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Abstract. We present approximation algorithms for some variants of
center-based clustering and related problems in the fully dynamic setting,
where the pointset evolves through an arbitrary sequence of insertions
and deletions. Specifically, we target the following problems: k-center
(with and without outliers), matroid-center, and diversity maximization.
All algorithms employ a coreset-based strategy and rely on the use of the
cover tree data structure, which we crucially augment to maintain, at
any time, some additional information enabling the efficient extraction
of the solution for the specific problem. For all of the aforementioned
problems our algorithms yield (α+ǫ)-approximations, where α is the best
known approximation attainable in polynomial time in the standard off-
line setting (except for k-center with z outliers where α = 2 but we get a
(3+ ǫ)-approximation) and ǫ > 0 is a user-provided accuracy parameter.
The analysis of the algorithms is performed in terms of the doubling
dimension of the underlying metric. Remarkably, and unlike previous
works, the data structure and the running times of the insertion and
deletion procedures do not depend in any way on the accuracy parameter
ǫ and, for the two k-center variants, on the parameter k. For spaces of
bounded doubling dimension, the running times are dramatically smaller
than those that would be required to compute solutions on the entire
pointset from scratch. To the best of our knowledge, ours are the first
solutions for the matroid-center and diversity maximization problems in
the fully dynamic setting.

Keywords: dynamic algorithms · k-center · outliers · matroid center ·
diversity maximization · cover tree.

1 Introduction

Clustering, that is the task of partitioning a set of points according to some
similarity metric, is one of the fundamental primitives in unsupervised learn-
ing and data mining, with applications in several fields, such as bioinformatics,
computer vision and recommender systems [26]. A commonly used formulation
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is the k-center problem, where, given a set of points from a metric space and
a parameter k, one seeks to select k points as cluster centers so that the max-
imum distance from any point to its closest center is minimized. Since finding
the optimal solution is known to be NP-hard [18], in practice one has to settle
for approximate solutions.

In many practical applications, the set of points to be clustered is not static,
but evolves with time, and the clustering algorithms have to cope with the in-
sertion and deletion of arbitrary points efficiently. For example, in the context
of social network analytics, a large number of new profiles are created every
second, therefore adding new data to the pointset of interest, and the service
provider has to allow for the deletion of user data at any point in time, e.g.,
to comply with GDPR regulations. As another example, if one wishes to track
and cluster the currently watched contents from a video streaming service, users
starting and stopping to watch videos result in a dynamically changing pointset,
with thousands of updates per second. Because of this ever-increasing need in
efficient algorithms that can cope with non-static data, in recent years there has
been a surge in research efforts to develop fully dynamic clustering algorithms,
whose main focus is on the efficient handling of arbitrary insertions and dele-
tions [2, 10, 11, 19]. Several variants of the k-center problem have been intensely
studied in recent years, tailored at addressing specific limitation of the problem
or at adding additional constraints. Since k-center’s objective function involves a
maximum, the optimal solution may be heavily affected by points, dubbed out-

liers, which are markedly distant from the other ones. Indeed, especially when
data volumes are high, the probability of observing outliers, such as from noisy
or erroneous measurements, is non negligible, and being able to cope with them
is of paramount importance. A robust formulation of the problem, referred to as
k-center with z outliers has been introduced in [13], where the objective func-
tion is allowed to disregard the z most distant points from the selected centers.
Another studied variant of k-center is the matroid center problem [14], which,
given a set of points and a matroid defined on it, aims at finding a set of cen-
ters forming an independent set of the matroid which minimizes the maximum
distance of any point from the closest center. This variant is extremely flexible
and can be employed to model a wide range of constraints (e.g., fairness) on the
solution [15]. As for the standard k-center, the matroid center problem admits
a robust formulation with z outliers [14]. Finally, a problem closely related to
k-center is diversity maximization [1], whose goal is somehow dual with respect
to the one of k-center, as k points are to be selected so that a suitable notion of
diversity among them is maximized. This problem has a huge impact on infor-
mation retrieval applications, where it is crucial that the information provided
to the user be non-redundant.

A widely-used notion of dimensionality for general metric spaces is the dou-

bling dimension [20, 21], which is defined as the minimum value D ≥ 0 such
that any ball of any radius r ≥ 0 can be covered by at most 2D balls of radius
r/2. In many real-world instances, the points of interest either belong to low-
dimensional spaces or lie on low-dimensional manifolds of the higher-dimensional



metric space they belong to, and this property has been extensively exploited
to obtain efficient clustering algorithms [8, 19, 28]. In this paper, we tackle the
k-center problem, along with the aforementioned variants to it, in the fully dy-
namic setting, for spaces of bounded doubling dimension.

1.1 Related work

In the sequential setting, k-center admits 2-approximate algorithms, such as
Gonzalez’s [18], but no (2 − ǫ)-approximate ones unless P=NP. For the robust
formulation with z outliers, there exists a simple, combinatorial 3-approximation
algorithm [13], which has been extended to weighted pointsets in [5]. More com-
plex LP-based 2-approximate algorithms have been developed [9, 22], but they
are less amenable to practical implementations. For what concerns the matroid-
center problem, [14] provides a 3-approximate algorithm for the standard formu-
lation and a 7-approximate algorithm for the formulation with outliers, which
has been improved to a 3-approximation in [22]. The diversity maximization
problem admits several instantiations, depending on the specific diversity func-
tion embodied in its objective, which are all NP-hard but admit polynomial-
time O (1)-approximation algorithms. For an overview of such methods, we refer
to [1, 6] and references therein.

In [10], the authors developed the first fully dynamic k-center algorithm,
which is able to return a (2 + ǫ)-approximate solution under arbitrary inser-
tions and deletions of a non-adaptive adversary in general metrics. The algo-
rithm is randomized and has an (amortized) update time of O

(

k2ǫ−1 log∆
)

,
where ∆ denotes the aspect ratio of the pointset, namely the ratio between
the largest and the smallest distance between any two points. This approach
has been recently improved in [2], where an algorithm with expected amortized
O
(

(k + logn)ǫ−1 log∆ logn
)

update time is presented, where n is the maximum
number of points at any time. It has to be remarked that both these works make
use of data structures for storing the dynamically changing pointset, which are
statically configured to deal with fixed values of k and ǫ. Answering queries for
different clustering granularities and/or accuracies would, in principle, require
building the data structure from scratch. Also both works use data structures
whose size, with respect to the number of points, is superlinear by at least a
factor O (log∆/ǫ). Recently, [11] presented a randomized algorithm that returns
a 14 + ǫ (bi-criteria) approximate solution when discarding at most (1 + λ)z
outliers. Again, their data structure works for fixed k and ǫ, although it does
not depend on λ and z, and requires superlinear size by a factor O (log∆/ǫ).

