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Abstract
A linear layout of a graph G consists of a linear order ă of the vertices and a partition of the edges.
A part is called a queue (stack) if no two edges nest (cross), that is, two edges pv, wq and px, yq with
v ă x ă y ă w (v ă x ă w ă y) may not be in the same queue (stack). The best known lower and
upper bounds for the number of queues needed for planar graphs are 4 [Alam et al., Algorithmica
2020] and 42 [Bekos et al., Algorithmica 2022], respectively. While queue layouts of special classes
of planar graphs have received increased attention following the breakthrough result of [Dujmović
et al., J. ACM 2020], the meaningful class of bipartite planar graphs has remained elusive so far,
explicitly asked for by Bekos et al. In this paper we investigate bipartite planar graphs and give an
improved upper bound of 28 by refining existing techniques. In contrast, we show that two queues
or one queue together with one stack do not suffice; the latter answers an open question by Pupyrev
[GD 2018]. We further investigate subclasses of bipartite planar graphs and give improved upper
bounds; in particular we construct 5-queue layouts for 2-degenerate quadrangulations.
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1 Introduction

Since the 1980s, linear graph layouts have been a central combinatorial problem in topological
graph theory, with a wealth of publications [7, 8, 12,17,20,21,22,26,27,36]. A linear layout
of a graph consists of a linear order ă of the vertices and a partition of the edges into stacks
and queues. A part is called a queue (stack) if no two edges of this part nest (cross), that
is, two edges pv, wq and px, yq with v ă x ă y ă w (v ă x ă w ă y) may not be in the
same queue (stack). Most notably, research has focused on so-called stack layouts (also
known as book-embeddings) and queue layouts where either all parts are stacks or all parts
are queues, respectively. While these kinds of graph layouts appear quite restrictive on
first sight, they are in fact quite important in practice. For instance, stack layouts are used
as a model for chip design [17], while queue layouts find applications in three-dimensional
network visualization [14,22,24]. For these applications, it is important that the edges are
partitioned into as few stacks or queues as possible. This notion is captured by the stack
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2 Linear Layouts of Bipartite Planar Graphs

number, snpGq, and queue number, qnpGq, of a graph G, which denote how many stacks or
queues are required in a stack and a queue layout of G, respectively. Similarly, mixed linear
layouts, where both stacks and queues are allowed, have emerged as a research direction in
the past few years [3, 18,31].

Recently, queue layouts have received much attention as several breakthroughs were made
which pushed the field further. Introduced in 1992 [27], it was conjectured in the same
year [26], that all planar graphs have a bounded queue number. Despite various attempts at
settling the conjecture [5, 6, 10, 20], it remained unanswered for almost 30 years. In 2019, the
conjecture was finally affirmed by Dujmović, Joret, Micek, Morin, Ueckerdt and Wood [21].
Their proof relies on three ingredients: First, it was already known that graphs of bounded
treewidth have bounded queue number [34]. Second, they showed that the strong product
of a graph of bounded queue number and a path has bounded queue number. Finally, and
most importantly, they proved that every planar graph is a subgraph of the strong product
of a path and a graph of treewidth at most 8. In the few years following the result, both
queue layouts [1, 7, 13,19,28] and graph product structure [9, 15,16,29,33,35] have become
important research directions. Yet, after all recent developments, the best known upper
bound for the queue number of planar graphs is 42 [7] whereas the best known corresponding
lower bound is 4 [2]. This stands in contrast to a tight bound of 4 for the stack number of
planar graphs [11,36].

It is noteworthy that better upper bounds of the queue number are known only for certain
subclasses of planar graphs, such as planar 3-trees [2] and posets [1], or for relaxed variants of
the queue number [28]. It remains elusive how other properties of a graph, such as a bounded
degree or bipartiteness, can be used to reduce the gap between the lower and the upper
bounds on the queue number; see also the open problems raised in [7] which contains the
currently best upper bound. This is partially due to the fact that it is not well understood
how these properties translate into the product structure of the associated graph classes.
In fact, the product structure theorem has been improved for general planar graphs [33]
while, to the best of our knowledge, there are very few results that yield stronger properties
for subclasses thereof. Here, we contribute to this line of research by studying bipartite
planar graphs.

Results. Our paper focuses on the queue number of bipartite graphs and subclasses thereof.
We start by revisiting results from the existing literature in Section 2. In particular, we
discuss techniques that are used to bound the queue number of general planar graphs by
42 [7, 21] and refine them to obtain an improved upper bound on the queue number of
bipartite planar graphs.

§ Theorem 1. The queue number of bipartite planar graphs is at most 28.

We then improve this bound for interesting subfamilies of bipartite planar graphs. For
this we first prove a product structure theorem for stacked quadrangulations, which is a
family of graphs that may be regarded as a bipartite variant of planar 3-trees. We remark
that we avoid the path factor that is present in most known product structure theorems.

§ Theorem 2. Every stacked quadrangulation is a subgraph of H b C4, where H is a planar
3-tree.

In fact, our result generalizes to similarly constructed graph classes. Based on Theorem 2,
we improve the upper bound on the queue number of stacked quadrangulations.

§ Theorem 3. The queue number of stacked quadrangulations is at most 21.
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Complementing our upper bounds, we provide lower bounds on the queue number and
the mixed page number of bipartite planar graphs in Section 4. Both results improve the
state-of-the-art for bipartite planar graphs, while additionally providing a lower bound for
the special case of 2-degenerate bipartite planar graphs. We remark that Theorem 5 answers
a question asked in [3, 18,31].

§ Theorem 4. There is a 2-degenerate bipartite planar graph with queue number at least 3.

§ Theorem 5. There is a 2-degenerate bipartite planar graph that does not admit a 1-queue
1-stack layout.

For this purpose, we use a family of 2-degenerate quadrangulations. Finally, inspired by
our lower bound construction, we conclude with investigating this graph class.

§ Theorem 6. Every 2-degenerate quadrangulation admits a 5-queue layout.

Outline. We start with basic results on the queue number of bipartite planar graphs in
Section 2, where we prove Theorem 1. Section 3 provides a definition of stacked quadrangu-
lations and an investigation of their structure including proofs of Theorems 2 and 3. We
continue with lower bounds in Section 4 and then further investigate the graphs constructed
there in Section 5, in particular we prove Theorem 6.

2 Preliminaries

In this section, we introduce basic definitions and tools that we use to analyze the queue
number of bipartite planar graphs and refine them to prove Theorem 1.

2.1 Definitions
Classes of bipartite planar graphs. In this paper, we study subclasses of planar graphs,
that is graphs admitting a planar drawing. A special type of planar drawings are leveled
planar drawings where the vertices are placed on a sequence of parallel lines (levels) and
every edge joins vertices in two consecutive levels. We call a graph leveled planar if it admits
a leveled planar drawing.

A planar drawing partitions the plane into regions called faces. It is well known that
the maximal planar graphs, that is, the planar graphs to which no crossing-free edge can
be added, are exactly the triangulations of the plane, that is, every face is a triangle. We
focus on the maximal bipartite planar graphs which are exactly the quadrangulations of the
plane, that is, every face is a quadrangle. In the following, we introduce interesting families
of quadrangulations.

One such family are the stacked quadrangulations that can be constructed as follows.
First, a square is a stacked quadrangulation. Second, if G is a stacked quadrangulation and
f is a face of G, then inserting a plane square S into f and connecting the four vertices of S

with a planar matching to the four vertices of f again yields a stacked quadrangulation. Note
that every face has four vertices, that is, the constructed graph is indeed a quadrangulation.
We are particularly interested in this family of quadrangulations as stacked quadrangulations
can be regarded as the bipartite variant of the well-known graph class planar 3-trees which
are also known as stacked triangulations. This class again can be recursively defined as
follows: A planar 3-tree is either a triangle or a graph that can be obtained from a planar
3-tree by adding a vertex v into some face f and connecting v to the three vertices of f . This
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class is particularly interesting in the context of queue layouts as it provides the currently
best lower bound on the queue number of planar graphs [2].

The notions of stacked triangulations and stacked quadrangulations can be generalized as
follows using once again a recursive definition. For t ě 3 and s ě 1, any connected planar
graph of order at most s is called a pt, sq-stacked graph. Moreover, for a pt, sq-stacked graph
G and a connected planar graph G1 with at most s vertices, we obtain another pt, sq-stacked
graph G2 by connecting G1 to the vertices of a face f of G in a planar way such that each face
of G2 has at most t vertices. Note that we do not require that the initial graph G and the
connected stacked graph G1 of order at most s in the recursive definition have only faces of
size at most t as this will not be required by our results in Section 3. If in each recursive step
the edges between G1 and the vertices of f form a matching, then the resulting graph is called
an pt, sq-matching-stacked graph. Now, in particular p3, 1q-stacked graphs are the planar
3-trees while the stacked quadrangulations are a subclass of the p4, 4q-matching-stacked
graphs. In addition, p3, 3q-stacked graphs are the stacked octahedrons, which were successfully
used to construct planar graphs that require four stacks [11,37].

In addition to graphs obtained by recursive stacking operations, we will also study graphs
that are restricted by degeneracy. Namely, we call a graph G “ pV, Eq d-degenerate if there
exists a total order pv1, . . . , vnq of V , so that for 1 ď i ď n, vi has degree at most d in
the subgraph induced by vertices pv1, . . . , viq. Of particular interest will be a family of
2-degenerate quadrangulations discussed in Section 4. It is worth pointing out that there are
recursive constructions for triconnected and simple quadrangulations that use the insertion
of degree-2 vertices and p4, 4q-matching stacking in their iterative steps [25].

