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Abstract. Let γ be a generic closed curve in the plane. Samuel Blank,
in his 1967 Ph.D. thesis, determined if γ is self-overlapping by geomet-
rically constructing a combinatorial word from γ. More recently, Zipei
Nie, in an unpublished manuscript, computed the minimum homotopy
area of γ by constructing a combinatorial word algebraically. We pro-
vide a unified framework for working with both words and determine
the settings under which Blank’s word and Nie’s word are equivalent.
Using this equivalence, we give a new geometric proof for the correct-
ness of Nie’s algorithm. Unlike previous work, our proof is constructive
which allows us to naturally compute the actual homotopy that realizes
the minimum area. Furthermore, we contribute to the theory of self-
overlapping curves by providing the first polynomial-time algorithm to
compute a self-overlapping decomposition of any closed curve γ with
minimum area.

1 Introduction

A closed curve in the plane is a continuous map γ from the circle S1 to the
plane R2. In the plane, any closed curve is homotopic to a point. A homotopy
that sweeps out the minimum possible area is a minimum homotopy. Chambers
and Wang [4] introduced the minimum homotopy area between two simple homo-
topic curves with common endpoints as a way to measure the similarity between
the two curves. They suggest that homotopy area is more robust against noise
than another popular similarity measure on curves called the Fréchet distance.
However, their algorithm requires that each curve be simple, which is restrictive.

Fasy, Karakoç, and Wenk [12] proved that the problem of finding the min-
imum homotopy area is easy on a closed curve that is the boundary of an im-
mersed disk. Such curves are called self-overlapping [10,15,18,23,24,26]. They
also established a tight connection between minimum-area homotopy and self-
overlapping curves by showing that any generic closed curve can be decomposed
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at some vertices into self-overlapping subcurves such that the combined homo-
topy from the subcurves is minimum. This structural result gives an exponential-
time algorithm for the minimum homotopy area problem by testing each decom-
position in a brute-force manner.

Nie, in an unpublished manuscript [19], described a polynomial-time algo-
rithm to determine the minimum homotopy area of any closed curve in the
plane. Nie’s algorithm borrows tools from geometric group theory by represent-
ing the curve as a word in the fundamental group π1(γ), and connects minimum
homotopy area to the cancellation norms [2,3,21] of the word, which can be
computed using a dynamic program. However, the algorithm does not naturally
compute an associated minimum-area homotopy.

Alternatively, one can interpret the words from the dynamic program geomet-
rically as crossing sequences by traversing any subcurve cyclicly and recording
the crossings along with their directions with a collection of nicely-drawn cables
from each face to a point at infinity. Such geometric representation is known as
the Blank words [1,22]. In fact, the first application of these combinatorial words
given by Blank is an algorithm that determines if a curve is self-overlapping.
Blank words are geometric in nature and thus the associated objects are poly-
nomial in size. When attempting to interpret Nie’s dynamic program from the
geometric view, one encounters the question of how to extend Blank’s definition
of cables to subcurves, where the cables inherited from the original curve are
no longer positioned well with respect to the subcurves. To our knowledge, no
geometric interpretation of the dynamic program is known.

1.1 Our Contributions

We first show that Blank and Nie’s word constructions are, in fact, equiva-
lent under the right assumptions (Section 3). Next, we extend the definition
of Blank’s word to subcurves and arbitrary cable drawings (Section 4.1), and
interpret the dynamic program by Nie geometrically (Section 4.2). Using the
self-overlapping decomposition theorem by Fasy, Karakoç, and Wenk [12] we
provide a correctness proof to the algorithm. Finally, we conclude with a new
result that a minimum-area self-overlapping decomposition can be found in poly-
nomial time. We emphasize that extending Blank words to allow arbitrary cables
is in no way straightforward. In fact, many assumptions on the cables have to
be made in order to connect self-overlapping curves and minimum-area homo-
topy; handling arbitrary cable systems, as seen in the dynamic program, requires
further tools from geometric topology like Dehn twists.

2 Background

In this section, we introduce concepts and definitions that are used through-
out the paper. We assume the readers are familiar with the basic terminology
for curves and surfaces.
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2.1 Curves and Graphs

A closed curve in the plane is a continuous map γ : S1 → R2, and a path in the
plane is a continuous map ζ : [0, 1] → R2. A path ζ is closed when ζ(0) = ζ(1).
In this work, we are presented with a generic curve; that is, one where there
are a finite number of self-intersections, each of which is transverse and no three
strands cross at the same point. See Figure 1 for an example.

Fig. 1: A generic plane
curve induces a four-
regular graph.

The image of a generic closed curve is naturally as-
sociated with a four-regular plane graph. The self-
intersection points of a curve are vertices, the paths
between vertices are edges, and the connected compo-
nents of the complement of the curve are faces. Given
a curve, choose an arbitrary starting point γ(0) = γ(1)
and orientation for γ.

The dual graph γ∗ is another (multi-)graph, whose
vertices represent the faces of γ, and two vertices
in γ∗ are joined by an edge if there is an edge be-
tween the two corresponding faces in γ. The dual
graph is another plane graph with an inherited em-
bedding from γ.

Let T be a spanning tree of γ. Let E denote the set of edges in γ, the tree T
partitions E into two subsets, T and T ∗ := E \ T . The edges in T ∗ define a
spanning tree of γ∗ called the cotree. The partition of the edges (T, T ∗) is called
the tree-cotree pair.

We call a rooted spanning cotree T ∗ of γ∗ a breadth-first search tree (BFS-
tree) if it can be generated from a breadth-first search rooted at the vertex in γ∗
corresponding to the unbounded face in γ. Each bounded face f of γ is a vertex
in a breadth-first search tree T ∗, we associate f with the unique edge incident
to f∗ in the direction of the root. Thus, there is a correspondence between edges
of T ∗ and faces of γ.

2.2 Homotopy and Isotopy

A homotopy between two closed curves γ1 and γ2 that share a point p0 is a
continuous map H : [0, 1] × S1 → R2 such that H(0, ·) = γ1, H(1, ·) = γ2, and
H(s, 0) = p0 = H(s, 1). We define a homotopy between two paths similarly,
where the two endpoints are fixed throughout the continuous morph. Notice
that homotopy between two closed curves as closed curves and the homotopy
between them as closed paths with an identical starting points are different. A
homotopy between two injective paths ζ1 and ζ2 is an isotopy if every interme-
diate path H(s, ·) is injective for all s. The notion of isotopy naturally extends
to a collection of paths.

We can think of γ as a topological space and consider the fundamental
group π1(γ). Elements of the fundamental group are called words, whose letters
correspond to equivalence classes of homotopic closed paths in γ. The fundamen-
tal group of γ is a free group with basis consisting of the classes corresponding
to the cotree edges of any tree-cotree pair of γ.
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Let H be a homotopy between curves γ1 and γ2. Let #H−1(x) : R2 → Z be
the function that assigns to each x ∈ R2 the number of times the intermediate
curves H sweep over x. The homotopy area of H is

Area(H) :=

∫
R2

#H−1(x) dx.

The minimum area homotopy between γ1 and γ2 is the infimum of the ho-
motopy area over all homotopies between between γ1 and γ2. We denote this
by AreaH(γ1, γ2) := infH Area(H). When γ2 is the constant curve at a specific
point p0 on γ1, define AreaH(γ) := AreaH(γ, p0). See Figure 2 for an example
of a homotopy.