In [19], the authors propose a fully dynamic k-center algorithm for points
belonging to a low-dimensional space based on the navigating net data structure
[25], which affords insertions and deletions in O

(

(1/ǫ)O(D) log∆ log log∆ log ǫ−1
)

time, where D is the doubling dimension of the metric space. While their ap-
proach allows clustering queries for arbitrary values of k, the data structure
is built for a specific value of the accuracy parameter ǫ, and must be rebuilt
from scratch if a different accuracy ǫ′ is sought for. Moreover, the data structure
requires superlinear space, by a factor O

(

(1/ǫ)O(D) log∆ log log∆ log ǫ−1
)

.



Finally, k-center clustering has been tackled in other simpler dynamic frame-
works, such as in the insertion-only setting [5,8,12,23], or in the sliding window
setting [4,16,28,29]. In these frameworks though, the focus is usually on keeping
the working memory sublinear in the number of points rather than achieving
fast update times.

1.2 Our contributions

In this paper, we present approximation algorithms for center-type problems in
the fully dynamic setting. The core data structure at the foundation of our ap-
proach is the cover tree [3], which was originally designed for answering nearest
neighbor queries in low-dimensional metric spaces. We augment such data struc-
ture to maintain the necessary information for solving the problems at hand,
under arbitrary insertion and deletions. The augmented data structure is used
to extract, at any point in time, a coreset, that is, a small subset of represen-
tative points that can be used to obtain solutions of any desired accuracy on
the whole pointset for the problem at hand. Upon query requests, the solution
is returned by running a sequential algorithm on the extracted coreset, which
allows for fast execution times, independently on the current number of points.
Specifically, our contributions are the following.

1. We augment the cover tree data structure to maintain efficiently, in each of
its nodes, information about the subset of points stored in its subtree, such
as its cardinality or a maximal independent set of the submatroid induced
by such subset (in case a matroid M is defined over the whole pointset).
When no matroid information is maintained, the data structure takes space
linear in the number of points, and allows for insertion and deletions in
O
(

2O(D) log∆
)

time, where D is the doubling dimension of the metric space,
and ∆ is the aspect ratio of the current set of points. When maintaining
matroid information, the space requirements and the deletion times grow by
a factor at most rank(M).

2. We provide an iterative formulation of the algorithms used to maintain the
cover tree data structure, which, compared to the original recursive formu-
lation of [3], affords simpler correctness proofs and more efficient implemen-
tations. In fact, it has been recently argued that the complexity analysis for
the update operations presented in the original paper has some flaws [17],
which we fix by making it parametric in D and ∆.

3. We devise a fully dynamic (2 + ǫ)-approximate algorithm for the k-center
problem. Unlike all aforementioned previous works, our data structure allows
to query for solutions for arbitrary values of k and ǫ. Also, the query time
exhibits a linear dependency on k.

4. We devise a (3 + ǫ) approximation algorithm for the fully dynamic k-center
with z outliers problem. Our method allows to choose k, ǫ, and z at query
time. We remark that the only previously available algorithm can only return
a (14+ǫ) bi-criteria solution (i.e. with an additional slackness on the number
of outliers), and requires to fix k and ǫ beforehand.



5. We present the first fully dynamic algorithm for the matroid center problem.
Our algorithm return a (3 + ǫ) approximate solution.

6. We present the first fully dynamic algorithms for diversity maximization. Our
algorithms return (αdiv + ǫ) approximate solutions, where αdiv is the best
approximation factor achievable by a sequential algorithm on the variant of
the problem at hand.

An important feature of our algorithms is that they are fully oblivious to D,
in the sense that the actual value of this parameter only influences the analysis
but are not needed for the algorithms to run. This is a very desirable feature,
since, in practice, this value is difficult to estimate.

The rest of the paper is organized as follows. Section 2 provides the formal
definition of the problems and of the theoretical tools we use in the analysis.
Section 3 is dedicated to describing the structure of the novel augmented cover
tree data structure, while Section 4 details how to maintain such data structure
efficiently. In Section 5, we present the approximation algorithms, which rely
on the cover tree data structure. Section 6 concludes the paper with some final
remarks.

2 Preliminaries

This section formally defines the problems studied in this paper, and states some
important technical facts.

2.1 (Robust) k-center problem

Consider a metric space (U, dist) and a set S ⊆ U of n points. For any p ∈ U
and any subset C ⊆ S, we use the notation dist(p, C) = minq∈C dist(p, q), and
define the radius of C with respect to S as

rC(S) = max
p∈S

dist(p, C).

For a positive integer k < n, the k-center problem requires to find a subset
C ⊆ S of size at most k which minimizes rC(S). The points of the solution C
are referred to as centers. Note that C induces a partition of S into |C| clusters,
by assigning each point to its closest center (with ties broken arbitrarily). We
denote the radius of the optimal solution by r∗k(S). The popular seminal work
by Gonzalez [18] presents a 2-approximation sequential algorithm for the k-
center program, based on the simple, O (nk)-time greedy strategy that selects
the first center arbitrarily and each subsequent center as the point with maximum
distance from the set of previously selected ones. The author also shows that, in
general metric spaces, it is impossible to achieve an approximation factor 2− ǫ,
for any fixed ǫ > 0, unless P = NP.

The algorithms presented in this paper crucially rely on confining the com-
putation of the solution on a succinct coreset T efficiently extracted from the
(possibly large) input S, which contains a close enough “representative” for each
point in S. The quality of a coreset T is captured by the following definition.



Definition 1. Given a pointset S and a value ǫ > 0, a subset T ⊆ S is an

(ǫ, k)-coreset for S (w.r.t. the k-center problem) if rT (S) ≤ ǫr∗k(S).

In real world applications, large datasets often include noisy points which,
if very distant from all other points, may severely distort the optimal center
selection. To handle these scenarios, the following important generalization of
the k-center problem has been considered. For positive k, z < n, the k-center

problem with z outliers (also referred to as robust (k, z)-center) requires to find
a subset C ⊆ S of size k minimizing rC(S − ZC), where ZC is the set of z
points in S with the largest distances from C, which are regarded as outliers to
be discarded from the clustering. We denote the radius of the optimal solution
of this problem by r∗k,z(S). Observe that the k-center problem with z outliers
reduces to the k-center problem for z = 0. Also, it is straightforward to argue
that

r∗k+z(S) ≤ r∗k,z(S). (1)

A well known 3-approximation sequential algorithm for the k-center problem
with z outliers, which runs in O

(

kn2 logn
)

time was devised in [13]. In this
work, we will make use of a more general formulation of the problem, referred
to as weighted k-center with z outliers, where each point p ∈ S carries a positive
integer weight w(p), and the desired set C of k centers must minimize rC(S−ZC),
where ZC is the set of points with the largest distances from C, of maximum
cardinality and aggregate weight at most z.