Linear layouts. A linear layout of a graph G “ pV, Eq consists of an order ă of V and a
partition P of E. Consider two disjoint edges pv, wq, px, yq P E. We say that pv, wq nests
px, yq if v ă x ă y ă w, and we say that pv, wq and px, yq cross if v ă x ă w ă y. For
each part P P P we require that either no two edges of P nest or that no two edges of P

cross. We call P a queue in the former and a stack in the latter case. Let Q Ď P denote
the set of queues and let S Ď P denote the set of stacks; such a linear layout is referred
to as a |Q|-queue |S|-stack layout. If Q ‰ H and S ‰ H, we say that the linear layout
is mixed, while when S “ H, it is called a |Q|-queue layout. The queue number, qnpGq,
of a graph G is the minimum value q such that G admits a q-queue layout. Heath and
Rosenberg [27] characterize graphs admitting a 1-queue layout in terms of arched-leveled
layouts. In particular, this implies that each leveled planar graph admits a 1-queue layout.
Indeed a bipartite graph has queue number 1 if and only if it is leveled planar [4].

In the remainder of this subsection, we define important tools that have been used in the
context of linear layouts in the past and also are essential in our proofs.

Important tools. The strong product G1bG2 of two graphs G1 and G2 is a graph with vertex
set V pG1q ˆ V pG2q and an edge between two vertices pv1, v2q and pw1, w2q if (i) v1 “ w1
and pv2, w2q P EpG2q, (ii) v2 “ w2 and pv1, w1q P EpG1q, or (iii) pv1, w1q P EpG1q and
pv2, w2q P EpG2q.

Given a graph G, an H-partition of G is a pair
`

H, tVx : x P V pHqu
˘

consisting of a
graph H and a partition of V into sets tVx : x P V pHqu called bags such that for every edge
pu, vq P E one of the following holds: (i) u, v P Vx for some x P V pHq, or (ii) there is an
edge px, yq of H with u P Vx and v P Vy. In Case (i), we call pu, vq an intra-bag edge, while
we call it inter-bag in Case (ii). To avoid confusion with the vertices of G, the vertices of H

are called nodes. The width of an H-partition is defined as the maximum size of a bag. It
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is easy to see that a graph G has an H-partition of width w if and only if it is a subgraph
of H b Kw (compare Observation 35 of [21]). In the case where H is a tree, we call the
H-partition a tree-partition. We refer to Figure 15 for an example of a tree-partition.

A related concept to H-partitions are tree decompositions. Given a graph G, a tree
decomposition of G is a pair

`

T, tBx : x P V pT qu
˘

consisting of a tree T where every vertex
x P V pT q is associated with a subset Bx, called bag, of the vertices of G so that the following
hold: (i)

Ť

xPV pT q Bx “ V pGq, (ii) for each pu, vq P EpGq there exists at least one bag Bx

so that u P Bx and v P Bx, and (iii) for every v P V pGq, the set of nodes whose bags contain
v induce a connected subtree of T . Observe that in contrast to a tree-partition, the bags are
in general not disjoint. The treewidth of a tree decomposition is the cardinality of the largest
bag minus one. Moreover, the treewidth of a graph is the minimum treewidth of any of its
tree decompositions.

2.2 General Bipartite Planar Graphs
Following existing works on queue layouts of planar graphs, we get the following upper bound
for the class of bipartite planar graphs.

§ Theorem 1. The queue number of bipartite planar graphs is at most 28.

A key component of the state-of-the-art bounds on the queue number of planar graphs
are H-partitions with low layered width. A BFS-layering of G is a partition of V pGq into
L “ pV0, V1, . . .q such that Vi contains exactly the vertices with graph-theoretic distance i

from a specified vertex r P V pGq. We refer to each Vi as a layer. We say that an H-partition
pH, tAx : x P V pHquq of a graph G has layered-width ℓ if and only if there is a BFS-layering
L “ pV0, V1, . . .q of G so that for every x P V pHq and every i it holds that |Ax X Vi| ď ℓ.
The following theorem plays an important role in computing queue layouts for planar graphs
with a constant number of queues.

Ź Claim 7 (Theorem 15 of [21]). Every planar graph G has an H-partition with layered-width
3 such that H is planar and has treewidth at most 3. Moreover, there is such a partition for
every BFS layering of G.

There are two noteworthy observations regarding Claim 7. First, for a bipartite planar
graph with parts A and B so that V “ A 9YB, a BFS-layering L “ pV0, V1, . . .q is so that
without loss of generality for every integer k, it holds V2k X B “ H and V2k`1 X A “ H.
We will call such a layering bichromatic and we say that an H-partition tAx|x P V pHqu of
a bipartite graph G has bichromatic layered-width ℓ if and only if there is a bichromatic
BFS-layering L “ pV0, V1, . . .q of G so that for every x P V pHq and every i it holds that
|Ax X Vi| ď ℓ.

Second, on the other hand, the proof of Claim 7 assumes G to be triangulated. Hence, it
is not immediate, that the following special case of Claim 7 is true:

§ Lemma 8. Every bipartite planar graph G has a H-partition with bichromatic layered-width
3 such that H is planar and has treewidth at most 3.

Proof. We begin by quadrangulating the input graph G obtaining the quadrangulation
G1. Then, we perform a BFS traversal of G1. In the resulting layering, every quadrangle
q “ pa1, b1, a2, b2q is (up to relabeling) either such that a1 P Vi, b1, b2, P Vi`1 and a2 P Vi`2
or such that a1, a2 P Vi, b1, b2, P Vi`1. In either case, we can triangulate q with edge pb1, b2q.
Applying this procedure to all quadrangles yields a triangulated supergraph G2 that has the
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property that the layering obtained from G1 still is a valid layering for G2. Then, we can
apply Claim 7 to obtain the H-partition for G2 which serves as the required bichromatic
H-partition for graph G. đ

Based on this decomposition, Dujmović et al. [21] compute a queue-layout using the
following lemma:

Ź Claim 9 (Lemma 8 of [21]). For all graphs H and G, if H has a k-queue layout and G has
an H-partition of layered-width ℓ with respect to some layering pV0, V1, . . .q of G, then G

has a p3ℓk ` t 3
2 ℓuq-queue layout using vertex order ÝÑ

V0,
ÝÑ
V1, . . ., where ÝÑ

Vi is some order of Vi.
In particular,

qnpGq ď 3ℓ qnpHq `

Z

3
2ℓ

^

. (1)

In order to improve the lemma for bipartite planar graphs, we briefly sketch which
components the upper bound of qnpGq in (1) is composed of.

Sketch of the proof of Claim 9. The main argument here, is to classify edges as intra-bag
or inter-bag as well as as intra-layer or inter-layer. Namely, an edge is called intra-bag if its
two endpoints occur in the same bag Ax with x P V pHq. Otherwise, it is called inter-bag.
Similarly, an edge is called intra-layer if both its endpoints occur on the same layer Vi,
otherwise it is called inter-layer.

For each classification of edges, different queues are used. More precisely:
E.1 Intra-layer intra-bag edges may induce a Kℓ, hence there are at most t ℓ

2 u queues needed
for such edges.

E.2 Inter-layer intra-bag edges may induce a Kℓ,ℓ, hence there are at most ℓ queues needed
for such edges.

E.3 Intra-layer inter-bag edges corresponding to the same edge of H may induce a Kℓ,ℓ,
hence there are at most ℓk queues needed for such edges as H has queue number at
most k.

E.4 Inter-layer inter-bag forward1 edges corresponding to the same edge of H may induce a
Kℓ,ℓ, hence there are at most ℓk queues needed for such edges as H has queue number
at most k.

E.5 Inter-layer inter-bag backward edges corresponding to the same edge of H may induce a
Kℓ,ℓ, hence there are at most ℓk queues needed for such edges as H has queue number
at most k.

This yields at most t 3
2 ℓu intra-bag edges and at most 3ℓk inter-bag edges. đ

Given a H-partition with bounded bichromatic layered-width, Claim 9 can obviously be
refined as follows:

§ Lemma 10. For all graphs H and G, if H has a k-queue layout and G has a H-partition
of bichromatic layered-width ℓ with respect to some bichromatic layering pV0, V1, . . .q of G,
then G has a p2ℓk ` ℓq-queue layout using vertex order ÝÑ

V0,
ÝÑ
V1, . . ., where ÝÑ

Vi is some order of
Vi. In particular,

qnpGq ď 2ℓ qnpHq ` ℓ. (2)

1 Let pu, vq be an inter-layer inter-bag edge so that u P Ax and v P Ay. Then, pu, vq is called forward if
and only if x precedes y in the k-queue layout of H. Otherwise, it is called backward.
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Proof. Since the layering is bichromatic, we observe that G contains no intra-layer edges.
These are accounted with at most t ℓ

2 u intra-bag queues (E.1) and at most kℓ inter-bag
queues (E.3) in the proof of Claim 9. Hence, the statement follows. đ

Lemma 8 and Lemma 10 already imply that every planar bipartite graph G has a 33-queue
layout (as planar 3-trees have queue number at most 5). This bound can be reduced to 28
following the modifications of Bekos et al. [7]. Namely, Bekos et al. apply the following
modifications:

B.1 Additional constraints are maintained for a proper layered drawing algorithm for outer-
planar graphs.

B.2 Based on (B.1), additional constraints for the 5-queue layout of planar 3-trees are shown.
B.3 Degenerate tripods2 in the H-decomposition of G are excluded by inserting a three new

vertices inside each face f of the triangulated graph G and triangulating appropriately.
In particular, the three new vertices inside f become leafs in the augmented BFS-tree,
that is, the BFS-layering of the original graph G stays intact.

B.4 Based on (B.1) to (B.3), the order of vertices within each layer is chosen more carefully
when applying Claim 9.

As a result, Bekos et al. obtain the following:

Ź Claim 11 (Lemmas 5 and 6 of [7]). In the queue layout computed by the modifications (B.1)
to (B.4) of the algorithm of Dujmović et al. [21], the intra-bag inter-layer edges (see E.2) can
be assigned to at most 2 queues while each set of inter-bag edges (see (E.3) to (E.5)) can be
assigned to at most 13 queues.