(a) (b) (c) (d)

Fig. 2: (a) A generic closed curve in the plane. (b) We see a homotopy that sweeps
over the face f3. (c) The homotopy sweeps f3 again. (d) The homotopy avoids
sweeping over the face f2. This is a minimum area homotopy for the curve, the
area is Area(f1) + 2 ·Area(f3).

For each x ∈ R\γ, the winding number of γ at x, denoted as wind(x, γ), is the
number of times γ “wraps around” x, with a positive sign if it is counterclockwise,
and negative sign otherwise. The winding number is a constant on each face. The
winding area of γ is defined to be the integral

AreaW (γ) :=

∫
R2

|wind(x, γ)| dx =
∑

face f

|wind(f, γ)| ·Area(f).

The depth of a face f is the minimal number of edges crossed by a path
from f to the exterior face. The depth is a constant on each face. We say the
depth of a curve is equal the maximum depth over all faces. We define the depth
area to be

AreaD(γ) :=

∫
R2

depth(x, γ) dx =
∑

face f

depth(f) ·Area(f).

Chambers and Wang [4] showed that the winding area gives a lower bound
for the minimum homotopy area. On the other hand, there is always a homotopy
with area AreaD(γ); one such homotopy can be constructed by smoothing the
curve at each vertex into simple depth cycles [5], then contracting each simple
cycle. Therefore we have

AreaW (γ) ≤ AreaH(γ) ≤ AreaD(γ). (1)
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2.3 Self-Overlapping Curves

A generic curve γ is self-overlapping if there exists an immersion of the two
disk F : D2 → R2 such that γ = F |∂D2 . We say a map F extends γ. The
image F (D2) is the interior of γ. There are several equivalent ways to define
self-overlapping curves [10,24,23,15,18]. Properties of self-overlapping curves are
well-studied [9]; in particular, any self-overlapping curve has rotation number 1,
where the rotation number of a curve γ is the winding number of the derivative γ′
about the origin [26]. Also, the minimum homotopy area of any self-overlapping
curve is equal to its winding area: AreaW (γ) = AreaH(γ) [12].

The study of self-overlapping curves traces back to Whitney [26] and Ti-
tus [24]. Polynomial-time algorithms for determining if a curve is self-overlapping
have been given [1,23], as well as NP-hardness result for extensions to surfaces
and higher-dimensional spaces [7].

For any curve, the intersection sequence5 [γ]V is a cyclic sequence of ver-
tices [v0, v1, . . . , vn−1] with vn = v0, where each vi is an intersection point of γ.
Each vertex appears exactly twice in γV . Two vertices x and y are linked if the
two appearances of x and y in γV alternate in cyclic order: . . . x . . . y . . . x . . . y . . . .

A pair of symbols of the same vertex x induces two natural subcurves gen-
erated by smoothing the vertex x; see Figure 3 for an example. (In this work,
every smoothing is done in the way that respects the orientation and splits the
curve into two subcurves.) A vertex pairing is a collection of pairwise unlinked
vertex pairs in [γ]V .

A self-overlapping decomposition Γ of γ is a vertex pairing such that the
induced subcurves are self-overlapping; see Figure 3b and Figure 3d for exam-
ples. The subcurves that result from a vertex pairing are not necessary self-
overlapping; see Figure 3c. For a self-overlapping decomposition Γ of γ, denote
the set of induced subcurves by {γi}ℓi=1. Since each γi is self-overlapping, the
minimum homotopy area is equal to its winding area. We define the area of
self-overlapping decomposition to be

AreaΓ (γ) :=

ℓ∑
i=1

AreaW (γi) =

ℓ∑
i=1

AreaH(γi).

Fasy, Karakoç, and Wenk [12,14] proved the following structural theorem.

Theorem 1 (Self-Overlapping Decomposition [12, Theorem 20]). Any
curve γ has a self-overlapping decomposition whose area is minimum over all
null-homotopies of γ.

3 From Curves to Words

In order to work with plane curves, one must choose a representation. An impor-
tant class of representations for plane curves are the various combinatorial words.
5 also known as the unsigned Gauss code [5,13]
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(a) (b) (c) (d)

Fig. 3: (a) Curve γ with intersection sequence γV = [v0, v1, v1, v2, v2, v0]. (b) All
vertices are paired. (c) One of the subcurves is not self-overlapping. (d) Both
subcurves are self-overlapping.

One example is the Gauss code [13]. Determining whether a Gauss code corre-
sponds to an actual plane curve is one of the earliest computational topology
questions [8].

A plane curve (and its homotopic equivalents) can also be viewed as a word in
the fundamental group π1(γ) of γ [1,22,19]. If we put a point pi in each bounded
face fi, the curve γ is generated by the unique generators of each R2 − {pi}.
Nie [19] represents curves as words in the fundamental group to find the minimum
area swept out by contracting a curve to a point. If the curve lies in a plane
with punctures, one can define the crossing sequence of the curve with respect
to a system of arcs, cutting the plane open into a simply-connected region.
Blank [1] represents curves using a crossing sequences to determine if a curve is
self-overlapping. While Blank constructed the words geometrically by drawing
arcs and Nie defined the words algebraically, the dual view between the system
of arcs and fundamental group suggests that the resemblance between Blank and
Nie’s constructions is not a coincidence.

In this section, we describe the construction by Blank; then, we interpret
Blank’s construction as a way of choosing the basis for the fundamental group
under further restriction [22]. We prove that the Blank word is indeed unique
when the restriction is enforced, providing clarification to Blank’s original defi-
nition. We give a complete description of Nie’s word construction and prove that
Nie’s word and Blank’s word are equivalent.

3.1 Blank’s Word Construction

We now describe Blank’s word construction [1, page 5]. Let γ be a generic closed
curve in the plane, pick a point in the unbounded face of γ, call it the basepoint p0.
From each bounded face fi, pick a representative point pi. Now connect each pi
to p0 by a simple path in such a way that no two paths intersect each other. We
call the collection of such simple paths a cable system, denoted as Π, and each
individual path πi from pi to p0 as a cable.

Orient each πi from pi to p0. Now traverse γ from an arbitrary starting point
of γ and construct a cyclic word by writing down the indices of γ crossing the
cables πi in the order they appear on γ; each index i has a positive sign if we
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cross πi from right to left and a negative sign if from left to right. We denote
negative crossing with an overline i. We call the resulting combinatorial word
over the faces a Blank word of γ with respect to Π, denoted as [γ]B(Π). Figure 4
provides an example of Blank’s construction.

(a) (b)

Fig. 4: (a) A curve γ with labeled faces and edges, Πa is drawn in blue. The
Blank word of γ corresponding to Πa is [γ]B(Πa) = [2314234]. (b) The same
curve with a different choice of cables Πb. The corresponding Blank word
is [γ]B(Πb) = [3214324].