2.2 Matroid center problem

Another variant of the k-center problem requires the solution C to satisfy an
additional constraint, specified through a matroid. A matroid [27] on a pointset
S is a pair M = (S, I), where I is a family of subsets of S, called independent

sets, satisfying the following properties: (i) the empty set is independent; (ii)
every subset of an independent set is independent (hereditary property); and
(iii) if A,B ∈ I and |A| > |B|, then there exists x ∈ A \ B such that B ∪
{x} ∈ I (augmentation property). An independent set is maximal if it is not
properly contained in another independent set. Given a matroid M = (S, I),
the matroid center problem on M requires to determine an independent set
C ∈ I minimizing the radius rC(S). We let r∗(M) = minC∈I rC(S) to denote
the radius of the optimal solution. The augmentation property ensures that all
maximal independent sets of M have the same size, which is referred to as rank

of M , denoted by rank(M). It is easy to argue that r∗rank(M)(S) ≤ r∗(M), since
each solution to the matroid center problem on is also a solution to the k-center
problem with k = rank(M).

As customary in previous works [1, 6, 23], throughout the paper we assume
that a constant-time oracle is available to check the independence of any subset
of S. A combinatorial 3-approximation algorithm for the matroid center problem
in general metrics is presented in [14], which requires time polynomial in |S| and
rank(M).



Some important structural properties of matroids will be used in the deriva-
tions of our results. It is easily seen that for any subset S′ ⊆ S, M ′ = (S′, I ′),
where I ′ ⊆ I is the restriction of I to subsets of S′ is also a matroid. An extended

augmentation property, stated in the following fact, was proved in [30, Lemma
2.1] (see also [23]).

Fact 1 Let M = (S, I) be a matroid. Consider an independent set A ∈ I, a

subset S′ ⊆ S, and an independent set B ⊆ S′ which is maximal within the

submatroid M ′ = (S′, I ′). If there exists y ∈ S′ \A such that A ∪ {y} ∈ I, then

there exists x ∈ B \A such that A ∪ {x} ∈ I.

The next fact can be easily proved as a consequence of the extended aug-
mentation property.

Fact 2 Let M = (S, I) be a matroid, and let S1, . . . , Sh be a partition of S into

h disjoint subsets. If A1 ⊆ S1, . . . , Ah ⊆ Sh are maximal independent sets of the

submatroids M1 = (S1, I1), . . . ,Mh = (Sh, Ih), then ∪h
I=1Ai contains a maximal

independent set of M .

Different matroids are associated to different semantics of the constraint on
the centers. An important instantiation is the case of the partition matroid MP =
(S, IP ), where each point in S is associated to one of m ≤ k of categories,
and IP consists of all subsets with at most ki points of the i-th category, with
∑m

i=0 ki = k. For instance, this matroid can be employed to model fairness
constraints [15, 24].

2.3 Diversity maximization

Let div : 2S → R be a diversity function that maps any subset X ⊂ S to some
non-negative real number. For a specific diversity function div and a positive
integer k ≤ n, the goal of the diversity maximization problem is to find a set
C ⊆ S of size k that maximizes div(C). We denote the optimal value of the
objective function as div∗

k(S) = maxC⊆S,|C|=k div(C). In this paper, we will
focus on several variants of the problem based on different diversity functions
amply studied in the previous literature, which are reported in Table 1. All of
these variants are known to be NP-hard, and Table 1 also lists the best known
approximation ratios attainable in polynomial time (see [1, 8] and references
therein).

2.4 Doubling dimension

We will relate the performance of our algorithms to the dimensionality of the
data which, for a general metric space (U, dist), can be captured by the notion
of doubling dimension, reviewed below. For any p ∈ U and r > 0, the ball of

radius r centered at p, denoted as B(p, r), is the subset of all points of U at
distance at most r from p. The doubling dimension of U is the minimum value
D such that, for all p ∈ U , any ball B(p, r) is contained in the union of at most



Problem
Diversity

measure div(X)
Sequential

approx. αdiv

remote-edge minp,q∈X d(p, q) 2

remote-clique
∑

p,q∈X d(p, q) 2

remote-star minc∈X

∑
q∈X\{c} d(c, q) 2

remote-bipartition min
Q⊂X,|Q|=⌊|X|/2⌋

∑
q∈Q,z∈X\Qd(q, z) 3

remote-tree w(MST(X)) 4

remote-cycle w(TSP(X)) 3

Table 1. Diversity functions considered in this paper. w(MST(X)) (resp., w(TSP(X)))
denotes the minimum weight of a spanning tree (resp., Hamiltonian cycle) of the com-
plete graph whose nodes are the points of X and whose edge weights are the pairwise
distances among the points. The last column lists the best known approximation factor.

2D balls of radius r/2 centered at points of U . In recent years, the notion of
doubling dimension has been used extensively for a variety of applications (e.g.,
see [7,8,20,28] and references therein). The following fact is a simple consequence
of the definition.

Fact 3 Let X be a set of points from a metric space of doubling dimension D,

and let Y ⊆ X be such that any two distinct points a, b ∈ Y have pairwise

distance dist(a, b) > r. Then for every R ≥ r and any point p ∈ X, we have

|B(p,R) ∩ Y | ≤ 2⌈log2(2R/r)⌉·D ≤ (4R/r)D. If R/r = 2i, then the bound can be

lowered to |B(p,R) ∩ Y | ≤ (2R/r)D.

3 Augmented Cover Trees

Let S be a set of n points from a metric space (U, dist) of doubling dimension D.
Our algorithms employ an augmented version of the cover tree data structure,
defined in [3], which, for completeness, we review below. Conceptually, a cover

tree T for S is an infinite tree, where each node corresponds to a single point of
S, while each point of S is associated to one or more nodes. The levels of the
tree are indexed by integers, decreasing from the root towards the leaves. For
ℓ ∈ (−∞,+∞), we let Tℓ to be the set of nodes of level ℓ, and let pts(Tℓ) be
the points associated with the nodes of Tℓ, which are required to be distinct.
For each node u ∈ T we maintain: its associated point (u.point); a pointer to its
parent (u.parent); the list of pointers to its children (u.children); and the level of
u in T (u.level). For brevity, in what follows, for any two nodes u, v ∈ T (resp.,
any point p ∈ U and node u ∈ T ), we will use dist(u, v) (resp., dist(p, u)) to
denote dist(u.point, v.point) (resp., dist(p, u.point)). The tree must satisfy the
following properties. For every level ℓ:

1. pts(Tℓ) ⊆ pts(Tℓ−1);



2. for each u ∈ Tℓ, dist(u, u.parent) ≤ 2ℓ+1;

3. for all u, v ∈ Tℓ, dist(u, v) > 2ℓ.

For every p ∈ S, let ℓ(p) denote the largest index such that p ∈ pts(Tℓ(p)). The
definition implies that for every ℓ ≤ ℓ(p), p ∈ pts(Tℓ), and the node u in Tℓ

with u.point = p is a self-child of itself, in the sense that u.parent.point = p,
since for every other v ∈ Tℓ+1, with v.point 6= p, dist(u, v) > 2ℓ+1. Let dmin

and dmax denote, respectively, the minimum and maximum distances between
two points of S, and define ∆ = dmax/dmin as the aspect ratio of S. It can be
easily seen that for every ℓ < log2 dmin, pts(Tℓ) = S, and for every ℓ ≥ log2 dmax,
|pts(Tℓ)| = 1. We define ℓmin (resp., ℓmax) as the largest (resp., smallest) index
such that pts(Tℓ) = S (resp., |pts(Tℓ)| = 1), and note that every node u in a level
Tj with j > ℓmax or j ≤ ℓmin has only the self-child in u.children. Therefore,
we will consider only the portion of the tree constituted by the levels Tℓ with
ℓ ∈ [ℓmin, ℓmax] and will regard the unique node r ∈ Tℓmax

as the root of the tree.
The above observations imply that the number of levels in this portion of the
tree is O (log∆).