We are now ready to prove Theorem 1:

Proof of Theorem 1. By Lemma 8, for every bipartite planar graph G there is a H-partition
with bichromatic layered width 3 such that H is planar and has treewidth at most 3. We then
apply Lemma 10 and Claim 11. In particular, we observe that Claim 11 is applicable since
none of the modifications described in Steps (B.1) to (B.4) interfere with our bichromatic
layering. Namely, (B.1) and (B.2) directly operate on H while (B.3) and (B.4) respect the
layering. Hence, by Claim 11, for bipartite planar graphs we need 2 queues for intra-bag
inter-layer edges (E.2) and in total 26 queues for inter-bag inter-layer edges (E.4 and E.5)
resulting in 28 queues overall. đ

3 Structure of Stacked Quadrangulations

In this section we investigate the structure of stacked quadrangulations and then deduce an
upper bound on the queue number. In particular we show that every stacked quadrangulation
is a subgraph of the strong product H b C4, where H is a planar 3-tree. Recall that stacked
quadrangulations are p4, 4q-matching-stacked graphs. For ease of presentation, we first prove
a product structure theorem for general pt, sq-stacked graphs as it prepares the proof for the
matching variant.

§ Theorem 12. For t ě 3, s ě 1, every pt, sq-stacked graph G is a subgraph of H b Ks for
some planar graph H of treewidth at most t.

2 A tripod is the content of a bag of H. It consists of a triangle from which three vertical paths (traversing
the BFS-layering in order) emerge (and potentially some edges between such paths). In a degenerate
tripod, one of the paths consists of a single vertex.
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Proof. In order to prove the theorem, we need to find an H-partition of G, and a tree
decomposition T of H with treewidth at most t, where H is a planar graph. Given a
pt, sq-stacked graph G for t ě 3 and s ě 1 and its construction sequence, we define the
H-partition

`

H, tVx : x P V pHqu
˘

of width at most s as follows. In the base case we have
a graph of size at most s whose vertices all are assigned to a single bag Vx0 . Then in each
construction step we add a new bag, say Vv1 that contains all new vertices (those of the
inserted graph G1). Thus each bag contains at most s vertices, that is, the width of the
H-partition is at most s. For u P Vx and v P Vy, if G contains edge pu, vq then we connect x

and y in H.
Next, we define a tree decomposition

`

T, tBx : x P V pT qu
˘

of H. We again give the
definition iteratively following the construction sequence of G. We thereby maintain as
an invariant that for each face f of the current subgraph of G, there is a bag Byf

in T

containing all vertices x of H for which Vx contains a vertex of f . In the base case, the tree
decomposition contains a single bag that only contains node x0. Now consider a recursive
construction step, that is a connected graph G1 of order at most s is inserted into some face f

yielding a new pt, sq-stacked graph G2. Recall that there is a node v1 in H with Vv1 “ V pG1q.
Let F Ď V pHq denote the nodes x of H such that Vx contains a vertex of f . By induction
hypothesis, there exists a node yf in T such that Byf

contains F . We add a new node y

as a leaf of yf associated with bag By “ F Y tv1u. We observe that this procedure indeed
yields a tree decomposition of G2. Moreover, the new bag By contains all nodes of H that
contain vertices of newly generated faces. Also note that each bag of T contains at most t ` 1
vertices, where t is the maximum size of a face in the construction process of G. Together
with the observation that H is a minor of G and thus planar, this proves Theorem 12. đ

We now extend our ideas to the following product structure theorem. Note that we use
the same H-partition and show that the treewidth is at most t ´ 1.

§ Theorem 13. For t ě 3, s ě 2, every pt, sq-matching-stacked graph G is a subgraph of
H b Ks for some planar graph H of treewidth at most t ´ 1.

Proof. Given a pt, sq-matching-stacked graph G for t ě 3, s ě 2, we compute its H-partition
and the tree decomposition T of H as in the proof of Theorem 12. By construction, the
width of the H-partition is at most s and H is a minor of G and thus planar. So it suffices
to show that each bag of T contains at most t nodes of H (instead of t ` 1). This is clearly
true for the root-node of T whose bag has only one node of H. Consider a step in the
construction of G, that is, we have a face f bounded by at most t vertices, and we place
a connected subgraph G1 of order at most s inside. Assume that each of the bags placed
before introducing G1 contains at most t nodes of H. Again, v1 denotes the vertex of H with
Vv1 “ V pG1q, F is the set of nodes whose bags contain at least one vertex of f , and node yf

is the node whose bag Byf
contains F . Further y is the node of H with By “ F Y tv1u that

is introduced as a leaf of yf during this step.
We claim that F has at most t ´ 1 nodes of H and therefore By contains at most t nodes.

Consider the step where face f was created. During that step a subgraph G2 was added
inside some face f 1. So, if f is an interior face of G2, it follows that F contains only one
node of H, namely v2 for which Vv2 “ V pG2q. On the other hand, as G2 is connected to
the boundary of f 1 with a matching, at least two vertices of f belong to V pG2q. Hence
the remaining vertices of f belong to at most t ´ 2 bags associated with nodes of H and
thus the set F has at most t ´ 1 nodes as claimed. We conclude that each bag of the tree
decomposition contains at most t nodes of H. đ
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Theorem 12 shows that every stacked quadrangulation is a subgraph of H b K4, where
H is a planar graph with treewidth at most 4. However, stacked quadrangulations are also
p4, 4q-matching-stacked graphs and, hence, by Theorem 13 they are subgraphs of H b K4,
where H is a planar 3-tree. In the following we improve this result by replacing K4 by C4.

§ Theorem 2. Every stacked quadrangulation is a subgraph of H b C4, where H is a planar
3-tree.

Proof. Given a stacked quadrangulation G and its construction sequence, we compute its
H-partition as described above. Note that in Theorem 13, we show that H is a planar 3-tree.
It remains to show that H does not only certify that G Ď H b K4 (Theorem 13) but also
the stronger statement that G Ď H b C4. That is, we need to show that in order to find
G in the product, we only need edges that show up in the product with C4. In each step
of the construction of G we insert a 4-cycle into some face f . Hence, for each node x of H

the bag Vx consists of a 4-cycle denoted by pvx
0 , vx

1 , vx
2 , vx

3 q. We label the four vertices with
0, 1, 2, 3 such that for i “ 0, 1, 2, 3 vertex vx

i`k is labeled i for some offset k (all indices and
labels taken modulo 4).

As the labels appear consecutively along the 4-cycle, the strong product allows for edges
between two vertices of distinct bags if and only if their labels differ by at most 1 (mod
4). That is we aim to label the vertices of each inserted 4-cycle so that each inter-bag edge
connects two vertices whose labels differ by at most 1. We even prove a slightly stronger
statement, namely that offset k can be chosen for a newly inserted bag Vx such that the
labels of any two vertices v and v1 in G connected by an inter-bag edge differ by exactly 1.
Indeed, assuming this for now, we see that if pv, v1q is an inter-bag edge with v P Vx and
v1 P Vy, then px, yq P EpHq. For this recall that Vx and Vy induce two 4-cycles. Assume
that v “ vx

i with label i and v1 “ vy
j is labeled j, where 0 ď i, j ď 3. As the two labels

differ by exactly 1, we have j “ i ` 1 pmod 4q or j “ i ´ 1 pmod 4q. Now in the strong
product H b C4, vertex vx

i is connected to all of vy
i´1, vy

i , vy
i`1, that is, the edge pv, v1q exists

in H b C4. It is left to prove that the labels can indeed by chosen as claimed. As shown in
Figure 1, starting with a 4-cycle with labels 0, 1, 2, 3 from the initial 4-cycle, we obtain three
types of faces that differ in the labeling of their vertices along their boundary: Type (a) has
labels i, i ` 1, i ` 2, i ` 3, (0 ď i ď 3), Type (b) has labels i, i ` 1, i ` 2, i ` 1, (0 ď i ď 3),
and Type (c) has labels i, i ` 1, i, i ` 1 (0 ď i ď 3). In each of the three cases we are able
to label the new 4-cycle so that the labels of the endpoints of each inter-bag edge differ by
exactly 1, see Figure 1 and also Figure 2 for an example. This concludes the proof. đ

Theorem 2 gives an upper bound of 21 on the queue number of stacked quadrangula-
tions, compared to the upper bound of 5 on the queue number of planar 3-trees (stacked
triangulations) [2].

§ Theorem 3. The queue number of stacked quadrangulations is at most 21.

Proof. In general, we have that qnpH1 b H2q ď |V pH2q| ¨ qnpH1q ` qnpH2q by taking a
queue layout of H2 and replacing each vertex with a queue layout of H1 [21, Lemma 9]. In
particular, we conclude that qnpH b C4q ď 4 ¨ qnpHq ` 1. As the queue number of planar
3-trees is at most 5 [2], Theorem 2 gives an upper bound of 4 ¨ 5 ` 1 “ 21. đ

4 Lower Bounds

This section is devoted to lower bounds on the queue number and mixed page number of
bipartite planar graphs. We use the same family of 2-degenerate quadrangulations Gdpwq for
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3 0

2 1

0 1

23

(a)

(b)

(b)

(b)

(b)

Type (a)

3 0

2 1

0 1

21

(a)

(b)

(b)

(c)

(a)

Type (b)

3 0

2 1

0 1

01

(a)

(b)

(c)

(b)

(a)

Type (c)

Figure 1 The three types of faces defined in the proof of Theorem 2, each with a 4-cycle stacked
inside, where the labels represent the position of the vertex in the 4-cycle. For better readability,
vertices are represented by their labels, where a vertex with label i ` j (same i P t0, 1, 2, 3u for all
eight vertices) is written as j (labels taken mod 4). That is, each type represents four situations
that can occur in a face, e.g., the other three cases of Type (b) have labels 1, 2, 3, 2 (i “ 1), resp.
2, 3, 0, 3 (i “ 2), resp. 3, 0, 1, 0 (i “ 3) for the outer vertices and also plus i for the labels of the
stacked 4-cycle. The inter-bag edges are drawn thick, and indeed the labels of their endpoints differ
exactly by 1 (mod 4).