A word w is reduced if there are no two consecutive symbols in w that are
identical and with opposite signs. We can enforce every Blank word to be reduced
by imposing the following shortest path assumption: each cable has a minimum
number of intersections with γ among all paths from pi to p0. A simple proof [1,6]
shows that if Π satisfies the shortest path assumption, the corresponding Blank
word with respect to Π is reduced. However, the choice of the cable system, and
how it affects the constructed Blank word, was never explicitly discussed in the
original work (presumably because for the purpose of detecting self-overlapping
curves, any cable system satisfying the shortest path assumption works). In
general, reduced Blank words constructed from different cable systems for the
same curve are not identical, see Figure 4a and Figure 4b for an example. In
this paper, we show that if the two cable systems have the same cable ordering–
the (cyclic) order of cables around point p0 in the unbounded face–then their
corresponding (reduced) Blank words are the same, under proper assumptions
on the cable system.

Our first observation is that the Blank words are invariant under cable iso-
topy; therefore the cable system can be specified up to isotopy.

Lemma 1 (Isotopy Invariance).
The reduced Blank word is invariant under cable isotopy.

Proof. Let γ be a curve. Discretize the isotopy of the cables and consider all
the possible homotopy moves [5] performed on γ and the cables involving up to
two strands from γ and a cable, because isotopy disallows the crossing of two
cables. No 1��0 move—the move that creates/destroys a self-loop—is possible
as cables do not self-intersect. Any 2��0 move which creates/destroys a bigon
is in between a cable and a strand from γ, which means the two intersections
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must have opposite signs, and therefore the reduced Blank word does not change.
Any 3�3 move which moves a strand across another intersection does not change
the signs of the intersections, so while the order of strands crossing the cable
changes, the order of cables crossed by γ remains the same. Thus the reduced
Blank word stays the same.

We remark that we can perform an isotopy so that the Blank words are reduced
even when the cables are not necessary shortest paths. In the rest of the paper,
we sometimes assume Blank words to be reduced based on the context.

Manage the Cable Systems Next, we show that Blank words are well-defined once
we fix the choice of basepoint p0 and the cyclic cable ordering around p0, as long
as the cables are drawn in a reasonable way. Fix a tree-cotree pair (T, T ∗) of γ,
where the root of the cotree is on p0. We say that a cable system Π is managed
with respect to the cotree T ∗ if each path πi has to be a path on T ∗ from the
root p0 to the leaf pi. Given such a collection of cotree paths, one can slightly
perturb them to ensure that all paths are simple and disjoint.6 See Figure 5
for examples. Not every cable system can be managed with respect to T ∗, see
Figure 6 for an example.

(a) (b) (c) (d)

Fig. 5: (a) A cable system Π1 on γ that is not managed. The red cables do not
follow existing paths to the exterior face. (b) A managed cable system Π2 on γ.
(c) The dual γ∗ in red. (d) The spanning tree T ∗ in γ∗ generated by the managed
cable system Π2.

We now show that if two managed cable systems satisfying shortest path
assumption with identical cable ordering around p0, their corresponding Blank
words are the same. Note that managed cable systems require a fixed tree-cotree
pair. We emphasize that the shortest path assumption is necessary; one can
construct two (not necessarily shortest) cable systems having the same cable
ordering but different corresponding reduced Blank words (see Figure 7a and
Figure 7b).

Lemma 2 (Blank Word is Unique). Given a curve γ, if the basepoint p0
and the cable ordering of a managed cable system Π satisfying the shortest path
assumption is fixed, then the Blank word of γ is unique.

6 In other words, the cables are weakly-simple [25].
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Proof. We will argue that once the basepoint p0 and the order of cables in Π
around p0 is fixed, all the drawings of Π respecting the cable ordering lead to
the same Blank word. Because the cable system is managed, the tree-cotree pair
of γ are fixed and we can safely contract the primal tree and treat the graph as
a collection of nested loops. If the path passes through a vertex of γ, it counts
as two crossings. We prove that all the cables to the loops at certain depth have
a fixed ordering by induction on the depth. This is sufficient as any two cable
systems with the same cables and ordering on every loop of the same depth
must be isotopic, thus by Lemma 1 their Blank words are identical. Because of
the shortest path assumption, there is only one way to draw the cables to the
depth-1 contours.

For any ℓ, imagine all cables of depth at least ℓ are currently drawn from
p0 to the depth-ℓ loops, where on each loop the collection of the cables are
precisely those faced contained within the loop, and the cable ordering on the
loops is fixed. Due to the shortest path assumption, every cable of depth ℓ has
to terminate at their corresponding face. There is at most one unique way to
extend each cable of depth ℓ to its representative point in the face while keeping
all depth-ℓ cables disjoint and simple, up to isotopy of the cables. (If no such
drawing exist, this particular cable ordering is not realizable as a cable system.)
By Lemma 1, isotopy does not change the order the curve γ passing through
these depth-ℓ cables. Now we partition the cables to faces of depth greater than
ℓ based on children loops that contains the corresponding faces. There is one
unique way to extend each cable of depth greater than ℓ to the depth-(ℓ + 1)
loops up to isotopy. Again by Lemma 1, isotopy does not change the order the
curve γ passing through the cables of depth more than ℓ. By induction, the
Blank word of γ is unique.

Fig. 6: An example of a cable system with a cable, in red, that cannot be man-
aged.

Therefore, given any plane curve γ, the Blank word is well-defined (if exists),
independent of the cable system after specifying a cyclic permutation of all the
bounded faces of γ.

3.2 The Nie Word Construction

In an unpublished manuscript [19,20], Nie described how to compute the mini-
mum homotopy area between any two planar closed curves using the language of
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(a) (b)

Fig. 7: (a) A curve with labeled faces and edges. A shortest path cable system Πa

is drawn in blue. From the indicated start position, the Blank Word is [γ]B(Πa) =
[4325431]. (b) The same curve with a cable system Πb that does not fulfill the
shortest path assumption. The Blank word is [γ]B(Πb) = [432542321].

geometric group theory. Nie constructed a combinatorial word representing the
planar closed curve, followed by performing dynamic programming on the word
based on a structure called “foldings” (see Section 4.1). But first, let us describe
the word construction.

Choose a point pi for each bounded face fi of γ; denote the collection of
points as P . Consider the punctured plane X := R2 \ P and its fundamental
group π1(X). Choose a set of generators Σ for π1(X), where each xi in Σ
represents the generator of π1(R2 \ {pi}) ∼= Z.

Now the fundamental group π1(X) is a free group over such generators, and
the curve γ can be represented as a word over generators of π1(X). However,
there is more than one way to map each generator of π1(R2 \ {pi}) into π1(X),
due to the fact that in order for π1(X) to be a group, one has to choose an
endpoint x0 and turn each closed curve in π1(X) into a closed path connecting
to x0. Nie never specified the choice of the connecting path because his algebraic
formulation always gives the same answer under any mapping of the generators.

Nie’s construction can also be interpreted combinatorially [20]. Again con-
sider the curve γ as a four-regular plane graph. Pick a tree-cotree pair (T, T ∗) of
γ such that T ∗ is a BFS-tree; naturally the tree T is contractible. For the sake
of illustration, contract T into a single point t; now each cotree edges is a single
closed path at t, enclosing at least one point in P . For our purpose of proving
word equivalence, there are two natural sets of generators for X := R2 \ P :

– set of all cotree edges, and
– set of all face boundaries; i.e. sequences of cotree edges around each face

containing pi.