Cover trees have been initially proposed as data structures for efficiently
retrieving nearest neighbors. This feature, which will also be exploited in our
context, crucially relies on the notion of cover set. For any point p from the
metric space U , and for every index ℓ ≤ ℓmax the cover set (for p at level ℓ)
Qp

ℓ ⊆ Tℓ is defined in an inductive way as follows:

Qp
ℓmax

= {r}

Qp
ℓ = {u ∈ Tℓ : u.parent ∈ Qp

ℓ+1 ∧ dist(u, p) ≤ 2ℓ+1} for ℓ < ℓmax

(2)

The next lemma shows that cover sets for a point p include, at each level of
the tree, all points somewhat “close” to p, at a scale prescribed by the level.

Lemma 1. For every point p from (U, dist), ℓ ≤ ℓmax, and u ∈ Tℓ − Qp
ℓ , we

have dist(p, u) > 2ℓ+1.

Proof. The proof proceeds by (backward) induction on ℓ. For the base case
ℓ = ℓmax, the statement holds vacuously. Assume now that the statement holds
at level ℓ + 1, and let u ∈ Tℓ − Qp

ℓ . The statement immediately follows when
u.parent ∈ Qp

ℓ+1. Otherwise, since u.parent ∈ Qp
ℓ+1 − Tℓ+1, by the inductive hy-

pothesis it must be dist(p, u.parent) > 2ℓ+2, whence dist(p, u) ≥ dist(p, u.parent)−
dist(u, u.parent) > 2ℓ+1.

We now relate the size of the cover sets to the doubling dimension D of (U, dist).

Lemma 2. For every point p ∈ U and ℓ ≤ ℓmax, we have that

1. |Qp
ℓ | ≤ 4D.

2.
∑

u∈Qp

ℓ
|u.children| ≤ 12D.



Proof. For each u1, u2 ∈ Tℓ, we have that dist(u1, u2) > 2ℓ. Also, pts(Qp
ℓ ) ⊆

B(p, 2ℓ+1) ∩ Tℓ. Then, by Fact 3, it follows that |Qp
ℓ | ≤ (2 · 2ℓ+1/2ℓ)D = 4D.

Moreover, for each u ∈ Qp
ℓ and each u′ ∈ u.children, we have that dist(u′, p) ≤

dist(u′, u)+dist(u, p) ≤ 2ℓ+2ℓ+1 = 3·2ℓ, whence u′.point ∈ B(p, 3·2ℓ)∩pts(Tℓ−1).
Then, again by Fact 3, it follows that |{u′ ∈ u.children s.t. u ∈ Qp

ℓ}| ≤ (2 · 3 ·
2ℓ/2ℓ−1)D = 12D.

We represent the entire tree T by a pointer to the root, and recall that
r.level = ℓmax. Note that this naive representation of T , referred to as implicit

representation in [3], requires O (n log∆) space. In order to save space, a more
compact representation T , referred to as explicit representation in [3], is used,
where chains of 1-child nodes, which correspond to instances of the same point,
are coalesced. More precisely, this representation only maintains explicitly nodes
that have children other than the self-child. Therefore, any maximal chain of
nodes in Ti, Ti−1, . . . , Ti−j all associated to the same point p and such that each
of them (up to Level Ti−j+1) is only parent to the self-child, is represented
through the explicit node u ∈ Ti with u.children set to the list of children of the
node of the chain in Ti−j . It is easy to argue that this compact representation
takes only O (n) space. It is important to observe that, given a point p ∈ U ,
the cover sets Qp

ℓ for ℓ ≤ ℓmax can be constructed in a top-down fashion from
the explicit representation of T by simply recreating the contracted chains of
implicit nodes. In our algorithms, in each cover set Qp

ℓ , an implicit node v will
be represented by the explicit ancestor u associated to the head of the chain
containing v. By Lemma 2, Qp

ℓ can be constructed from Qp
ℓ+1 in O

(

12D
)

time.

3.1 Augmenting the basic structure

In this subsection, we show how to augment the cover tree data structure so
to maintain at its nodes two additional data fields, which will be exploited in
the target applications presented later. Suppose that a matroid M = (U, I) is
defined over the universe U . An augmented cover tree T for S (with respect to
M) is a cover tree such that each node U stores the following two additional
fields: a positive weight u.weight = |Su|, where Su is the subset of points of S
associated with nodes in the subtree rooted at node u, and a set of points u.mis,
which is a maximal independent set of the submatroid Mu = (Su, Iu) where Iu is
the restriction of I to the subsets of Su. The size of T becomes O (n ·m), where
m denotes the size of a maximum independent set of S. For the applications
where the matroid information is not needed, the fields u.mis will be always set
to null (as if M = (U, ∅)), and, in this case, the size of T will be O (n).

4 Dynamic maintenance of augmented cover trees

Let T be an augmented cover tree for the set S of n points. In this section, we
show how to update T efficiently when a point p is added to or deleted from S.



4.1 Insertion

Let p be a new point to be inserted in T . The insertion of p is accomplished as
follows. First, if p is very far from the root r, namely dist(p, r) > 2ℓmax , then both
ℓmax and r.level are increased to ⌊log2 dist(p, r)⌋. Then, an explicit node u is cre-
ated with u.point = p, u.weight = 1 and u.mis = {p}. In order to determine the
level ℓ(p) where u must be placed, all cover sets Qp

ℓ are computed, as described
above, for every ℓ ∈ [ℓ̄, ℓmax], where ℓ̄ is the largest index in (−∞, ℓmax] such
that Qp

ℓ̄
= ∅. Note that such empty cover set must exist and it is easy to see that

ℓ̄ ≥ ⌈log2 dist(p, S)⌉ − 2. Then, u.level is set to the smallest index ℓ(p) ≥ ℓ̄ such
that dist(p, pts(Qp

ℓ(p))) > 2ℓ(p) and dist(p, pts(Qp
ℓ(p)+1)) ≤ 2ℓ(p)+1. At this point,

an arbitrary node v ∈ Qp
ℓ(p)+1 such that dist(p, v) ≤ 2ℓ(p)+1 (which must exists

for sure) is determined. Let q = v.point. If v has no explicit self-child at level ℓ(p),
a new node w with w.point = q, w.level = ℓ(p), and w.children = v.children, is
created, and v.children is set to {u,w}. If instead such an explicit self-child w
of v exists at level ℓ(p), then u is simply added as a further child of v. Finally,
the path from the newly added node u to r is traversed, and for every ancestor
v of u, v.weight is increased by 1 and p is added to the independent set v.mis, if
v.mis∪ {p} is still an independent set. Algorithm Insert(p, T ) in the appendix,
provides the pseudocode for the above procedure.