0 1

3 2

0

12

3

0

12

3
10

23 0

12

3

0

12

3

Figure 2 A stacked quadrangulation G with its H-partition showing G Ď H b C4, where H is a
triangle in this case. The labels used in the proof of Theorem 2 are written inside the vertices.

both lower bounds. The graph Gdpwq is defined as follows, where we call d the depth and w

the width of Gdpwq; see Figure 3. Let G0pwq consist of two vertices, which we call depth-0
vertices. For i ě 0, the graph Gi`1pwq is obtained from Gipwq by adding w vertices into
each inner face (except i “ 0, where we use the unique face) and connecting each of them to
the two depth-i vertices of this face (if two exist). If the face has only one depth-i vertex v

on the boundary, then we connect the new vertices to v and the vertex opposite of v with
respect to the face, that is the vertex that is not adjacent to v. The new vertices are then
called depth-pi ` 1q vertices. Observe that the resulting graph is indeed a quadrangulation
and each inner face is incident to at least one and at most two depth-pi ` 1q vertices. The
two neighbors that a depth-pi ` 1q vertex u has when it is added are called its parents, and u

is called a child of its parents. If two vertices u and v have the same two parents, they are
called siblings. We call two vertices of the same depth a pair if they have a common child.

4.1 Queue Layouts
We prove combinatorially that Gdpwq does not admit a 2-queue layout for d ě 3, w ě 24. We
also verified with a sat-solver [30] that the smallest graph in the family of queue number 3
is G4p4q containing 259 vertices.

§ Theorem 4. There is a 2-degenerate bipartite planar graph with queue number at least 3.

Proof. We show that the queue number of Gdpwq is at least 3 for d ě 4 and w ě 24. Assume
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0

0

1 1

2

23

3

3 3

3

3

Figure 3 The graphs G3p2q and G3p3q, where the numbers and style of the vertices indicate their
depth.

x1 x2 v x3 x4v′

(a)
v1 v2 v3 v4 v5u′u

(b)

Figure 4 (a) A bad configuration with pair xv, v1
y. (b) A nested configuration with pair xu, u1

y.

to the contrary that Gdpwq admits a 2-queue layout with vertex order ă. Our goal is to
determine some forbidden configurations that will lead to a contradiction. A bad configuration
in a 2-queue layout of Gdpwq consists of six vertices ordered x1 ă x2 ă v ă v1 ă x3 ă x4,
where v and v1 form a pair and px1, x3, x4, x2q is a 4-cycle; see Figure 4a. A nested configuration
consists of seven vertices u ă u1 ă v1 ă v2 ă v3 ă v4 ă v5 , where u and u1 form a pair, and
contains edges pu, v2q, pu, v4q, pu1, v1q and pu1, v4q; see Figure 4b. The depth of a configuration
is defined as the depth of the pair xv, v1y, respectively xu, u1y.

Ź Claim 14. For w ě 14, a 2-queue layout of Gdpwq does not contain a bad configuration at
depth d1 ď d ´ 2.

Proof. Consider a bad configuration and 14 children of v and v1, partitioned into seven pairs.
By pigeonhole principle, we have at least ten children between v and v1 or we have at least
three children either to the left of v or to the right of v1.

Assume first that we have at least three children of xv, v1y to the right of v1 (note that
the case where at least three children are to the left of v is symmetric). Clearly, we have two

x1 x2 v x3 x4v′

(a)
x1 x2 v x3 x4v′

(b)

x1 x2 v x3 x4v′y1 y x6y′

(c)

x1 x2 v x3 x4v′y1 y x6y′z z′

(d)

Figure 5 Proof of Claim 14. (a)–(b) A bad configuration with three children to the right of v1.
Either two of them are to the left of x4 as in (a) or to the right of x4 as in (b). Both cases create
a 3-rainbow. (c) If at least 10 children are between v and v1, there is another bad configuration
formed by v, v1 and their children. (d) Three nested bad configurations contain a 3-rainbow.
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v1 v2 v3 v4 v5u′u

(a)
v1 v2 v3 v4 v5u′u

(b)

v1 v2 v3 v4 v5u′u

(c)

v1 v2 v3 v4 v5u′u v′3

(d)

v1 v2 v3 v4u′uv′3 v5

(e)

Figure 6 Proof of Claim 15. (a)–(c) Any edge leaving v3 to the left creates a 3-rainbow. (d)–
(e) The pair of v3 does not precede u1.

children between v1 and x4 or two of them to the right of x4 (see Figure 5). In both cases,
the edges connecting them to v and v1 form a 2-rainbow that is nested by px2, x4q or nests
px3, x4q, as shown in Figures 5a and 5b respectively. So we have that a 3-rainbow cannot be
avoided if there are three children of v and v1 to the right of v1 or, by symmetry, to the left
of v.

Second, assume that at least ten children of xv, v1y are placed between v and v1, while at
most four of them are not. We aim to find another bad configuration consisting of v, v1, and
four of their children. Since we have a total of 14 children forming seven pairs, and at most
four children are not between v and v1, it follows that at least three pairs of children are
placed between v and v1. Let y1 be the first child to the right of v and y6 the first child to
the left of v1. Then, at least one pair of children, say xy, y1y, where ty1, y6u X ty, y1u “ H is
placed between y1 and y6. Note that vertices v, y1, y, y1, y6, v1 form a new bad configuration
at depth d1 ` 1, whose edges are nested by the edges of the starting bad configuration; the
situation is depicted in Figure 5c.

We repeat the process and consider the children of xy, y1y. If at least three of them are
either to the left of y or the right of y1, then there exists a 3-rainbow. Otherwise, there exists
a pair of children xz, z1y of y and y1 (at depth d1 ` 2) that are between y and y1. It is not
hard to see that edges px1, x3q, pv, x6q and py, z1q create a 3-rainbow; see Figure 5d. Ÿ

Ź Claim 15. If a 2-queue layout of Gdpwq contains a nested configuration at depth d1 ď d´1,
then v3 precedes all its children. Additionally, if v3 forms a pair with v1

3, then v1
3 is to the

right of u1.

Proof. Consider a nested configuration at depth d1 ă d. Then v3 has w children. If one of
them is to the left of v3, then it is either between u1 and v3, or between u and u1 or to the
left of u. In all three cases there is a 3-rainbow; see Figures 6a–6c. For the second part of the
lemma, assume that v1

3 precedes u1. Then it is either between u and u1 or before u. Again a
3-rainbow is created; see Figures 6d and 6e. Ÿ

Consider the initial pair xu, u1y of G0pwq with 24 children, grouped into twelve pairs.
Without loss of generality assume that u ă u1 in a 2-layout of Gdpwq. If there are at least
three pairs between u and u1, then they form a bad configuration with u and u1 at depth 0,
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u u′

v3

v′3

...

xz

Figure 7 Parts of the graph whose queue number is at least 3 constructed for Theorem 4

u u′ v′3 v3 xz

(a)

u u′ v′3 v3 x zx1 x2

(b)

u u′ v′3 v3 x z x2 x3

(c)

Figure 8 Three cases that can occur when inserting z into the layout without creating a bad
configuration. In all three cases we have a 3-rainbow.

contradicting Claim 14. So, there are at most two pairs between u and u1, and at least ten
pairs have (at least) one vertex either to the left of u or the right of u1. Hence we can assume
without loss of generality that at least five vertices of five different pairs are to the right
of u1. Let v1, v2, v3, v4 and v5 be these five vertices in the order they appear after u1. We
assume without loss of generality that v1, v2, v3, v4 and v5 are the rightmost possible choices,
in particular, this means that for the pair xvi, v1

iy it holds that v1
i ă vi, for 1 ď i ď 5. As

they are children of xu, u1y, they form a nested configuration. By Claim 15 and the fact that
v1

3 ă v3, we conclude that v1
3 is between u1 and v3, while the children of xv3, v1

3y are to the
right of v3.

Now consider the children of xv3, v1
3y and let x denote the child that shares a face with

u. Denote by xi, 1 ď i ď 3, any three children different from x such that x1 ă x2 ă x3; see
Figure 7. By Claim 15, all children of xv3, v1

3y are to the right of v3. In particular, either
x1 ă x2 ă x or x ă x2 ă x3. As u and x belong to the boundary of a face, and x is at depth
2 ă d, u and x have w common children. By Claim 14, there exists a pair of children xz, z1y

of xu, xy such that z is not located between u and x. Hence there are two cases to consider,
namely z is to the left of u, or z is to the right of x. In the first case, edges pu1, v1

3q, pu, v3q

and px, zq form a 3-rainbow; see Figure 8a. So, z is to the right of x. If x1 ă x2 ă x, then
we have the situation depicted in Figure 8b, otherwise x ă x2 ă x3 as in Figure 8c. In both
cases a 3-rainbow is created. We conclude that Gdpwq with d “ 4 and w “ 24 does not admit
a 2-queue layout. đ

4.2 Mixed Linear Layouts
Next, we prove that for d ě 3 and w ě 154, graph Gdpwq does not admit a 1-queue 1-stack
layout. We remark that the smallest graph of this family with this property is actually G3p5q

which has 128 vertices. Again, we verified this with a sat-solver [30]. Note that the following
theorem answers a question raised in [3, 18,31].
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v v′x1 x2

(a)
v v′ x1 x2

(b)
v v′x1 x2

(c)
v v′ x1 x2

(d)

Figure 9 Children of a pair xv, v1
y with v ă v1. (a) There is at most one orange child between v

and v1. (b)–(c) There is at most one orange child to the left of v or to the right of v1. (d) There is
at most one blue child to the right of v1.

§ Theorem 5. There is a 2-degenerate bipartite planar graph that does not admit a 1-queue
1-stack layout.

Proof. Assume for the sake of a contradiction that G3p154q admits a 1-queue 1-stack layout
with vertex order ă and let u, u1 denote the two initial vertices with u ă u1. For ease of
presentation, we call an edge blue (orange) if it is in the queue (stack) and color the edges
accordingly in all figures. We distinguish three types of children: A child x with parent pair
xv, v1y is called a blue (orange) child if both edges pv, xq and pv1, xq are blue (orange, resp.),
and it is called bicolored if one of the edges is blue and the other is orange. A pair is called
blue (orange) if both vertices are blue (orange) and bicolored if it contains a bicolored vertex.

Consider a pair xv, v1y with v ă v1. We first make two preliminary observations.