We now describe the change-of-basis between the two sets of generators in graph-
theoretic terms. Traverse γ from some arbitrary starting point and orient each
edge of γ accordingly. Now, for each face fi, define the boundary operator ∂ by
mapping face fi to the signed cyclic sequence of edges around face fi, where
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each edge is signed positively if it is oriented counter-clockwise and negatively
otherwise.

Now, write the curve γ as a cyclic word over the cotree edges T ∗ by traversing
γ, ignoring all tree edges in T . We perform the following procedure inductively
on the cotree T ∗ to construct another cyclic word, this time as an element in
the free group over the faces of γ. Starting from the leaves f of T ∗, rewrite each
edge e bounding the face f (that is, the dual of the unique edge connecting f to
its parent in T ∗) as a singleton word based on the index of f , with positive sign
if edge e is oriented counter-clockwise, or with negative sign otherwise. Next, for
any internal node f of T ∗, the boundary ∂f consists of a sequence of (1) tree
edges, (2) cotree edges to children of f in T ∗ denoted as e1, e2, . . . , er, and (3)
(a unique) cotree edge to parent of f denoted as ef :

∂f = [efe1e2 . . . er].

We can now inductively rewrite each child cotree edge ei as a free word wi over
the faces (and ignore all tree edges). We emphasize that each word for the child
cotree edge constructed inductively is a free word, not a cyclic word. Choose a
particular but arbitrary way to break the cyclic sequence of faces and rewrite
the equation:

ef = w̄r · · · · · w̄j+1 · (w̄j)
′ · ∂f · (w̄j)

′′ · w̄j−1 · · · · · w̄1,

where w̄j = (w̄j)
′(w̄j)

′′ is a particular way of breaking the face word w̄j into
two. This gives us a free word over the faces for edge ef , and thus by induction
we have rewritten γ as a free word over the faces. Finally, we can turn the free
word back into a cyclic word, by observing that the cyclic permutation of the
constructed free word over the faces does not affect the element we are getting
in π1(X) (but as a side effect of choosing the basepoint p0 of γ).

We call the resulting signed sequence of faces the Nie word and denoted
as [γ]N (Σ), where Σ is the choices we made when breaking up the cyclic word
at each cotree edge, referred to as a cycle flattening. Notice that the definition
of [γ]N depends on how we choose to break the cyclic edge sequences, and thus
is not well-defined without specifying the choices.

3.3 Word Equivalence

Now we are ready to prove that the two words, one defined geometrically and
the other algebraically, are in fact equivalent.

Theorem 2 (Word Equivalence). Let γ be any plane curve. For a Nie word
[γ]N (Σ) with a fixed cycle flattening Σ, there is a managed cable system Π such
that the Blank word [γ]B(Π) is equal to [γ]N (Σ). Conversely, any managed cable
system Π induces a cycle flattening Σ such that [γ]B(Π) and [γ]N (Σ) are equal.

Proof. First, fix a tree-cotree pair (T, T ∗) for γ such that T ∗ is a BFS-tree.
Orient the edges of the cotree T ∗ so that it is rooted at some fixed basepoint p0.
We prove the following statement by induction on the nodes of T ∗ from leaves
to the root, which implies the theorem:
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The Blank subword corresponding to any cotree edge e is the same as
the Nie subword corresponding to e.

To prove the statement, we will construct the cables in Π gradually from
each face to p0, at each step stopping at the cotree edge e in T ∗. Let f be an
arbitrary non-root node in T ∗, and edge e be the unique edge from f to its
parent in T ∗. If f is a leaf, e is the only edge in ∂f that is not in tree T . This
means, when we write ∂f using edges not in T , we have ∂f = ±e, with positive
sign if e is oriented counter-clockwise and negative sign otherwise. We draw the
cable from the representative point in face f to e; there is only one possible way
to draw the cable up to isotopy.

If f is not a leaf, let e1, . . . , er be other non-tree edges on ∂f besides e in
counter-clockwise order around ∂f , flipping their orientation defined by travers-
ing γ if necessary. By induction hypothesis, the Blank subword of ei is the same
as its Nie subword; denote the Blank (or Nie) subword of ei as wi. This suggests
that as we traverse ei, the cables in Π seem is exactly equal to wi. Now we need
to draw the cable πf from the representative point of f to edge e. By construc-
tion of the Nie subword and the given cycle flattening Σ, the Blank subword
on e must be of the form

w̄r · · · · · w̄j+1 · (w̄j)
′ · f · (w̄j)

′′ · w̄j−1 · · · · · w̄1,

where w̄j = (w̄j)
′(w̄j)

′′ is a particular way of breaking the face word w̄j into
two. (See Figure 8.) Because of the shortest path assumption, the collection of
symbols inside each wi corresponds to exactly the faces contained within the
region formed by cotree edge ei and the primal tree T . Thus, we extend all the
cables intersecting the edges e1, . . . , er to e, and create the representative point of
face f within the subregion of f bounded by the last cable in w̄r · · · · · w̄j+1 · (w̄j)

′

and the first cable in (w̄j)
′′ · w̄j−1 · · · · · w̄1. This way we can draw the cable

πf so that the corresponding Blank subword is equal to the Nie subword. By
induction, we have [γ]B(Π) = [γ]N (Σ) for the constructed cable system Π,
which is managed and satisfies the shortest path assumption by the choice of T ∗

being a BFS-tree.
From the above construction we can recover a cycle flattening from a given

managed cable system satisfying the shortest path property, thus the converse
holds as well.

Figure 9 gives an example demonstrating the one-to-one correspondence,
for four different cable systems and cycle flattenings, on the same curve and
tree-cotree pair. One consequence coming from the equivalence between two
words and Lemma 2 is that Nie word is uniquely determined after knowing the
subwords corresponding to cotree edges incident to the unbounded face. This is
not obviously from the definition of Nie word itself.

With this equivalence in hand, for the remainder of the paper we refer to a
Nie word or a Blank word of a curve γ as the word, denoted as [γ] by dropping
the subscripts. Keep in mind, however, that the formal equivalence holds only
when the cable system is managed.
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Fig. 8: As we traverse the red edge γr intersects 3, 2, then 1—the cable cor-
responding to f1—then 4. As we traverse the boundary of f1 we traverse the
red edge, followed by 4 and 23. This choice of cable system Π corresponds to
cycle flattening at f1 as 2332144 by writing f1 = e2e3e1e4, or equivalently,
2332144 = e2e3e1e4. The Blank subword on γr, with respect to the cycle flat-
tening, is e1 = 32 · 2332144 · 4 = 3214, as expected.

(a) (b) (c)

(d) (e) (f) (g)

Fig. 9: (a) A curve γ. (b) A spanning tree in red and cotree in blue. (c) A labeling
of the coedges and faces. We have four ways to break the cyclic face sequence for
e1, represented using the cable systemΠ: (d) e1 = ∂f1e2e3e4; (e) e1 = e2∂f1e3e4;
(f) e1 = e2e3∂f1e4; and (g) e1 = e2e3e4∂f1.