Theorem 1. Let T be an augmented cover tree for a set S of n points, with

respect to a matroid M = (U, I). The insertion algorithm described above yields

an augmented cover tree for S∪{p} in time O
(

12D log∆
)

where D is the doubling

dimension of the metric space and ∆ is the aspect ratio of S.

Proof. It is easy to see that the insertion algorithm enforces, for every level ℓ,
Properties 1, 2, 3 of the definition of cover tree, restricted to the nodes in Qp

ℓ

plus the new node created for p (for ℓ = ℓ(p)). These properties immediately
extend to the entire level ℓ by virtue of Lemma 1. For what concerns the update
of the .weight and .mis fields, correctness is trivially argued for the .weight fields,
while Fact 2 ensures correctness of the updates of the .mis fields. can be argued
as for the insertion algorithm. The complexity bounds follow by observing that
there are O (log∆) levels in the explicit representation of T and that, at each
such level ℓ, the algorithm performs work linear in the number of children of Qp

ℓ ,
which are at most 12D, by Lemma 2.

4.2 Deletion

Let p ∈ S be the point to be removed. We assume that p is not the only point in
S, otherwise the removal is trivial. The deletion of p is accomplished as follows. In
the first, top-down phase, all cover sets Qp

ℓ are computed, for every ℓ ∈ [ℓ̄, ℓmax],
where ℓ̄ ≤ ℓmax is the level of the leaf node corresponding to p in the explicit tree.
Also, a list Rℓ̄ of explicit nodes at level ℓ̄ to be relocated is created and initialized
to the empty list. In the second, bottom-up phase, the following operations are
performed iteratively, for every ℓ = ℓ̄, ℓ̄+ 1, . . . , ℓmax − 1 (the case ℓ = ℓmax will
be treated separately).



– If Qp
ℓ contains a node u with u.point = p and u.level = ℓ, the following

additional operations are performed. Let v be the parent of u, and observe
that all children of v must also be explicit nodes at level ℓ. If u is the self
child of v (i.e., v.point = u.point = p) u is removed from T , u’s siblings
are detached from v and added to Rℓ (v will be later removed at iteration
v.level). If instead u is not the self child of v, but it is the only child of v
besides the self-child, u is removed from T and v and its self-child are merged
together in the explicit tree.

– An empty list Rℓ+1 is created. Then, Rℓ is scanned sequentially, and, for
every w ∈ Rℓ, a node w′ ∈ Qp

ℓ+1 ∪Rℓ+1 is searched for such that d(w,w′) ≤

2ℓ+1. If no such node exists, then w is added to Rℓ+1, raising w.level to ℓ+1.
Otherwise, if w′ is found, it becomes parent of w as follows. If w′ is internal
and its children are at level ℓ, w is simply added as a further child. Otherwise,
a new explicit node z, is created with z.point = w′.point, z.level = ℓ, and
z.children = w′.children, and w′.children is set to {z, w}.

– For all nodes in w ∈ Qp
ℓ+1∪Rℓ+1 with w.level = ℓ+1, their .weight and .mis

fields are updated based on the values of the corresponding fields of their
children. The update of the .weight fields is straightforward, while, based on
Fact 2, the update of the .mis field of one such node w can be accomplished
by computing a maximal independent set in the union of the elements of the
.mis fields of w’s children.

Once the above operations are performed up to ℓ = ℓmax− 1, the following cases
arise for level ℓmax. Consider first the case p 6= r.point. If Rℓmax

= ∅, we simply
update ℓmax and r.level to 1 plus the level of the children of r; otherwise (Rℓmax

6=
∅), a new root rnew is created with rnew.point = r.point, rnew.level = ℓmax + 1,
and rnew.children = {r}∪Rℓmax

. Also, ℓmax is incremented by 1. Instead, in case
p = r.point, it is easy to see that Rℓmax

cannot be empty, since it must contain
for sure the children of r. If Rℓmax

contains only one node, say v, then v becomes
the new root, and we update, ℓmax and v.level to 1 plus the level of the children
of v; otherwise (|Rℓmax

| > 1), we select an arbitrary v ∈ Rℓmax
, a new root rnew

is created with rnew.point = v.point, rnew.level = ℓmax + 1, and rnew.children =
Rℓmax

. Also, ℓmax is incremented by 1. Finally, whenever level ℓmax is incremented
by 1 and, consequently, a new root node is created, for this node the .weight and
.mis fields are updated based on the values of the corresponding fields of their
children, as described above. Algorithm Delete(p, T ) in the appendix, provides
the pseudocode for the above procedure.

Theorem 2. Let T be an augmented cover tree for a set S of n points, with

respect to a matroid M = (U, I). The deletion algorithm described above yields

an augmented cover tree for S − {p} in time O
(

(16D + 12Drank(M)) log∆
)

where D is the doubling dimension of the metric space and ∆ is the aspect ratio

of S.

Proof. It is easy to see that the bottom-up phase of the deletion algorithm
enforces, for every level ℓ, Properties 1, 2, 3 of the definition of cover tree,
restricted to the nodes in Qp

ℓ ∪ Rℓ. These properties immediately extend to the



entire level ℓ by virtue of Lemma 1. Finally, correctness of the update of the
.weight and .mis fields can be argued as for the insertion algorithm. For what
concerns the complexity bound, first observe that for every level ℓ, the nodes in
Qp

ℓ ∪Rℓ represent the new coversets Q̂p
ℓ associated to p after its deletion from T ,

thus Lemma 2 holds. As a consequence, the work needed to process the nodes in
Rℓ is Θ(|Rℓ|(|Q

p
ℓ+1 ∪Rℓ+1|) = O(16D), while, by Fact 2, recreating the .weight

and .mis fields for all nodes in Qp
ℓ+1 ∪Rℓ+1 is upper bounded by the number of

their children multiplied by (1+ rank(M)). The final bound follows by observing
that there are O (log∆) levels in the explicit representation of T .

5 Extracting solutions from the augmented cover tree

We show how to employ the augmented cover tree presented in the previous
section to extract accurate solutions to the various k-center related and diversity
maximization problems introduced in Section 2. For all these problems, we rely
on the extraction from the cover tree of a small (ǫ, k)-coreset (see Definition 1),
for suitable values of ǫ and k.

Let T be an augmented cover tree for a set S of n points from a metric
space of doubling dimension D. Given ǫ and k, an (ǫ, k)-coreset for S can be
constructed as follows. Let Tℓ(k) be the level of largest index (in the implicit
representation of T ) such that |Tℓ(k)| ≤ k and |Tℓ(k)−1| > k. Then, define

ℓ∗(ǫ, k) = max{ℓmin, ℓ(k)− ⌈log2(8/ǫ)⌉}. (3)

(For ease of notation, in what follows we shorthand ℓ∗(ǫ, k) with ℓ∗ whenever
the parameters are clear from the context.) We have:

Lemma 3. The set of points pts(Tℓ∗) is an (ǫ, k)-coreset for S of size at most

k(64/ǫ)D and can be constructed in time O
(

k((64/ǫ)D + log∆)
)

.