Ź Claim 16. A pair xv, v1y with v ă v1 has at most two orange children, one between v and
v1 and one to the left of v or to the right of v1.

Proof. Suppose first that xv, v1y has two orange children x1, x2 such that v ă x1 ă x2 ă v1.
Then, edges pv, x2q and pv1, x1q cross (Figure 9a), a contradiction. Second, consider the case
v ă v1 ă x1 ă x2 (the case x1 ă x2 ă v ă v1 is symmetric). Here pv, x1q and pv1, x2q cross
(Figure 9b). Finally, if x1 ă v ă v1 ă x2, then px1, v1q and px2, vq cross (Figure 9c). đ

Ź Claim 17. A pair xv, v1y has at most two blue children that are not located between v

and v1, namely one to the left of v and one to the right of v1.

Proof. Assume for a contradiction that xv, v1y has two blue children x1, x2 to the right of v1.
Then, edges pv, x2q and pv1, x1q nest (Figure 9d); a contradiction. Ÿ

We group the children of every pair xv, v1y at depth d1 ă d into 77 pairs each. Then, we
ignore any pair containing a blue vertex that is not placed between its parents or containing
a orange vertex (no matter where it is placed). That is, by Claims 16 and 17 we discard
at most four pairs of children for each pair xv, v1y, that is at least 146 children out of 154
that are grouped into 73 pairs remain. Let G1 denote the resulting subgraph of Gdpwq. By
definition of subgraph G1, the following property holds:

Ź Claim 18. Let xv, v1y denote a pair occurring in G1. Then (i) xv, v1y is either bicolored or
blue in G1 and (ii) all blue children of xv, v1y in G1 are placed between v and v1 in ă.

We now consider the 146 children of a pair xu, u1y at depth d1 ď d´2 in the linear layout of G1

induced by the linear layout of G, grouped into 73 pairs. Consider the following configuration.
The pair xu, u1y has five pairs xvi, v1

iy (for 1 ď i ď 5) of children and pair xvi, v1
iy has a child

zi. We call this is a mixed configuration if (i) u, u1, v1
i ă vi, (ii) pu, viq is orange while pu1, viq

is blue, (iii) all edges pvi, ziq (for 1 ď i ď 5) have the same color; see Figure 10.

Ź Claim 19. In the mixed layout of G1, there is no mixed configuration with edges pvi, ziq

(for 1 ď i ď 5) being blue.
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u′ v1u v2 v3 v4 v5

(a)
u′ v1u v2 v3 v4 v5

(b)

Figure 10 The two different possible layouts of vertices u, u1, v1, . . . , v5 of a mixed configuration.

u′ v1 v2 v4 v5z2z4

(a)

v′3 v1uv′2 z2v2 v3 v4 z3 z4v′4

(b)

v′4 u′ v1uv′3 z2v3 v4 v5 z3

(c)

v′3u′ v1uv′2 z2v2 v3 v4 z3

(d)

Figure 11 The edges vizi are blue. Connecting v1
3 to its parents u and u1 yields a contradiction.

Proof. Observe that, for 2 ď i ď 4, v5 ă zi as otherwise pvi, ziq nests pu1, v1q or is nested by
pu1, v5q; see Figure 11a. Thus by Claim 18(ii), vertices z2, z3, z4 are bicolored and therefore
edges pv1

2z2q, pv1
3z3q and pv1

4, z4q are orange. As orange edges may not cross, v1
2, v1

3, v1
4 are

to the left of u (we already have v1
i ă vi by the definition of a mixed configuration). In

particular v1
4 ă v1

3 ă v1
2 ă u; see Figure 11b. Note that we do not know the position of u1

in the vertex order so far. First assume that v1
3 ă u1; see Figure 11c, where u is drawn to

the left of u1 as in Figure 10a (note that the following argument also applies if u1 ă u as
in Figure 10b). As v1

4 ă v1
3, vertex v1

4 is to the left of both u and u1 and therefore bicolored,
by Claim 18(ii). However, the edges pv1

4, uq and pv1
4, u1q both cross the orange edge pv1

3, z3q.
Thus, we have u1 ă v1

3; see Figure 11d. Here it holds that u1 ă v1
3 ă v1

2 ă u ă v1. In this
case, edge pv1

3, uq is nested by the blue edge pu1, v1q, hence, it cannot be blue. On the other
hand, it crosses the orange edge pv1

2, z2q, so it cannot be orange either. Ÿ

Ź Claim 20. In the mixed layout of G1, there is no mixed configuration with edges pvi, ziq

(for 1 ď i ď 5) being orange.

Proof. Consider edge pvi, ziq for 2 ď i ď 4. If zi is to the left of vi´1 then it crosses the
orange edge pu, vi´1q, and if it is to the right of vi`1 then it crosses the orange edge pu, vi`1q;
see Figure 12a. So v1 ă z2 ă z4 ă v5 holds. Recall that G1 contains no orange children so for
1 ď i ď 5, the edge pv1

iziq is blue. Since pu1, v1q is blue, for 2 ď i ď 5, v1
i cannot precede u1,

z1u v1 v2 v4 v5 z4

(a)

u′ v1u z4v2 z2 v3 v4 v′2 v′4v5 v′3

(b)

Figure 12 The edges yici are orange. Connecting v1
4 to its parents u and u1 yields a contradiction.
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u u′v1x z v′1 y

(a)

v′1u u′yx v1 z

(b)

v′1u u′yx v1 z

(c)

v′1u u′yx v1 z

(d)

Figure 13 If there are three blue pairs between u and u1, one of them, namely xv1, v1
1y, is between

a vertex x and a vertex y belonging to other blue pairs. A child z of xv1, v1
1y results in a nesting.

as otherwise pv1
i, ziq would nest pu1, v1q. Similarly, since pu1, v5q is blue, for 1 ď i ď 4, vertex

v1
i cannot be between u1 and v5, as otherwise pv1

i, ziq would be nested by pu1, v5q. Thus, we
conclude that v5 ă v1

2 ă v1
3 ă v1

4; see Figure 12b. Since v1
4 is to the right of u and u1, by

Claim 18, it must be bicolored, that is, either edge pu, v1
4q or edge pu1, v1

4q is blue. However,
both these edges nest the blue edge pv1

2, z2q, a contradiction. Ÿ

Combining Claims 19 and 20, we conclude that the linear layout of G1 contains no mixed
configuration. This property allows us to conclude the following:

Ź Claim 21. Let xu, u1y be a pair in G1 at depth d1 ď d ´ 2. In the linear layout of G1 there
exist at least five pairs of children of xu, u1y with both vertices of each pair between u and u1.

Proof. Assume for the sake of contradiction that xu, u1y have at most four such pairs of
children. Thus, for at least 69 pairs, at least one vertex is not located between u and u1. In
particular, at least 35 of these vertices either precede both u and u1, or are placed to the
right of both u and u1. Assume without loss of generality that the latter applies. Recall
that children to the right of both parents are bicolored by Claim 18(ii). Now, among these
35 bicolored children, at least 18 are connected to the same parent u or u1 with an orange
edge; without loss of generality to u. These 18 children belong to at least 9 pairs, so we can
select nine of them that do not form a pair, and in particular we select the nine rightmost
ones, say v1 to v9. Observe that v1

i ă vi, for 1 ď i ď 9. Indeed, if v1
i is bicolored and vi ă v1

i,
then v1

i would have been chosen instead of vi. On the other hand, if v1
i is blue, then it is

located between u and u1 by Claim 18(ii) and thus v1
i ă vi. Now let zi be a child of xvi, v1

iy

(1 ď i ď 9). By the pigeonhole principle, either five of the edges pvi, ziq with 1 ď i ď 9 are
blue or five of these edges are orange. Hence a mixed configuration is formed, contradicting
Claims 19 and 20. Ÿ

Since d ą 2, we conclude that there are pairs xu, u1y which have at least five pairs of
children for which both vertices are located between u and u1. We now investigate this case.

Ź Claim 22. Let xu, u1y be a pair at depth d1 ď d ´ 2. In the linear layout of G1 there is a
pair xv, v1y of children of xu, u1y, so that no child of xv, v1y is located between v and v1.

Proof. By Claim 21, the pair xu, u1y has five pairs of children xv1, v1
1y, . . . , xv5, v1

5y for which
both vertices are located between u and u1. Assume without loss of generality that u ă u1.
As there are no orange pairs in G1, either three of them are blue or three of them are
bicolored. Assume first that three of these pairs, say xv1, v1

1y, xv2, v1
2y, xv3, v1

3y are blue.
Then there is a blue pair among them, say without loss of generality xv1, v1

1y, such that
u ă x ă v1 ă v1

1 ă y ă u1 where x, y P tv2, v1
2, v3, v1

3u. Now consider any child z of v1 and v1
1.
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u u′v1x

(a)

u u′v1xv′1

(b)

u u′v1x v′1

(c)

Figure 14 Three bicolored pairs xvi, v1
iy of children of xu, u1

y are between u and u1. (a) Without
loss of generality vertex v1 is nested by a blue edge. (b) Vertex v1

1 does not precede x. (c) Blue and
bicolored children of xv1, v1

1y are to the left or to the right of both parents.

Since by definition G1 contains no orange children, z is connected with a blue edge to either
v1 or v1

1. Vertex z may be placed either to the left of v1, or between v1 and v1
1 or to the right

of v1
1. If it is between v1 and v1

1, the edge pv1, zq is nested by pu, v1
1q and the edge pz, v1

1q is
nested by pv1, u1q; see Figure 13a. Thus z cannot be connected to v1 or v1

1 with a blue edge;
a contradiction. Assume without loss of generality that z is to the right of v1

1. It is easy
to verify that for all possible placements of z, the blue edge connecting z to v1 or v1

1 either
nests or is nested by an edge incident to one of u and u1; see Figures 13b–13d.