4 Foldings and Self-Overlapping Decompositions

In this section, we give a geometric proof of the correctness to Nie’s dynamic
program. To do so, we show that the minimum homotopy area of a curve can
be computed from its Blank word using an algebraic quantity of the word called
the cancellation norm, which is independent of the drawing of the cables. We
then show a minimum-area self-overlapping decomposition can be found in poly-
nomial time.
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4.1 The Cancellation Norm and Blank Cuts

Given a (cyclic) word w, a pairing is a letter and its inverse (f, f) in w. Two
letter pairings, (f1, f1) and (f2, f2), are linked in a word if the letter pairs
occur in alternating order in the word, [· · · f1 · · · f2 · · · f1 · · · f2 · · ·]. A folding
of a word is a set of letter pairings such that no two pairings in the set are
linked. For example, in the word [23154654623] the set {(5, 5), (3, 3)} is a fold-
ing while {(5, 5), (6, 6)} is not.

The cancellation norm is defined in terms of pairings. The norm also applies in
the more general setting where every letter has an associated nonnegative weight.
A letter is unpaired in a folding if it does not participate in any pairing of the
folding. For a word of length m, computing the cancellation norm takes O(m3)
time and O(m2) space [2,21]. Recently, a more efficient algorithm for computing
the cancellation norm appears in Bringmann et al. [3]; this algorithm uses fast
matrix multiplications and runs in O(m2.8603) time.

The weighted cancellation norm of a word w is defined to be the minimum
sum of weights of all the unpaired letters in w across all foldings of w [2,21].
If w is a word where each letter fi corresponds to a face fi of a curve, we
define the weight of fi to be Area(fi). The area of a folding is the sum of
weights of all the unpaired symbols in a folding. The weighted cancellation norm
becomes ∥w∥ := minF

∑
i Area(fi) where F is the set of all foldings of w and i

ranges over all unpaired letter in w.
A dynamic program, similar to the one for matrix chain multiplication,

is applied on the word. Let w = f1f2 · · · fℓ where ℓ ≥ 2. Assume we have
computed the cancellation norm of all subwords with length less than ℓ. Let
w′ = f1f2 · · · fℓ−1. If fℓ is not the inverse of fi for 1 ≤ i ≤ ℓ − 1, then fℓ is un-
paired and ||w|| = ||w′||+ Area(fℓ). Otherwise, fℓ participates in a folding and
there exits at least one k where 1 ≤ k ≤ ℓ−1 and fk = f−1

ℓ . Let w1 = f1 · · · fk−1

and w2 = fk+1 · · · fℓ−1. Then, we find the k that minimizes ||w1||+||w2||.We have

||w|| = min{||w′||+Area(fℓ),min
k

{||w1||+ ||w2||}}

Nie shows that the weighted cancellation norm whose weights correspond to face
areas is equal to the minimum homotopy area using the triangle inequality and
geometric group theory. Our proof that follows is more geometric and leads to
a natural homotopy that achieves the minimum area.

We now show how to interpret the cancellation norm geometrically. Let (f, f̄)
be a face pairing in a folding of the word [γ]B(Π) for some cable system Π.
Denote the cable in Π ending at face f as πf . Cable πf intersects γ at two points
corresponding to the pairing (f, f̄), which we denote as p and q respectively.
Let π′

f be the simple subpath of πf so that π′
f (0) = q and π′

f (1) = p. We
call π′

f a Blank cut [1,10,17] (see Figure 10). Any face pairing defines a Blank
cut, and the result of a Blank cut produces two curves each with fewer faces
than the original curve: namely, γ1 which is the restriction of γ from q to p
following by the reverse of path π′

f , and γ2 which is the restriction of γ from p
to q followed by path π′

f .
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(a) (b)

Fig. 10: (a) A curve with labeled path P . (b) The two induced subcurves from
cutting along P.

(a) (b) (c) (d)

Fig. 11: (a) A curve with cables. (b) Isotopy the cables to not partially cut any
faces. (c) One subcurve resulting from cutting along the middle cable. The curve
is weakly simple and there are two cables in this face. (d) The other subcurve.

In order to not partially cut any face, we require all Blank cuts to occur
along the boundary of the face being cut. When cutting face fi along path πj , we
reroute all cables crossing the interior of fi, including πj but excluding πi, along
the boundary of fi through an isotopy, so that no cables intersect πi. Lemma 1
ensures that the reduced Blank word remains unchanged. See Figure 11 for an
example. Notice that different cables crossing fi might be routed around different
sides of fi in order to avoid intersecting cable πi and puncture pi. This way, we
ensure the face areas of the subcurves are in one-to-one correspondence with the
symbols in the subwords induced by a folding.

Using the concept of Blank cut we can determine if a curve is self-overlapping.
A subword σ of w is positive if σ = f1f2 . . . fk, where each letter fi is positive.
A pairing (f, f̄) is positive if one of the two subwords of the (cyclic) word w in
between the two symbols f, f̄ is positive; in other words, w = [fpf̄w′] for some
positive word p and some word w′. A folding of w is called a positive folding7 if
all pairings in w are positive, and the word constructed by replacing each posi-
tive pairing (including the positive word in-between) fpf̄ in the folding with the
empty string is still positive. Words that have positive foldings are called posi-
tively foldable. Blank established the characterization of self-overlapping curves
through Blank cuts.

7 Blank called these pairings groupings
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Theorem 3 (Self-Overlapping Detection [1]). Curve γ is self-overlapping
if and only if γ has rotation number 1 and [γ]B(Π) is positively foldable for any
shortest Π.

However, we face a difficulty when interpreting Nie’s dynamic program geo-
metrically. In our proof we have to work with subcurves (and their extensions)
of the original curve and the induced cable system. For example, after a Blank
cut or a vertex decomposition, there might be multiple cables connecting to the
same face creating multiple punctures per face, and cables might not be managed
or follow shortest paths to the unbounded face (see Figure 11c and Figure 15b).
In other words, the subword corresponding to a subcurve with respect to the
induced cable system might not be a regular Blank word (remember that Blank
word is only well-defined when the cable system is managed, all cables are short-
est paths, and the cable ordering is fixed; see Section 2). To remedy this, we
tame the cable system first by rerouting them into another cable system that is
managed and satisfies the shortest path assumption, then merging all the cables
ending at each face. We show that while such operations change the Blank word
of the curve, the cancellation norm of the curve and the positive foldability does
not change. We summarize the property needed below.

Lemma 3 (Cable Independence). Let γ be any curve with two cable sys-
tems Π and Π ′ such that the weights of the cables in Π ending at any fixed
face sum up to the ones of Π ′. Then any folding F of [γ](Π) can be turned into
another folding F ′ of [γ](Π ′), such that the area of the two foldings are iden-
tical. As a corollary, the minimum area of foldings (the cancellation norm) of
[γ](Π) and the existence of a positive folding of [γ](Π) are independent of the
choice of Π.

Next, we prove that for each folding there is a homotopy with equal area.

Lemma 4 (Folding to Homotopy). Let γ be a curve and Π be a man-
aged cable system satisfying the shortest path assumption, and let F be a folding
of [γ](Π). There exists a null-homotopy of γ with area equal to the area of F .