Proof. We first show that pts(Tℓ∗) is an (ǫ, k)-coreset for S. If ℓ∗ = ℓmin, we
have pts(Tℓ∗) = S, so the property is trivially true. Suppose that ℓ∗ = ℓ(k) −
⌈log2(8/ǫ)⌉ > ℓmin and consider an arbitrary point p ∈ S. There must exist
some node u ∈ Tℓmin

such that p = u.point. Let v be the ancestor of u in Tℓ∗ .
By the properties of the cover tree we know that dist(v.point, p) ≤ 2ℓ

∗+1 ≤
(ǫ/4)2ℓ(k). Also, all pairwise distances among points of pts(Tℓ(k)−1) are greater

than 2ℓ(k)−1. However, since |Tℓ(k)−1| ≥ k + 1, there must be two points q, q′ ∈
pts(Tℓ(k)−1) which belong to the same cluster in the optimal k-center clustering

of S. Therefore, 2ℓ(k)−1 < dist(q, q′) ≤ 2r∗k(S), which implies that 2ℓ(k) ≤ 4r∗k(S).
Putting it all together, we get that for any p ∈ S, dist(p, pts(Tℓ∗)) ≤ ǫr∗k(S). Let
us now bound the size of Tℓ∗ . By construction |Tℓ(k)| ≤ k, and we observe that
Tℓ∗ can be partitioned into |Tℓ(k)| subsets T u

ℓ∗ , for every u ∈ Tℓ(k), where T u
ℓ∗ is

the set of descendants of u in Tℓ∗ . The definition of cover tree implies that for
each u ∈ Tℓ(k) and v ∈ T u

ℓ∗ , dist(u, v) ≤ 2ℓ(k)+1. Moreover, since the pairwise

distance between points of T u
ℓ∗ is greater than 2ℓ

∗

, by applying Fact 3 with
Y = T u

ℓ∗ , R = 2ℓ(k)+1 and r = 2ℓ
∗

, we obtain that

|T u
ℓ∗ | ≤ 2(⌈log2(8/ǫ)⌉+2)·D ≤ (64/ǫ)D,



and the bound on |Tℓ∗ | follows. Tℓ∗ can be constructed on the explicit tree
through a simple level-by-level visit up to level ℓ∗, which can be easily determined
from ℓ(k) and the fact that ℓmin is the largest level ℓ for which all nodes in Tℓ

only have the self-child. The construction time is linear in

ℓmax
∑

ℓ=ℓ∗

|Tℓ| =

ℓ(k)−1
∑

ℓ=ℓ∗

|Tℓ|+
ℓmax
∑

ℓ=ℓ(k)

|Tℓ|

The second summation is clearly upper bounded by k log∆, while, using again
Fact 3 it is easy to argue that |Tℓ| ≤ 2(ℓ(k)+2−ℓ)·D, for every ℓ∗ ≤ ℓ ≤ ℓ(k) − 1,
whence the first sum is O

(

(64/ǫ)D
)

. The lemma follows.

Remark. Consider an arbitrary node u ∈ Tℓ∗ and recall that, in the augmented
version of the cover tree, the fields u.weight and u.mis contain, respectively, the
size and a maximal independent set of Su, where Su is the subset of points of S
associated with the descendants of u in T . The proof of the above lemma shows
that for any p ∈ Su (thus, for any p accounted for by u.weight and any p of the
maximal independent set) dist(p, u.point) ≤ ǫr∗k(S).

5.1 Solving k-center

Suppose that an (augmented) cover tree T for S is available. We can compute
an O (2 +O (ǫ))-approximate solution C to k-center on S as follows. First, we
extract the coreset Q = pts(Tℓ∗), where ℓ∗ = ℓ∗(ǫ, k) is the index defined in
Equation 3, and then run a sequential algorithm for k-center on Q. To do so, we
could use Gonzalez’s 2-approximation algorithm. However, this would contribute
an O (k|Q|) term to the running time, which, based on the size bound stated in
Lemma 3, would yield a quadratic dependency on k. The asymptotic dependency
on k can be lowered by computing the solution through an adaptation of the
techniques presented in [19], as explained below. Let us define a generalization of
the cover tree data structure, dubbed (α, β)-cover tree, where the three properties
that each level ℓ must satisfy are rephrased as follows:

1. pts(Tℓ) ⊆ pts(Tℓ−1);
2. for each u ∈ Tℓ, dist(u, u.parent) ≤ β · αℓ+1;
3. for all u, v ∈ Tℓ, dist(u, v) > β · αℓ.

By adapting the insertion procedure of Section 4.1 and its analysis, it is easily
seen that the insertion of a new point in the data structure can be supported in
O
(

12D · logα ∆
)

time. For a given integer parameter m, we construct m general-

ized cover trees for Q, namely an (α, αp/m)-cover tree T (p) for every 1 ≤ p ≤ m.
Each cover tree is constructed by inserting one point of Q at a time. Let ℓp be

the smallest index such that level T
(p)
ℓp

in T (p) has at most k nodes. The returned

solution C is the set pts(T
(p)
ℓp

) such that T
(p)
ℓp

minimizes αℓp+p/m. By selecting

α = 2/ǫ and m = O
(

ǫ−1 ln ǫ−1
)

, and by using the argument of [19], it can be
shown that C is a (2 +O (ǫ))-approximation for k-center on Q.

We have:



Theorem 3. Given an augmented cover tree T for S, the above procedure re-

turns a (2 + O (ǫ))-approximation C to the k-center problem for S, and can be

implemented in time O
(

(k/ǫ)(768/ǫ)D log∆
)

.

Proof. By Lemma 3, Q is an (ǫ, k)-coreset for S. Let C∗ = {c1, c2, . . . , ck} be an
optimal solution for k-center on S. The coreset property of Q ensures that for
each ci there is a point c′i ∈ Q such that d(ci, c

′
i) ≤ ǫr∗k(S). This implies that the

set C′ = {c′1, c
′
2, . . . , c

′
k} is a solution to k-center on Q with rC′(Q) ≤ (1+ǫ)r∗k(S),

hence r∗k(Q) ≤ (1+ǫ)r∗k(S). Suppose that the (2+O (ǫ))-approximation algorithm
outlined above is used in Phase 2 to compute the solution C on Q. Then, rC(Q) ≤
(2 + O (ǫ))r∗k(Q) ≤ (2 + O (ǫ))(1 + ǫ)r∗k(S) = (2 + O (ǫ))r∗k(S). By the coreset
property and the triangle inequality, it follows that rC(S) ≤ (2 + O (ǫ))r∗k. For
what concerns the running time, we have that the construction of the (ǫ, k)-
coreset Q requires O

(

k((64/ǫ)D + log∆)
)

time (see Lemma 3), while the running

time of Phase 2 is dominated by the construction of the m = O
(

ǫ−1 ln ǫ−1
)

(α, αp/m)-cover trees T (p), for 1 ≤ p ≤ m, by successive insertions of the elements
of Q. As observed above, an insertion takes O

(

12D logα ∆
)

time, hence the

cost for constructing each T (p) is O
(

|Q|12D logα ∆
)

. Since α = 2/ǫ and |Q| ≤

k(64/ǫ)D, the total cost is thus O
(

(k/ǫ)(768/ǫ)D log∆
)

, which dominates over
the cost of Phase 1.