Thus, there are three bicolored pairs between u and u1, say xv1, v1
1y, xv2, v1

2y, xv3, v1
3y, such

that v is a bicolored vertex while v1 can be blue or bicolored. Without loss of generality two
of v1, v2, v3, say v1 and v2 are connected to u with an orange edge. Let x be the leftmost
among v1, v1

1, v2, v1
2, v3, v1

3 in ă that is connected to u1 with a blue edge. As a result for one
of v1 and v2, say without loss of generality v1, we have v1

1 ‰ x and u ă x ă v1 ă u1; see
Figure 14a. Observe that x ă v1

1. Otherwise pv1
1, u1q cannot be blue by the choice of x and

cannot be orange either, as it would cross the orange edge pu, v1q; see Figure 14b. Now
the blue edge px, u1q nests above v1 and v1

1 and thus blue and bicolored children of xv1, v1
1y

cannot be between them; see Figure 14c. Ÿ

We are now ready to prove the theorem. Namely, we have the initial pair xu, u1y of G0pwq

at depth 0 ď d ´ 2. Then, by Claim 21 there is a pair xv, v1y at depth 1 such that no child of
xv, v1y is located between v and v1. Since however xv, v1y is at depth 1 ď d ´ 2, by Claim 21,
at least 10 of the children of xv, v1y must be between v and v1 in ă; a contradiction. đ

In contrast to our result on the queue number of bipartite planar graphs (Theorem 4),
bipartite planar graphs admit 2-stack layouts. Therefore, if we increase the number of stacks,
we can easily construct a mixed linear layout of Gdpwq (or of any bipartite planar graph). On
the other hand, it remains open how many queues are needed if we allow at most one stack.
In the next section we approach this question by showing that the graph Gdpwq constructed
above (and even more generally any 2-degenerate quadrangulation) admits a 5-queue layout.

5 2-Degenerate Quadrangulations

Note that the graph Gdpwq defined in Section 4 is a 2-degenerate quadrangulation. Recall
that it can be constructed from a 4-cycle by repeatedly adding a degree-2 vertex and keeping
all faces of length 4. Hence, every 2-degenerate quadrangulation is a subgraph of a 4-tree.
This can also be observed by seeing Gdpwq as a p4, 1q-stack graph, together with Theorem 12.
Thus, by the result of Wiechert [34], it admits a layout on 24 ´ 1 “ 15 queues. In this section,
we improve this bound by showing that 2-degenerate quadrangulations admit 5-queue layouts.

Our proof is constructive and uses a special type of tree-partition. Let T be a tree-
partition of a given graph G, that is, an H-partition where H is a rooted tree. For every
node x of T , if y is the parent node of x in T , the set of vertices in Ty having a neighbor in Tx
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w

u v

w

u v

Figure 15 A planar graph and its tree-partition of shadow width 4.

is called the shadow of x; we say that the shadow is contained in node y. The shadow width
of a tree-partition is the maximum size of a shadow contained in a node of T ; see Figure 15.

Let S “ tCi Ď V : 1 ď i ď |S|u be a collection of vertex subsets for a graph G “ pV, Eq,
and let π be an order of V . Consider two elements from S, Cx “ rx1, x2, . . . , x|Cx|s and
Cy “ ry1, y2, . . . , y|Cy |s, where the vertices are ordered according to π. We say that Cx

precedes Cy with respect to π if xi ď yi, for all 1 ď i ď minp|Cx|, |Cy|q; we denote this
relation by C1 ă C2. We say that S is nicely ordered if ă is a total order on S, that is,
Ci ă Cj for all 1 ď i ă j ď |S|. A similar concept of clique orders has been considered in
[22] and [32].

§ Lemma 23. Let G “ pV, Eq be a graph with a tree-partition
`

T, tTx : x P V pT qu
˘

of shadow
width k. Assume that for every node x of T , the following holds: (i) there exists a q-queue
layout of Tx with vertex order π, and (ii) all the shadows contained in x are nicely ordered
with respect to π. Then qnpGq ď q ` k.

Proof. In order to construct a desired queue layout of G, we first build a 1-queue layout of
the nodes of T . This is done by lexicographic breadth-first search (starting from the root of
T ) in which the nodes sharing the same parent are ordered with respect to the given nice
order of shadows. Then every node, x, in the layout is replaced by the vertices of bag Tx; the
vertices within a bag are ordered with respect to the vertex order π of the q-queue layout
that is guaranteed by the lemma. This results in an order of the vertices of G in which every
vertex v P V is associated with a pair xiv, jvy, where iv is derived from the 1-queue layout of
T and jv is derived from π. Clearly, the vertices are ordered lexicographically with respect
to their pairs.

Now we show how to obtain a pq ` kq-queue layout using the resulting vertex order. To
this end, we use q queues for the intra-bag edges and separate k queues for inter-bag edges.
It is easy to see that the intra-bag edges do not nest (as the bags are separated in the order);
therefore, we only need to verify that inter-bag edges fit in k queues.

Consider two edges, e1 “ pu1, v1q and e2 “ pu2, v2q of G. Since the layout is derived from
a 1-queue layout of T , the edges may nest only when u1 and u2 are from the same bag; let x

be the bag such that u1, u2 P Tx. Assign inter-bag edges rooted at x to k queues respecting
the nice order of the shadows. That is, edges incident to the first vertices of the shadows
are in the first queue, edges incident to the second vertices of the shadows are in the second
queue and so on. Since the shadow order is nice and every shadow is of size ď k, there are at
most k queues in the layout. đ

Before applying Lemma 23 to 2-degenerate quadrangulations, we remark that the result
provides a 5-queue layout of planar 3-trees, as shown by Alam et al. [2]. Indeed, a breadth-first
search (starting from an arbitrary vertex) on 3-trees yields a tree-partition in which every
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bag is an outerplanar graph. The shadow width of the tree-partition is 3 (the length of
each face), and it is easy to construct a nicely ordered 2-queue layout for every outerplanar
graph [23]. Thus, Lemma 23 yields a 5-queue layout for planar 3-trees. Now we turn our
attention to 2-degenerate quadrangulations.

§ Lemma 24. Every 2-degenerate quadrangulation admits a tree-partition of shadow width 4
such that every bag induces a leveled planar graph.

Proof. Recall that 2-degenerate quadrangulations admit a recursive construction starting
from a 4-cycle. At each step a vertex v of degree 2 is added inside a 4-face f “ pu1, u2, u3, u4q

of the constructed subgraph, such that v is connected to two opposite vertices of f , that is
v is connected either to u1 and u3 or to u2 and u4. This construction yields a total order
v1 ă v2 ă ¨ ¨ ¨ ă vn on the vertices of the input 2-generate quadrangulation G of order n,
such that v1, v2, v3, v4 are the vertices of the starting 4-cycle, and viě5 is the vertex added at
step i. This order is not unique, as one may permute the starting four vertices, or (possibly)
select a different vertex to add at each step. Assume that vertices u1, u2, . . . uk (k ě 1q

that are added at steps i1 ă i2 ă ... ă ik (that is us “ vis
), are connected to the same two

vertices vj and vj1 of G, with j ă j1 ă i1. Following the definitions given in Section 4, we
say that vertices u1, u2, . . . uk are siblings with parents vj and vj1 . Note that at step i1,
any vertex among u1, u2, . . . uk may be added, and in particular they can all be added at
consecutive steps.

Our goal is to assign a layer value λpvq to each vertex v of G such that (i) the subgraph
Gλ induced by vertices of layer λ (λ ě 0) is a leveled planar graph, and (ii) the connected
components of all subgraphs Gλ define the bags of a tree-partition of shadow width 4. Note
that we will assign layer values that do not necessarily correspond to a BFS-layering of G.

The four vertices of the starting 4-cycle have layer value equal to 0. Consider now a set
of siblings u1, . . . , uk with parents v and v1, that are placed inside a 4-face f “ pv, w, v1, w1q

of the constructed subgraph. We compute the layer value of vertices u1, . . . , uk as fol-
lows. Assume without loss of generality that λpvq ď λpv1q and λpwq ď λpw1q. Fur-
ther, assume that u1, . . . , uk are such that the cyclic order of edges incident to v are
pv, wq, pv, u1q, pv, u2q, . . . , pv, ukq, pv, w1q whereas the cyclic order of edges incident to v1 are
pv1, w1q, pv1, ukq, pv1, uk´1q, . . . , pv1, u1q, pv1, wq; see Figure 16. We will insert these vertices in
the order u1, uk, u2 . . . , uk´1, that is, u1 is inserted inside f1 “ f , uk inside fk “ pv, u1, v1, w1q

and every subsequent ui inside fi “ pv, ui`1, uk, w1q. Then the layer value of vertex ui is
defined as λpuiq “ 1 ` mintλpxq, x P fiu, for 1 ď i ď k. In the following, we will associate f

with the layer values of its vertices, that is we call f a [λpvq,λpwq,λpv1q,λpw1q]-face, where
vertices v and v1 form a pair whose children are placed inside f .

Note that, by the definition of the layer values, if a vertex u that is placed inside a face f

has layer λ, then all vertices of f have layer value λ ´ 1 or λ. This implies that connected
components of layer λ are adjacent to at most four vertices of layer value λ ´ 1 (that form a
4-cycle).

To simplify the presentation, we focus on a [0,0,0,0]-face f0 and our goal is to determine
the subgraph of layer value 1 placed inside it; an analogous approach is used for the interior
of a [λ,λ,λ,λ]-face, with λ ą 0.

[0,0,0,0]-face: In this case, all vertices u1, . . . , uk will have layer value 1 (see Figure 16a).
The newly created faces pw, v, u1, v1q and pw1, v, uk, v1q are [0,0,1,0]-faces, while all other faces
ui, v, ui`1, v1 for i “ 1, . . . , k ´ 1 are r1, 0, 1, 0s-faces.
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Figure 16 Cases for faces that contain a set of children in their interior. Vertices at layer values
0, 1 and 2 are drawn as black circles, black disks and red circles resp. Edges that connect vertices
of the same (different) layer value are drawn black (red resp.). The dotted diagonals inside a face
connect the parents of the children placed inside. Faces of type [0,1,1,1] are shaded in green, and
faces that contain vertices of layer value at least 2 are shaded in gray.