Proof. We induct on the number of pairings in F . Consider a folding F with k
pairings, and let (f, f̄) be a pairing in F that does not contain any other pairing
in between. A Blank cut along this pairing decomposes the curve into two sub-
curves, at least one of which does not contain any pairings. Call this subcurve γ1.
We will contract γ1 to the cut using a homotopy with area equal to the sum of
area of all the unpaired letters in the subword of γ1; such homotopy exist by the
base case of induction. However, after we contract γ1, the cable system on the
remaining curve might no longer be managed or shortest, and there might be
multiple cables in some faces. Therefore we strengthen the inductive hypothesis
by assuming that for any subword of [γ](Π) and its corresponding subcurve γ′
of γ with the induced (unmanaged multi-)cable system, and a folding F ′ with
less k pairings on the subword, there exists a null-homotopy of γ′ with area equal
to the area of the folding F ′, and the destination of the null-homotopy can be
anywhere on γ′.
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Let w′ be the subword of [γ](Π) by removing the subword between the pair-
ing (f, f̄), folding F ′ on subword w′ be constructed from F by removing the
pairing (f, f̄). Let γ′ denote the curve that results from contracting γ1 to the cut
and let Π ′ denote the cable system induced on γ′ by Π. By the (strengthened)
induction hypothesis γ′ has a null-homotopy with area equal to the one of F ′.
Combining with the null-homotopy of γ1 and we are done.

For the base case when F is the empty pairing, if the cables are not managed,
construct a managed cable system satisfying the shortest path assumption Π∗

for γ and apply Lemma 3; the sum of weights of all letters in the new Blank
word remains unchanged. To construct the null-homotopy, decompose the curve
into depth cycles by performing a smoothing at each vertex [5], to obtain a null-
homotopy with area equal to the depth area. Since each cable in Π∗ follows a
shortest path to the unbounded face, the number of times an unsigned letter
appears in the word is equal to the depth of the face, and thus the homotopy
area is equal to the area of the folding. In fact, we can choose any point on the
curve to be the destination of the null-homotopy.

What we are left with is to prove Lemma 3: Given a curve γ and a cable
system Π, if we have a folding on the face word [γ](Π), there is an equivalent
folding of the new word [γ](Π ′) that has the same area if we choose a different
cable system. As a result, the cancellation norm and the positive foldability of a
word are independent to the cable system chosen. Notice that it is sufficient to
assume Π ′ to be a managed cable system with shortest path assumptions and
single cable to each face.

Any two cable systems can always be connected by a sequence of isotopy
and order switching between two adjacent cables, followed by a redrawing of
the cables induced by a homeomorphism of the plane fixing the punctures {pi},
which fixes the cable ordering and the disjointness between cables but the isotopy
classes of the cables change. We emphasize that either operation will change the
Blank word, but we can always find a folding of the new word that preserves the
area.

Next, we show that switching two adjacent cables preserves the area and
positivity of the folding

Lemma 5 (Switch Invariance). Given curve γ, a cable system Π, and a
folding F on [γ](Π). Switching the order of two adjacent cables produces another
folding on the new word with equivalent area. Furthermore, the new folding is
positive if and only if F is.

Proof. Consider two cables πf and πg in Π that are adjacent in the rotation
system. Assume πg is in the clockwise direction of πf in the rotation system
and we are trying to move πf across πg. Let w := [γ]B(Π) denote the Blank
word before the order of the cables are switched and w′ the word after the
cables are switched; by Lemma 1 the words are well-defined up to isotopy classes
of πf and πg. First, we argue that, without loss of generality, we can assume
the drawing of πg follows πf in an ε-neighborhood before continuing towards
puncture pg, by drawing πg still counter-clockwise to and ε-close to πf from p0
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to pf and back to p0, followed by the original drawing of πg. The new drawing is
disjoint from the rest of the cables and is isotopic to the original drawing. This
way we can ensure any instance of symbol f in w is followed immediately by
a g, and any instance of f̄ has a ḡ proceeding in the word. (Notice we cannot
necessarily say the same about g because cable πg continues after reaching pf .)

Let F be a folding of w, we construct a folding F ′ of w′ with equal area.
We separate into two cases. If no instance of (f, f̄) is in F , then all pairings
in F can be paired in W ′ and we can set F ′ := F . Now we assume there is
an instance of (f, f̄) in F . We further split into subcases. Look at the two g/ḡ
symbols adjacent to the (f, f̄) pair in F . If the two g symbols is a pairing in F ,
then we can again set F ′ := F . If exactly one of the g/ḡ adjacent to the (f, f̄)
pair is the paired with another ḡ or g that is not adjacent to the (f, f̄) pair in w,
then switching the cables naïvely results in a linked pair,

w = [. . . fg . . . g . . . ḡ f̄ . . .] −→ w′ = [. . . gf . . . g . . . f̄ḡ . . .].

Instead, after the cables are switched, we pair the g and ḡ that appear next to
the (f, f̄) pair together in F ′:

w′ = [. . . g f . . . g . . . f̄ ḡ . . .].

The new F ′ is a folding without linked pairs and does not change the area
because the same number and types of symbols are paired. Finally, if both g

and ḡ adjacent to the (f, f̄) pair are paired with letters not adjacent to f̄ and f

in F , we pair g next to the f with the ḡ next to f̄ and the g not adjacent to
the f with the ḡ not adjacent to f̄ in F ′:

w = [. . . f g . . . ḡ . . . g . . . ḡ f̄ . . .] −→ w′ = [. . . g f . . . ḡ . . . g . . . f̄ ḡ . . .].

Again, F ′ remains a folding without linked pairs and has the same area as F .

Next, we show that the cancellation norm does not depend on the cables hav-
ing the shortest path property. While the face word is unique up to isotopy of the
cables based on Lemma 1, two cable systems with identical ordering around p0
may not be isotopic to each other. The theory of mapping class groups [11,16]
provides tools to convert between all possible isotopy classes of cable systems
with same cable ordering.

Let Sg,n denote a surface with genus g and n punctures. Let Diffeo+(Sg,n)
denote the group of all orientation-preserving diffeomorphisms from Sg,n → Sg,n.
Define an equivalence relation ∼ on Diffeo+(Sg,n), where ϕ ∼ ψ if there exists
an isotopy between ϕ and ψ. The mapping class group of Sg,n is the group
MCG(Sg,n) = Diffeo+(Sg,n)/ ∼ . A simple closed curve or a puncture-to-
puncture arc λ on a surface is nonseparating if the surface remains connected
after cutting along λ. A simple closed curve (or arc) in a surface is essential if
it is not homotopic to a point and not homotopic to a puncture.



Minimum-Area Homotopy 19

Let λ be a simple closed curve in a surface. We now describe a particular
mapping class in MCG(Sg,n), a Dehn twist — about λ. LetAλ be an arbitrarily
thin annulus homeomorphic to the product of S1 and the unit interval I; i.e. Aλ

∼=
S1 × I with λ ∼= S1 × {0}. The twist is the map Tλ : Aλ → Aλ where Tλ(θ, t) =
(θ + 2πt, t) [11]. Intuitively, we can think of Tλ as acting on any path that
crosses Aλ by fixing one boundary component of the annulus and rotating the
other boundary component one full revolution, dragging all masses within Aλ

along. See Figure 12 for an example. Dehn twists are well-defined as element in
MCG(Sg,n) and depend only on the isotopy class of λ [16].

Fig. 12: An illustration of a Dehn twist.

Let Dn be the closed disk D2 with n punctures. The pure mapping class group
of Dn, PMCG(Dn), is the subgroup of MCG(Dn) that fixes all punctures. The
group PMCG(Dn) is generated by a finite number of closed curves.