The constants involved in the analysis are likely to provide very conservative
upper bounds on the actual behavior of the data structure in practical scenarios.
Moreover, for moderate values of k, the use of Gonzalez’s algorithm in Phase 2
might prove a much more practical choice. We wish to remark that our algorithm
improves upon the one proposed in [19] in several ways. First, the accuracy
parameter ǫ can be chosen freely at query time, and does not influence the
construction of the data structure. Second, our data structure requires linear
space and can handle insertions and deletions at a lower asymptotic cost.

5.2 Solving k-center with z outliers

For the k-center problem with z outliers, an approach similar to the one adopted
for k-center can be employed. Let T be an augmented cover tree for S. We
can compute a (3 + O (ǫ))-approximation to k-center with z outliers on S, by
proceeding as follows. First, we extract the coreset Q = pts(Tℓ∗), where ℓ∗ =
ℓ∗(k+z) is the index defined in Equation 3. Each point q ∈ Q is associated to the
weight wq = u.weight, where u ∈ Tℓ∗ is such that u.point = q. Then, we extract
the solution C from this weighted coreset Q using the techniques from [5], which
are reviewed below.

By Lemma 3, Q is an (ǫ, k + z)-coreset for S and, based on the remark
made after Lemma 3, all points of S can be associated to the points of Q,
such that, for every q ∈ Q, wq points of S are associated to q (q is referred
to as the proxy for these points) and they are all at distance at most ǫr∗k+z(S)
from q. Also recall, from Equation 1, that r∗k+z(S) ≤ r∗k,z(S). Suppose that
algorithm OutliersCluster described in [5] is run on the weighted coreset



Q with parameters k, r, and ǫ, where r is a guess of the optimal radius. The
analysis in [5] shows that the algorithm returns two subsets X,Q′ ⊆ Q such that

– |X | ≤ k
– For every p ∈ S whose proxy is in Q−Q′, dist(p,X) ≤ ǫr∗k,z(S) + (3 + 4ǫ)r;
– if r ≥ r∗k,z(S), then

∑

q∈Q′ wq ≤ z.

Then, we can repeatedly run OutliersCluster for r = 2ℓmax/(1 + ǫ)i, for
i = 0, 1, . . ., stopping at the smallest guess r which returns a pair (X,Q′) where
Q′ has aggregate weight at most z and returning C = X as the final solution.We
have:

Theorem 4. Given an augmented cover tree T for S, the above procedure re-

turns a (3 + O (ǫ))-approximation C to the k-center problem with z outliers for

S, and can be implemented in time O
(

(k + z)2(64/ǫ)2D(1/ǫ) log∆
)

.

Proof. The bound on the approximation ratio immediately follows from the
properties of OutliersCluster reviewed above. The running time is dominated
by the repeated executions of OutliersCluster. Each execution of Outlier-

sCluster can be performed in O
(

|Q|2 + k|Q|
)

= O
(

(k + z)2(64/ǫ)2D
)

time.
The bound on the running time follows by observing that 2ℓmax/r∗k,z(S) = O (∆),

whence O
(

log1+ǫ ∆
)

= O ((1/ǫ) log∆) executions suffice.

5.3 Solving matroid center

Consider a matroid M = (S, I) defined on a set S, and suppose that an aug-
mented cover tree T for S w.r.t. M is available. We can compute an O (3 +O (ǫ))-
approximate solution C to the matroid center problem on M as follows. First we
determine a coreset Q as the union of the independent sets associated with the
nodes of level Tℓ∗ where ℓ∗ = ℓ∗(ǫ, rank(M)) is the index defined in Equation 3.
Namely,

Q =
⋃

u∈Tℓ∗

u.mis.

Note that rank(M) is easily obtained as the size of r.mis, where r is the root
of T . Then, solution C is computed by running the 3-approximation algorithm
by [14] on Q. We have:

Theorem 5. Given an augmented cover tree T for S w.r.t. M =
(S, I), the above procedure returns a (3 + O (ǫ))-approximation C to

the matroid center problem on M , and can be implemented in time

O
(

poly(rank(M), (64/ǫ)D) + rank(M) log∆
)

.

Proof. As remarked before, the nodes of Tℓ∗ induce a partition of S into subsets
{Su : u ∈ Tℓ∗}, where Su is the subset of points of S associated with the descen-
dants of u in T , and for each q ∈ Su we have dist(p, u.point) ≤ ǫr∗rank(M)(S) ≤

r∗(M) . Consider an optimal solution C∗ = {c1, c2, . . . , crank(M)} to the matroid
center problem on M , and let ci ∈ Sui

, for some ui ∈ Tℓ∗ . We now show that



we can substitute each ci with a distinct element of ui.mis ⊆ Q, so that the
resulting set of substitutes is also a maximal independent. Inductively, suppose
that we have substituted cj with a point c′j ∈ uj .mis, for every 1 ≤ j < i − 1,
and that the set C′(i − 1) = {c′1, . . . , c

′
i−1, ci, . . . , crank(M)} is an independent

set. By applying Fact 1 with A = C′(i − 1) − {ci}, y = ci, S′ = Sui
, and

B = ui.mis, we have that there exists a point c′i ∈ ui.mis\C′(i − 1) such that
C′(i) = (C′(i − 1)\{ci}) ∪ {c′i} is an independent set. Let C′ = C′(rank(M)).
Since ci and c′i belong to the same subset Sui

, we have d(ci, c
′
i) ≤ 2ǫr∗(M),

which immediately implies that rC′(Q) ≤ (1 + 2ǫ)r∗(M). Therefore, the so-
lution C computed using the 3-approximation algorithm by [14] is such that
rC(Q) ≤ (3 +O (ǫ))r∗(M). By the coreset property and the triangle inequality,
it follows that rC(S) ≤ (3 +O (ǫ))r∗(M).

For what concerns the running time, we have that the determination of the
level Tℓ∗ requires O

(

rank(M)((64/ǫ)D + log∆)
)

time (see Lemma 3), and the

size of the coreset Q is O
(

(rank(M))2(64/ǫ)D
)

. The claimed bound follows since
the algorithm by [14] runs in time polynomial in the input size.