[0,0,1,0]-face: We continue with a r0, 0, 1, 0s-face and then consider a r1, 0, 1, 0s-face. In a
r0, 0, 1, 0s-face, we add only vertices u1 and uk, which creates the r0, 0, 1, 1s-faces pw, v, u1, v1q

and pw,1 v, uk, v1q, and one [0,1,1,1]-face pv, u1, v1, ukq (see Figure 16b). Note that the
remaining siblings u2, . . . , uk´1 will be added as children of v and v1 inside face pv, u1, v1, ukq.

[1,0,1,0]-face: In a r1, 0, 1, 0s-face, vertices u1 and uk have layer value 1, while all other
siblings ui, i “ 2, . . . , k ´ 1 have layer value 2. Note that in a BFS-layering, vertex u1 would
have layer value 2 instead of 1. In this case, pw, v, u1, v1q and pw1, v, uk, v1q are [0,1,1,1]-faces,
while the other faces cannot contain vertices of layer value 1 (see Figure 16c). In total, we
have two new types of faces, namely r0, 0, 1, 1s and [0,1,1,1]-faces.

[0,0,1,1]-face: In a r0, 0, 1, 1s-face, we add only vertex u1, which creates two faces, namely
the r0, 0, 1, 1s-face pw, v, u1, v1q, and the [0,1,1,1]-face pv, w1, v1, u1q. Note that the remaining
vertices u2, . . . , uk will be added as children of v and v1 inside face pv, w1, v1, u1q; see Figure 16d.

[0,1,1,1]-face: Finally, a [0,1,1,1]-face is split into k`1 faces of type [1,0,1,1] (see Figure 16f).
In a [1,0,1,1]-face, only vertex u1 has layer value 1, and face pw, v, u1, v1q is of type [0,1,1,1]
(see Figure 16e).

In order to create a layered planar drawing, we first consider faces of type [0,1,1,1],
since they are contained in almost all other types of faces. The existence of k children in
such a face f creates k ` 1 faces of type [1,0,1,1]. Let gi be the face pui, v, ui`1, v1q of type
[1,0,1,1], for i “ 0, . . . , k, where u0 “ w and uk`1 “ w1. If another set of children u1

1, . . . , u1
k1

is added inside gi then their parents are vertices ui and ui`1 and only u1
1 has layer value

1. Hence the addition of u1
1 creates a new [0,1,1,1]-face g1

i (namely face pv, ui, u1
1, ui`1q).

Further addition of children inside g1
i, will split g1

i into faces of type [1,0,1,1]. So, let Gf be
the subgraph induced by all vertices of layer value 1 inside a [0,1,1,1]-face f (including its
boundary vertices).

Ź Claim 25. The subgraph Gf of a [0,1,1,1]-face f “ pv, w, v1, w1q has a leveled planar
drawing such that level 0 contains one vertex among w, v1 and w1 (and no other vertex); see
Figures 17a-17c.

Proof. Based on the previous observation, we will create a sequence tGi
f u1ďiďs such that Gi

f

is a subgraph of Gi`1
f and Gs

f is Gf . Let Hi
f be the subgraph of G induced by the vertices

of Gi
f and vertex v. In our construction, graphs Gi

f will have the following properties: (i)
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Figure 17 Illustrations of Γf when f is (a)–(c) a [0,1,1,1]-face, (d) a [0,0,1,1]-face, (e)–(f) a
[1,0,1,0]-face, (g)–(h) a [0,0,1,0]-face, and (i) a [0,0,0,0]-face.

the interior faces of Gi
f are of type [1,1,1,1], (ii) Hi

f contains all [1,1,1,1]-faces of Gi
f and

every other interior face is of type [1,0,1,1] with vertex v on its boundary.
At the first step G1

f consists of vertices v1, w, w1 and the kv1 siblings of v and v1.
The subgraph so far is a star with v1 as center. It is not hard to see the G1

f satisfies
Properties (i) and (ii). At step i we select a [1,0,1,1]-face fi of Hi´1

f (that is not empty). Let
fi “ pv, ui, vi, u1

iq, and let wi be the only child of layer value 1 inside fi (with parents v and vi).
Then fi is split into the [1,1,1,1]-face pv, wi, vi, u1

iq and the [0,1,1,1]-face f 1
i “ pv, ui, wi, u1

iq.
Further let x1, . . . xk, k ě 0, be the children inside f 1

i . Recall that x1, . . . xk have layer value
1 and their parents are v and wi. We obtain Gi

f from Gi´1
f by adding a star with center wi

and vertices x1, . . . xk as leafs, and by connecting wi to vertices ui and u1
i so that vertices

x1, . . . xk are on the outer face of Gi
f . As face fi of Hi´1

f is split into a [1,1,1,1]-face and
k ` 1 [1,0,1,1]-faces, it follows that Gi

f contains one more interior [1,1,1,1]-face than Gi´1
f

(that is Property (i) is satisfied), and all other interior faces of Hi
f are of type [1,0,1,1] with

v on their boundary (Property (ii)).
Now we show how to construct the leveled planar drawing of Gf based on the sequence

tGi
f u1ďiďs. In particular, we will extend a leveled planar drawing Γi´1

f of Gi´1
f to a leveled

planar drawing Γi
f of Gi

f , for 1 ă i ď s. For every [1,0,1,1]-face fj of Hi´1
f (for some

j ě i) with vertices v, uj , vj , u1
j we denote as Pj the path puj , vj , u1

jq, and say that Pj is the
boundary path of fj . Note that Pj is along the outer face of Γi´1

f . We say that Pj forms a
small angle in Γi´1

f if ℓpujq “ ℓpu1
jq “ ℓpvjq ` 1 holds, where ℓpuq is the level of vertex u; see

Figure 18a. We also say that Pj forms a large angle if either ℓpvjq “ ℓpujq ` 1 “ ℓpu1
jq ´ 1

or ℓpvjq “ ℓpu1
jq ` 1 “ ℓpujq ´ 1 holds; see Figures 18b and 18c. Our algorithm maintains

the following invariants: (i) level 0 contains one of vertices w, v1 or w1 of f (and no other
vertices), (ii) vertices vi and x1, . . . , xk of Gi

f are placed in the outer face of Γi´1
f , and (iii)

every path Pj of Gi
f forms either a small or a large angle along the outer face of Γi

f .
Three different leveled planar drawings of G1

f are shown in Figure 19. We have that
f1 “ pv, u1, w1, u1

1q, where u1 “ w, u1
1 “ w1 and w1 “ v1 (refer to Figure 16f). It is not hard

to see that Invariants (i), (ii) and (iii) are satisfied in all three drawings.
So, assume that we have constructed the drawing Γi´1

f for Gi´1
f satisfying the invariants.

Gi
f is obtained from Gi´1

f by adding a star with center wi, leafs x1, . . . , xk, and such that
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Figure 18 The boundary path Pj “ uj , wj , u1
j forms a (a) small angle, (b-c) a large angle in Γi

f .
The boundary path is drawn green; horizontal dashed lines indicate levels.
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Figure 19 Possible drawings for G1
f .

wi is connected to the endpoints of the boundary path Pi of fi. By construction, the new
vertices are added in the exterior of Γi´1

f , satisfying Invariant (ii).
We consider two cases depending on whether Pi forms a small or a large angle in Γi´1

f . In
the first case, let ℓ “ ℓpuiq “ ℓpu1

iq. We place wi at level ℓ ` 1 and vertices x1, . . . , xk at level
ℓ ` 2. In the constructed drawing the newly added vertices are placed at levels different from
level 0, satisfying Invariant (i), while the new boundary paths pui, wi, x1q and pxk, wi, u1

iq

form large angles and all other form small angles, satisfying Invariant (iii); see Figure 20a.
Note that in the case where k “ 0, that is there are no child vertices inside fi, the only
vertex of Gf inside fi is vertex wi, and no new boundary paths are created. In the second
case, let ℓ be the level of vertex vi. We place wi at level ℓ and vertices x1, . . . , xk at level
ℓ ` 1; refer to Figures 20b and 20c. The newly added vertices are placed at layers different
from level 0, while pui, wi, x1q or pxk, wi, u1

iq forms a large angle, and all other new boundary
paths form small angles. Therefore Invariants (i) and (iii) are satisfied in this case as well.
Therefore, the constructed drawing of Gf satisfies Invariant (i) and the claim follows. Ÿ
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Figure 20 Extending Γi´1
f to Γi

f , when Pi forms a (a) small angle, or (b)–(c) a large angle.
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Figure 21 (a-b) Splitting a r0, 0, 1, 1s-face f into a series of [0,1,1,1]-faces (highlighted in green
and orange) and an empty r0, 0, 1, 1s-face, (c) Schematic representations of Γf .

Figure 17 illustrates a schematic representation of different leveled planar drawings of Gf

induced by the layer value-1 vertices of a [0,1,1,1]-face f , depending of the initial placement
of vertices v1, w and w1. Now we turn our attention to faces of type r0, 0, 1, 1s. We will prove
that such a face can be split into an empty r0, 0, 1, 1s-face and a series of [0,1,1,1]-faces.

Ź Claim 26. Let f “ v, w, v1, w1 be a r0, 0, 1, 1s-face. There exists a path pv1, v2, . . . , vs`2q

of s ` 2 layer value-1 vertices (s ě 0), such that the following hold:
v1 “ w1 and v2 “ v1.
Vertex vi is adjacent to v (w) for odd (even, resp.) i, 1 ď i ď s ` 2.
Face f is split into s faces tfiu1ďiďs of type [0,1,1,1] and one empty r0, 0, 1, 1s-face g,
where:

f2j “ pw, v2j`2, v2j`1, v2jq, for 1 ď j ď s{2,
f2j´1 “ pv, v2j´1, v2j , v2j`1q, for 1 ď j ď ps ` 1q{2, and
g “ pv, w, vs`2, vs`1q, if s is even, or g “ pw, v, vs`2, vs`1q if s is odd.