Theorem 4 (Generators [11, §9.3]). PMCG(Dn) is generated by Dehn twists
about the set of simple closed curves that surround exactly two punctures.

Thus, given any cable system we can perform Dehn twists about these gen-
erators to obtain another cable system with the same cable ordering such that
all cables are shortest paths. We choose a disk in the plane that contains the
curve γ, the punctures, and the cables. (One subtlety is that even when the two
cable systems have the same cyclic ordering, the choice of the disk may produce
different linear cable ordering when we decide the location to take the containing
disk. This can be easily resolved by redrawing some of the cables using isotopy
across the infinity.) We now show that performing Dehn twists about suitable
simple closed curves does not change the cancellation norm of the word.

Lemma 6 (Twist Invariance). Let γ be a curve and Π be a cable system, and
let F be a folding on the corresponding face word [γ](Π). Dehn twists about the
cables in Π produce another folding on the new word with equal area.

Proof. Let Π be a cable system on a closed curve γ. Given two punctures pi
and pj , let ci,j denote the closed curve that contains only pi and pj and fol-
lows the cables πi and πj to the exterior face, then connect. See Figure 13a for
an illustration. There may be cables between πi and πj in the rotation order
about p0. We bundle all such cables together and denote the corresponding face
word B. By Theorem 4, the closed curves ci,js generate the pure mapping class
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group. To show that twisting about ci,j does not change the norm, let w be
the word generated by the cables before twisting about ci,j and let w′ be the
word generated by the cables after the twist. We will show that ||w′|| ≤ ||w||
and ||w|| ≤ ||w′||.

Instances of fi and f̄i in w become (f̄iB̄f̄jB)fi(B̄fjBfi) and (f̄iB̄f̄jB)f̄i(B̄fjBfi)
in w′. Instances of fj and f̄j in w become (Bf̄iB̄f̄j)fj(fjBfiB̄) and (Bf̄iB̄f̄j)f̄j(fjBfiB̄)
in w′. See Figure 13 for an example.

(a) Before the twist. (b) After the twist.

Fig. 13: (a) An example of the Dehn twist. The curve is shown in black. Starting
from the star and following the indicated orientation, the Blank word is w =
[2314234]. In the instance we have i = 4 and j = 3; the curve c4,3 is shown in
gray. The word B is 1. (b) After twisting about an annulus formed by fattening
c4,3 the new word is w′ = [214133314114131413142141333141413141314].

We now construct a folding F ′ of w′ with equal area. All pairs in F are in F ′.
All letters added by the twist are then paired. If fi is in w and unpaired in F
then we pair the conjugate letters on each side of fi in w′. If fi is in w and
paired in F then we pair the added letters to the right of fi with the added
letters to the left of the paired f̄i in w′; similarly, we pair the added letters to
the left of fi with the added letters to the right of f̄i. This can be done because
the added words are the same mirror pair around symbol fi and f̄i.

w′ = [. . . (f̄iB̄f̄jB) fi(B̄fjBfi) . . . (f̄iB̄f̄jB)f̄i(B̄fjBfi) . . .]

where the overbracket indicates the pairing (fi, f̄i). Thus, a folding of w′ of equal
area exist. Because the cancellation norm is computed by taking minimum over
all foldings, we have ||w′|| ≤ ||w||.

On the other hand, given a folding F ′ of w′ we construct a folding F of w
with area at most the area of F ′. If an element of w is unpaired in F ′ it is also
unpaired in F . There are three types of pairings in F ′. If both letters in the
pair are in w: in which case we add this pair to F . If neither letter in the pair
is in w, in which case we do nothing to F . The third type of pairing contains
a letter of w paired with a letter in that only presents in w′ but not in w; call
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this pair (f0, f̄1) where f0 is in w and f̄1 is in w′\w. We will show that there
is a unique unpaired letter fk ∈ w′\w that is left unpaired in F , or there is
another f̄k ∈ w that we can pair f0 with in F .

We construct a sequence of letters in w′ that are all f and f̄s and terminates
with either an unpaired letter in w′\w or a paired letter in w. Let P denote the
function that maps a letter to its paired letter in F ′, or the identity otherwise.
The map C maps a letter of w′\w to its conjugate inverse in the mirror pair
added by the Dehn twist if the conjugate inverse has not yet been visited, or the
identity otherwise. Note that both P and C are injective, and they only map a
symbol f to its inverse f̄ and vice versa. Beginning with the pairing (f0, f̄1), we
alternate in applying the functions P and C: for any integer i, let f2i := C(f2i−1)
and f2i+1 := P (f2i). Since the word is finite, this unique sequence terminates
with either an unpaired letter fk of w′\w or an element f̄k in w.

– If the sequence of letters ends with an unpaired letter in w′\w, this letter
uniquely corresponds to f0 by following pairings and corresponding inverses
in F ′. For example, let F ′ be the folding indicated by the overbrackets, with
the underbrackets denoting corresponding conjugate inverse letters,

[214133314114131413142141333141413141314].

The unique unpaired letter corresponding to 3 is 3 found by considering the
second corresponding inverse letter.

– If the sequence of letters ends with a letter fk in w, we pair f0 and f̄k in
F . This does not create any linked pairs in F since f0 and f̄k participate in
pairings in F ′, they are not linked by any other pairing in F ′. For example,
let F ′ be the folding indicated by the overbrackets, with the underbrackets
denoting corresponding conjugate inverse letters,

[214133314114131413142141333141413141314].

The pairing (3, 3) is then added to F .

The sum of the areas of the unpaired letters of F is at most the sum of the areas
of the unpaired letters of F ′ and thus ||w|| ≤ ||w′||. This proves the lemma.

We show the invariance for positive foldability

Lemma 7. Being positively foldable does not depend on Dehn twists.

Proof. Let w be a word and let w′ be the word after a Dehn twist about the
simple closed curve ci,j as in the proof of Lemma 6. Suppose w is positively
foldable with folding F . Then, the folding F ′ described in Lemma 6 is a positive
folding of w′.

On the other hand, suppose w′ has a positive folding F ′. Then, each element f̄
of w′ is paired with an element f. If both f̄ and f are in w then we pair them. If
neither f̄ nor f are in w then we ignore them. If one of f̄ and f are in w and the
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other is added to w′ by the twist, then, since letters are added to w′ in pairs,
there is another element of w paired with an element of w′\w. We can pair the
two element in w and ignore the two in w′\w because the pairings in F ′ are not
linked. The resulting pairings give a positive folding of w.

Together, Lemma 5 and Lemma 6 imply the cancellation norm does not
depend on the isotopy class of the cables. Moreover, Lemma 5 and Lemma 7
imply the positive foldability of the word does not depend on the isotopy class
of the cables. One last subtlety: we show that we can handle multiple cables per
face.

Handling multiple cables per face. When a face f in a subcurve contains multiple
cables and punctures, we treat the punctures as distinct when applying Lemma 5
and Lemma 6. Now, once all the cables follow the cotree shortest paths, consider
all cables ending in an arbitrary face f . If they are separated by other cables in
the cyclic ordering, we use Lemma 5 and isotopy to move all the cables not ending
in f out of the way until they no longer intersect the face. This makes sure that
all the cables ending in f are gathered together in the cyclic ordering. Because
they follow the same unique cotree path to the exterior, we can merge them into
a single cable, where the corresponding symbols in the word are merged into a
single symbol with the combined weight. Thus, the subwords induced by a face
pairing correspond to the subcurves generated by the Blank cut.

