint sets S and T of c vertices,
connect T to S by a biregular bipartite digraph of some degree d, and connect
S to T by a rearrangeable non-blocking network of capacity c. We allocate
at least m/2 edges to the biregular graph, and the rest to the non-blocking
network, giving d ≈ m/2c. For the Ω(mn/ log n) bound, we use the non-blocking
network of Lemma 4, with c = Θ(n/ log n). For the Ω(mn) bound, we use the
non-blocking network of Corollary 3, with c = Θ(n). In both cases, we can choose
the parameters of these networks to achieve these asymptotic bounds without
exceeding the given numbers n and m of vertices and edges. We pad the resulting
graph with additional vertices and edges in order to make the numbers of vertices
and edges be exactly n and m, and set the weights of these padding edges to be
high enough that they do not interfere with the remaining construction.

Next, we choose a random distribution on weights for the resulting network so
that, for every relaxation sequence σ, the expected reduced cost of σ, for weights
from this distribution, matches the lower bound in the statement of the lemma.
For deterministic non-adaptive relaxation algorithms, this will give the desired
lower bound directly, via the simple fact that the worst case of any distribution is
always at least its expectation. For randomized algorithms, the lower bound will
follow using Corollary 1 and Corollary 2 to convert the lower bound on expected
reduced cost into a high-probability lower bound.

As in Theorem 2, the random distribution on weights that we use is determined
from a random distribution on paths from the source, such that the shortest path
tree for the weighted graph will contain the chosen path. We can accomplish this
by setting the lengths of the path edges to zero and all other edge lengths to one.
Unlike in Theorem 2, these paths will not necessarily include all vertices in the
graph and the shortest path tree may contain other branches. To choose a random
path, we simply choose a sequence of edges in the biregular graph, one at a time,
in order along the path. In each step, we choose uniformly at random among
the subset of edges in the biregular graph that are disjoint from already-chosen
edges. Because of the biregularity of the biregular part of our graph, each chosen
edge is incident to at most 2(d− 1) other edges, and eliminates these other edges
from being chosen later. At least c/2 choices are possible before there are no
more disjoint edges, and throughout the first c/4 choices there will remain at



least m/4 edges to choose from, disjoint from all previous edges. The sequence
ends when there are no more such edges to choose. Once we have chosen this
sequence of edges from the biregular graph, we construct a set of vertex-disjoint
paths in the rearrangeable nonblocking network that connects them in sequence
into a single path.

For any given relaxation sequence σ, as in the proof of Theorem 2, let τ be
the subsequence of edges in σ that belong to the biregular part of the graph,
and consider a modified relaxation algorithm that, after relaxing each edge in τ ,
immediately relaxes all edges of the non-blocking network. Define the reduced
cost for τ to be the number of relaxation steps made from τ before all distances
are correct, not counting the relaxation steps in the non-blocking network. Clearly,
this is at most equal to the reduced cost for σ, because σ might fail to relax
a path in the non-blocking network when τ succeeds, causing the computation
of shortest path distances using σ to fall behind that for τ . Define ti to be the
step in the relaxation sequence for τ that relaxes the ith chosen edge from the
biregular graph, making the distance to its ending vertex correct. Then the
expectation of ti − ti−1 (conditioned on the choice of the first i− 1 edges is at
least the average, over all edges that were available to be chosen as the ith edge,
of the number of steps along τ from ti−1 to the next occurrence of that edge.
This expectation is minimized when the edges occurring immediately following
position ti−1 in τ are exactly the next available edges, and is equal to half the
number of available edges; for other possibilities for τ , the expectation can only
be even larger. The expected reduced cost for τ equals the sum of these differences
ti − ti−1. Since there are Ω(c) steps in which the number of available edges is
Ω(m), the expected reduced cost for τ is Ω(cm). The expected reduced cost for σ
can only be larger, and plugging in the value of c (coming from our choice of
which type of non-blocking network to use) gives the result.

5 Conclusions and Open Problems

We have shown that, for a wide range of choices for m and n, the Bellman–Ford
algorithm is asymptotically optimal among non-adaptive relaxation algorithms.
Adaptive versions of the Bellman–Ford algorithm are faster, but only by constant
factors. Is it possible to prove that, among adaptive relaxation algorithms,
Bellman–Ford is optimal? Doing so would require a careful specification of what
information about the results of relaxation steps can be used in choosing how to
adapt the relaxation sequence.

The constant factors of 1
6 and 1

12 in our deterministic and randomized lower
bounds for complete graphs are far from the constant factors of 1

2 and 1
3 in

the corresponding upper bounds. Can these gaps be tightened? Is it possible to
make them tight enough to distinguish deterministic and randomized complexity?
Alternatively, is it possible to improve the deterministic methods to match the
known randomized upper bound?



For sparse graphs (m = O(n)), our lower bound falls short of the Bellman–Ford
upper bound by a logarithmic factor. Can the lower bound in this range be
improved, or can the Bellman–Ford algorithm for sparse graphs be improved?

In this work, we considered the worst-case number of relaxation steps used
by non-adaptive relaxation algorithms for the parameters m and n. But it is also
natural to look at this complexity for individual graphs, with unknown weights.
For any given graph, there is some relaxation sequence that is guaranteed to find
shortest path distances for all weightings of that graph, with as few relaxation
steps as possible. An algorithm of Haddad and Schäffer [12] can find such a
sequence for the special case of graphs for which it is as short as possible, one
relaxation per edge. What is the complexity of finding or approximating it more
generally?
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