Proof. Let v1 “ w1 and v2 “ v1. We will prove the claim using induction on the number k

of layer value-1 vertices inside f . If f contains no layer value-1 vertices (that is k “ 0 and
f is empty), then s “ 0 and the claim holds with g “ f . Assume that the claim holds for
k1 ă k layer value-1 vertices and that f contains k layer value-1 vertices. Then, vertex u1 of
Figure 16d (which has layer value 1) exists and is a child inside f with parents v and v1. We let
v3 “ u1. Now f is split into face f1 “ pv, v1, v2, v3q which is of type [0,1,1,1], and the r0, 0, 1, 1s-
face g1 “ pw, v, v3, v2q. As g1 contains at most k ´ 1 layer value-1 vertices, g1 contains a path
pv1

1, . . . , v1
s1`2q of layer value-1 vertices that split g1 into s1 [0,1,1,1]-faces f 1

i (i “ 1, . . . , s1) and
an empty r0, 0, 1, 1s-face g1 that satisfy the claim. For convenience, let g1 “ pv2, w2, v1

2, v1
1q,

where v2 “ w, w2 “ v, v1
2 “ v3 and v1

1 “ v2. We set vi`1 “ v1
i, for i “ 1, . . . , s1 `2 and we will

prove that the path v1, . . . vs1`3 satisfies the properties of the claim. By definition, we have
that v1 “ w1 and v2 “ v1. Also, in g1, vertex v1

i is connected to v2 if i is odd and to w2 if i is
even. Hence vj “ v1

j´1 is connected to w “ v2 when j is even and to v “ w2 when j is odd,
as required. For the faces we have that f1 “ pv, v1, v2, v3q, and we set fi`1 “ f 1

i , i “ 1, . . . , s1,
and g “ g1. We have that f2j “ f 1

2j´1 “ pv2, v1
2j´1, v1

2j , v1
2j`1q “ pw, v2j , v2j`1, v2j`2q

and f2j´1 “ f 1
2j´2 “ pw2, v1

2j , v1
2j´1, v1

2j´2q “ pv, v2j`1, v2j , v2j´1q. On the other hand, as
s “ s1 ` 1, g “ g1 “ pw2, v2, v1

s1`2, v1
s1`1q “ pv, w, vs`2, vs`1q, if s1 is odd and s even, and

g “ g1 “ pv2, w2, v1
s1`2, v1

s1`1q “ pw, v, vs`2, vs`1q if s1 is even and s is odd. Hence the
conditions of the claim hold. An example for s “ 3 and s “ 4 is shown in Figures 21a and
21b. Ÿ

In the following we compute a leveled planar drawing of a r0, 0, 1, 1s-face.
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Ź Claim 27. The subgraph Gf of a r0, 0, 1, 1s-face f “ v, w, v1, w1 has a leveled planar
drawing such that level 0 contains only vertex w1; see Figure 21c.

Proof. For every face fi (i ě 1) of Claim 26, we create a leveled planar drawing Γi using
Claim 25, such that Γi has only vertex vi on level i ´ 1 using the drawings of Figures 17b
and 17c for odd and even i, respectively. On each level ℓ the vertices are ordered as follows.
Vertices of the same face fi (that are on level ℓ) appear consecutively. For i ‰ j ě 1, let ui

be a vertex inside face fi and uj a vertex inside fj . If i is odd and j is even, then ui appears
before uj along ℓ (from left to right); if both i and j are odd (even) with i ă j, then ui

precedes (follows, resp.) uj . Note that the derived drawing has only vertex w1 on level 0 as
claimed. Ÿ

Next, we focus on faces of type r1, 0, 1, 0s. As the only layer value-1 vertices inside such
faces belong to [0,1,1,1]-faces, we have the following.

Ź Claim 28. The subgraph Gf of a r1, 0, 1, 0s-face f “ v, w, v1, w1 has a leveled planar drawing
such that level 0 contains only vertices v and v1, vertices of the [0,1,1,1]-face w, v, u1, v1

are drawn on levels above level 0, while vertices of the [0,1,1,1]-face w1, v, uk, v1 are drawn
on levels below level 0. In the special case where u1 “ uk, then also u1 is on level 0; see
Figure 22.

Proof. We draw the [0,1,1,1]-face pw, v, u1, v1q using Claim 25 and such that vertex u1 is the
only vertex at level 1 (or 0 if u1 “ uk) and all other vertices are at levels greater than 1 (or 0,
resp.), as in Figure 17a. Similarly for face pw1, v, uk, v1q we create a leveled planar drawing
with uk at level ´1 (or 0 if u1 “ uk) and all other vertices at levels below ´1 (or 0, resp.).
Vertices v and v1 are placed at level 0 as shown in Figure 22a, if u1 ‰ uk, otherwise they are
placed together with u1 “ uk and such that u1 is between v and v1; see Figure 22b. Ÿ

v′

u1uk

v

(a)
v′

v

u1

(b)

Figure 22 Schematic representations of Γf when f is a r1, 0, 1, 0s-face with (a) u1 ‰ uk and
(b) u1 “ uk.

For a face f of type [0,0,1,0], recall that it consists of three faces; face pw, v, u1, v1q,
which is of type r0, 0, 1, 1s, face pv, u1, v1, ukq of type [0,1,1,1] and face pw1, v, uk, v1q of type
r0, 0, 1, 1s.

Ź Claim 29. The subgraph Gf of a [0,0,1,0]-face f “ v, w, v1, w1 has a leveled planar drawing
such that level 0 contains only vertex v1; see Figure 23.

Proof. We use Claim 27 to produce a leveled planar drawing of face pw, v, u1, v1q with vertex
v1 on level 0 as shown in Figure 21c. A similar drawing is obtained for pw1, v, uk, v1q with
v1 on level 0. Now face pv, u1, v1, ukq is drawn as in Figure 17a with v1 on level 0, using
Claim 25. The three drawings can be glued together as depicted in Figure 23a, or Figure 23b
depending on whether u1 ‰ uk or u1 “ uk (in which case the r0, 1, 1, 1s-face pv, u1, v1, ukq

does not exist). Ÿ
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v′

u1 v3 v4 v5 v6

uk v′3 v′4 v′5 v′6

(a)

v′

v3 v4 v5 v6

v′3 v′4 v′5 v′6

u1

(b)

Figure 23 Schematic representations of Γf when f is a [0,0,1,0]-face with (a) u1 ‰ uk and
(b) u1 “ uk.

u1
u2

uk

Figure 24 Schematic representations of Γf when f is a r0, 0, 0, 0s-face.

The only type of faces that we have not considered yet are r0, 0, 0, 0s-faces. We combine
leveled planar drawings for faces pw, v, u1, v1q, pw1, v, uk, v1q and faces fi “ pui, v, ui`1, v1q

for i “ 1, . . . , k ´ 1. We create drawings for the [0,0,1,0]-faces pw, v, u1, v1q and pw1, v, uk, v1q

using Claim 29, such that u1 and uk are the only vertices placed at level 0. Then for every
face fi (i “ 1, . . . , k ´ 1), we use Claim 28; vertices ui, for i “ 1, . . . , k are placed at level
0. We combine the drawings as shown in Figure 24, by ordering the vertices on each level
as follows. Vertices at level ℓ that belong to the same face appear consecutively along ℓ.
Vertices of face pw, v, u1, v1q, precede all vertices of faces fi for i “ 1, . . . , k ´ 1, and vertices
of pw1, v, uk, v1q appear last along ℓ. For two faces fi and fj with 1 ď i ă j ď k ´ 1, we have
that vertices of fi precede vertices of fj .

So far, we focused on a r0, 0, 0, 0s face f and determined a leveled planar drawing of Gf ,
which is the subgraph induced by vertices of level 1 inside f . Clearly, starting from any face
with all vertices having the same layer value λ, we can compute a leveled planar drawing of
the layer value-(λ ` 1) subgraph of G that is inside this face. Now we are ready to compute
the tree-partition of a 2-generate quadrangulation G. We assign layer value equal to 0 to
the vertices on the outer face of G, and compute the layer value of all other vertices. Let
Gλ denote the subgraph of G induced by vertices of layer value λ (λ ě 0). We have that
all edges of G are either level edges (that is, belong to Gλ for some value of λ), or connect
subgraphs of consecutive layer values λ and λ ` 1. In particular, each connected component
Hλ`1 of Gλ`1 is located inside a 4-face fpHλ`1q of Gλ, and the vertices of fpHλ`1q are
the only vertices of Gλ that are connected to the vertices of that connected component of
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Hλ`1. Now, for each value of λ, we put the connected components of Gλ into separate bags,
and therefore each bag contains a leveled planar graph. For a bag that contains connected
component Hλ, we define its parent to be the bag that contains the component where fpHλq

belongs to. As each connected component Hλ lies in the interior of a single face fpHλq, the
defined bags create a tree T with root-bag consisting of the outer vertices of G (with layer
value 0). Additionally, the shadow of each bag consists of at most four vertices, and therefore
the shadow width of T is at most 4. The lemma follows. đ

§ Theorem 6. Every 2-degenerate quadrangulation admits a 5-queue layout.

Proof. Combine Lemma 24 with Lemma 23. Observe that every leveled planar graph admits
a 1-queue layout in which the faces are nicely ordered with respect to the layout. That
implies that we can apply Lemma 23 with q “ 1 (the queue number of the bags) and k “ 4
(the shadow width of the tree-partition). đ

6 Open Questions

In this work, we focused on the queue number of bipartite planar graphs and related
subfamilies. Next we highlight a few questions for future work.

First, there is still a significant gap between our lower and upper bounds for the queue
number of bipartite planar graphs.
Second, although 2-degenerate quadrangulations always admit 5-queue layouts, the
question of determining their exact queue number remains open.
Third, for stacked quadrangulations, our upper bound relies on the strong product
theorem. We believe that a similar approach as for 2-degenerate quadrangulations could
lead to a significant improvement.
Perhaps the most intriguing questions are related to mixed linear layouts of bipartite
planar graphs: One may ask what is the minimum q so that each bipartite planar graph
admits a 1-stack q-queue layout.
Finally, the recognition of 1-stack 1-queue graphs remains an important open problem
even for bipartite planar graphs.
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