4.2 Compute Min-Area Homotopy from Self-Overlapping Decomp.

Fig. 14: A curve
with combined word
[c4c4231d5̄da2b3̄ba].

A self-overlapping decomposition is a vertex decomposi-
tion where each subcurve is self-overlapping [12]. By The-
orem 1, there exists a self-overlapping decomposition and
an associated homotopy whose area is equal to the mini-
mum homotopy area of the original curve.

In order to relate vertex decompositions and face de-
compositions, we define a word that includes both the
faces and vertices. Given any curve γ and cable system Π,
traverse γ and record both self-crossings and (signed) ca-
ble intersections; we call the resulting sequence of vertices
and faces the combined word [[γ]](Π). See Figure 14 for
an example.

We now show that every self-overlapping decomposi-
tion (with respect to the vertex word of γ) determines a folding (of the face word
of γ) using the combined word.

Theorem 5 (S-O Decomp. to Folding). Given a self-overlapping decompo-
sition Γ and a cable system Π of γ, there exists a folding F of [γ](Π) whose
area is AreaΓ (γ).

Proof. Begin with the combined word [[γ]](Π). Decompose [[γ]](Π) at the ver-
tices given by the self-overlapping decomposition. Let Γ = {γ1, γ2, . . . , γs} be the
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self-overlapping subcurves and [[γ]](Π)i be the corresponding subwords of [[γ]](Π).
If we remove the vertex symbols and turn each [[γ]](Π)i into a face word [γi]

′,
such word may not correspond to Blank words of the subcurves; indeed, when
decomposing γ into subcurves by Γ , the subcurve along with the relevant ca-
bles may contain multiple cables per face and cables might not be managed or
follow shortest paths. See Figure 15 for an example. However, we can first tame
the cable system by choosing a new managed cable system Π∗ where the cables
follow shortest paths and has one cable per face (as in Section 3.1). Lemma 3 en-
sures that the cancellation norm and positive foldability of the subcurve remain
unchanged. Denote the new face word of γi with respect to Π∗ as [γi] = [γi](Π

∗).

(a) (b)

Fig. 15: We decompose the curve in (a) at vertex v into self-overlapping sub-
curves, the cable system on the induced subcurve in (b) has more than one
marked point in a face and cables do not follow shortest paths.

Since each γi is a self-overlapping subcurve in Γ , we can find a positive
folding Fi of [γi] by Theorem 3, and the minimum homotopy area of γi is equal
to the area of folding Fi. Now Lemma 3 implies that the subword [γi]

′ from
the original combined word also has a positive folding F ′

i whose area is equal
to the minimum homotopy area of γi. By combining all foldings F ′

i of each face
subword [γi]

′, we create a folding F for [γ](Π) (no pairings between different F ′
i s

can be linked). The area of folding F is equal to the sum of areas of foldings F ′
i ,

which in turns is equal to
∑

i AreaH(γi), that is, the homotopy area of self-
overlapping decomposition AreaΓ (γ). This proves the theorem.

Corollary 1 (Geometric Correctness). The dynamic programming algorithm
computes the minimum-area homotopy for any curve γ.

Proof. By Theorem 1, there exists a self-overlapping decomposition with min-
imum homotopy area. By Theorem 5, some folding achieves a minimum area.
Using Lemma 4, the minimum-area folding produces a minimum-area homotopy.

4.3 Min-Area Self-Overlapping Decomposition in Polynomial Time

Finally, we show how to construct a self-overlapping decomposition from a
maximal folding with equal area. Before we begin the proof, we include defi-
nitions that will help describe the types of curves we encounter. A curve γ is
a k-stack if it has rotation number k, all bounded faces have positive wind-
ing numbers, and AreaH(γ) = AreaW (γ) (see Figure 16a for any example).
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Any k-stack has a vertex decomposition into k self-overlapping curves [9, The-
orem 2.15].8 A curve is a −k-stack if its reversal is a +k-stack. We called a
curve γ a stack if γ is a ±k-stack. A curve is good [9] if the depth of each
face is equal to the absolute value of the winding number; any good curve must
have AreaD(γ) = AreaH(γ) = AreaW (γ) by Equation 1. Good curves are al-
most stacks, except that some faces might not have positive winding numbers.
A vertex of γ is sign-changing if the four incident faces have winding numbers
[1, 0,−1, 0] in cyclic order (see Figure 16b for an example). If we smooth a sign-
changing vertex of a good curve, the two induced subcurves remain good. We can
always decompose a good curve into a collection of stacks at all the sign-changing
vertices [9, Theorem 5.7].

(a) A 2-stack. (b) Sign-changing vertex.

Fig. 16: (a) A k-stack where k = 2. Smoothing at any of the three vertices gives
a self-overlapping decomposition. (b) The vertex v is a sign-changing vertex.

With these definitions in hand, we now show how to construct a self-overlapping
decomposition from a maximal folding with equal area.

Theorem 6 (Folding to S.O.D.). Let γ be a curve and Π be a cable system.
Given a maximal folding F of [γ](Π), there is a self-overlapping decomposition
of γ whose area is equal the area induced by the folding F .

Proof. Let F be any maximal folding of [γ](Π). Without loss of generality we
can assume that the cable system does not cut through the interior of any face by
rerouting the cables similar to Section 4.1. By Lemma 1 the Blank word remains
unchanged.

Let γg be an arbitrary subcurve generated after Blank cutting along the pair-
ings in F . The curve γg is must be good: otherwise, there is a face with winding
number not equal to its depth, and thus γg would cross the corresponding cable
from left to right and from right to left. Therefore, we can introduce an extra
pair into the folding and F remains unlinked; thus F would not be maximal.
Decomposing at all the sign-changing vertices [9, Theorem 5.7] turns γg into a
collection of stacks, each of which can be further decomposed into collection of
self-overlapping curves [9, Theorem 2.15].

The area of the folding F is equal to the number of unpaired faces in [γ](Π),
which is also equal to the sum of depth area of each good subcurve. Since each
subcurve γg of folding is good, the depth area of γg is equal to its winding

8 k-stacks are called interior-boundaries by Titus [24] and the terminology was used
in various previous work [17,12,9]. The name k-stack is well-justified as such curve
is the boundary of a stack of k disks [9].
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area. Any additional decomposition of γg into self-overlapping curves respects
the additivity of winding areas. Thus, the area of folding F is equal to the area
induced by our chosen self-overlapping decomposition.

The above theorem implies a polynomial-time algorithm to compute a self-
overlapping decomposition with minimum area.

Corollary 2 (Polynomial Optimal Self-Overlapping Decomposition).
Let γ be a curve. A self-overlapping decomposition of γ with area equal to mini-
mum homotopy area of γ can be found in polynomial time.

Proof. Apply the dynamic programming algorithm to compute the minimum-
area folding F for [γ](Π) with respect to some cable system Π. By Theorem 5
the area of F is equal to the minimum homotopy area of γ, and so does the
corresponding self-overlapping decomposition given by Theorem 6.
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