5.4 Solving diversity maximization

In [8], the authors present a coreset-based approach to approximating the op-
timal solution of the diversity maximization problem on a pointset S, under
all the diversity measures div(·) listed in Table 1. Specifically, starting from an
(ǫ, k)-coreset Q for k-center on S, the authors obtain the coreset Q′ = Q for
the remote edge and the remote cycle variants of diversity maximization, while,
for all the other variants, the coreset Q′ is constructed by selecting, for each
p ∈ Q, min{k, |Sp|} points from the subset Sp of a partition {Sp : p ∈ Q} of S
into disjoint subsets, where each Sp contains points q ∈ S with dist(p, q) ≤ ǫr∗k.
It is shown in [8] that running an α approximation algorithm on Q′ yields an
(α+O (ǫ))-approximate solution for S. Observe that in all cases the coreset Q′

can be easily constructed from an (augmented) cover tree T for S. Indeed, in
the former, simple case, Q′ is obtained as the set of points associated with the
nodes of level Tℓ∗ , where ℓ∗ = ℓ∗(ǫ, k) is the index defined in Equation 3. In
the latter case, Q′ can be obtained as follows. We need T to be an augmented
cover tree w.r.t. to k-bounded cardinality matroid for S, denoted as Mk,S , whose
independent sets are all subsets of S of at most k points. Then, we simply set
Q′ = ∪u∈Tℓ∗

u.mis.
For each diversity variant in Table 1, let Adiv be the polynomial-time ap-

proximation algorithm yielding the αdiv approximation mentioned in the table,
and let tAdiv

(·) denote its running time. We have:

Theorem 6. Consider an cover tree T for S (augmented w.r.t. the k-bounded

cardinality matroid Mk,S, when necessary). For each diversity variant in Ta-

ble 1, running Adiv on the coreset Q′ extracted from T returns an (αdiv +
O (ǫ))-approximate solution to the diversity maximization problem in time

O
(

tAdiv
(k(64/ǫ)D) + k log∆

)

for the remote edge and cycle variants, and time

O
(

tAdiv
(k2(64/ǫ)D) + k log∆

)

for the other variants.



Proof. The stated bounds are an immediate consequence of the above discussion
and the observation that the construction of coreset Q′ can be accomplished in
O
(

k((64/ǫ)D + log∆)
)

time, for the remote edge and cycle variants, and in

O
(

k2(64/ǫ)D + k log∆)
)

time, for the other variants.

6 Conclusions

It is important to remark that for all problems treated in this paper, when S
is large and both the spread ∆ and the doubling dimension D of the metric
are small, the dynamic maintenance of the augmented cover tree data structure
and the extraction of solutions can be accomplished in time dramatically smaller
than the time that would be required to compute solutions on the entire pointset
from scratch.

Finally, the coreset-based approaches developed in [30] for robust matroid
center, and in [6] for diversity maximization under matroid constraints, can be
integrated with the approach presented in this paper, to yield dynamic main-
tenance for these more general versions of the problems, with similar accuracy-
performance tradeoffs.
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Appendix

Pseudocode for the insert procedure

Algorithm 1 details the pseudocode of the insertion procedure. It takes in input
the point p to be inserted and the cover tree, represented by its root r.



Algorithm 1: Insert(Point p, Root r)

1 if dist(p, r) > 2ℓmax then

2 ℓmax = ⌊log2 dist(p, r)⌋
3 r.level = ℓmax

4 let ℓ = ℓmax

5 Qℓ = {r}
6 while Qℓ 6= ∅ do

7 Qℓ−1 = ∅
8 for q ∈ Qℓ do

9 if q.children == ∅ OR q.children[0].level != ℓ − 1 then

10 if dist(q, p) ≤ 2ℓ then

11 Qℓ−1 = Qℓ−1 ∪ {q}

12 else

13 Qℓ−1 = Qℓ−1 ∪ {q′ ∈ q.children s.t dist(p, q′) ≤ 2ℓ}
14 ℓ = ℓ − 1

15 while dist(p,Qℓ+1) > 2ℓ+1
do

16 ℓ = ℓ + 1

17 let v ∈ Qℓ+1 be s.t. dist(p, v) ≤ 2ℓ+1

18 u = new node with u.point = p, u.level = ℓ
19 if v.children == ∅ OR v.children[0].level != ℓ then

20 w = new node with w.point = v.point, w.level = ℓ, w.children = v.children

21 v.children = {u,w}
22 else

23 v.children = v.children ∪ {u}
24 t = u
25 while t 6= null do

26 t.weight = t.weight + 1
27 add p to t.mis if it remains an independent set

28 t = r.parent

Pseudocode for the delete procedure

Algorithm 2 details the pseudocode of the deletion procedure. It takes in input
the point p to be deleted and the cover tree, represented by its root r.



Algorithm 2: Delete(Point p, Root r)

1 let ℓ = ℓmax

2 Qℓ = {r}
3 while true do

4 Qℓ−1 = ∅
5 for q ∈ Qℓ do

6 if q.point == p AND q.children == ∅ then

7 break while

8 if q.children == ∅ OR q.children[0].level != ℓ − 1 then

9 if dist(q, p) ≤ 2ℓ then

10 Qℓ−1 = Qℓ−1 ∪ {q}

11 else

12 Qℓ−1 = Qℓ−1 ∪ {q′ ∈ q.children s.t dist(p, q′) ≤ 2ℓ}
13 ℓ = ℓ − 1

14 Rℓ = ∅
15 while ℓ ≤ ℓmax − 1 do

16 if ∃u ∈ Qℓ s.t. u.point == p and u.level == ℓ then

17 v = u.parent

18 delete u from v.children
19 if v.point == p then

20 Rℓ = Rℓ ∪ v.children
21 else if |v.children| == 1 then

22 v.children = v.children[0].children
23 delete v.children[0]

24 let Rℓ+1 = ∅
25 for w ∈ Rℓ do

26 if ∃w′ ∈ Qℓ+1 ∪ Rℓ+1 s.t. dist(w,w′) ≤ 2ℓ+1
then

27 if w′.children 6= ∅ AND w′.children[0].level == ℓ then

28 w′.children = w′.children ∪ {w}
29 else

30 z = new node with z.point = w′.point, z.level = ℓ,

31 z.children = w′.children

32 w′.children = {z, w}

33 else

34 w.level = ℓ + 1
35 Rℓ+1 = Rℓ+1 ∪ {w}
36 for w ∈ Qℓ+1 ∪ Rℓ+1 do

37 update w.weight and w.mis
38 ℓ = ℓ + 1

39 if p 6= r.point then

40 if Rℓ == ∅ then

41 ℓmax = r.children[0].level + 1
42 r.level = ℓmax

43 else

44 rnew = new root with rnew.point = r.point, rnew.level = ℓ + 1,
45 rnew.children = {r} ∪ Rℓ

46 else

47 if |Rℓ| == 1 then

48 let v = Rℓ[0] be the new root

49 ℓmax = r.children[0].level +1
50 v.level = ℓmax

51 update v.weight and v.mis

52 else

53 let v ∈ Rℓ

54 rnew = new root with rnew.point = v.point, rnew.level = ℓ+ 1, rnew.children = Rℓ

55 ℓmax = ℓ + 1
56 update rnew.weight and rnew.mis


	Fully dynamic clustering and diversity maximization in doubling metrics

