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Abstract. Realistic vehicle sensor simulation is an important element
in developing autonomous driving. As physics-based implementations of
visual sensors like LiDAR are complex in practice, data-based approaches
promise solutions. Using pairs of camera images and LiDAR scans from
real test drives, GANs can be trained to translate between them. For
this process, we contribute two additions. First, we exploit the cam-
era images, acquiring segmentation data and dense depth maps as addi-
tional input for training. Second, we test the performance of the LiDAR
simulation by testing how well an object detection network generalizes
between real and synthetic point clouds to enable evaluation without
ground truth point clouds. Combining both, we simulate LiDAR point
clouds and demonstrate their realism.

Keywords: LiDAR Simulation · GAN · Autonomous Driving.

1 Introduction

Autonomous Driving is increasingly getting more attention in the automotive
industry and research. A big part of the success depends on the quality of per-
ception systems. LiDAR is a very important sensor for perception as it provides
highly accurate distance measurements. Even though the capabilities of LiDAR
sensors are increasing rapidly, they are still expensive by themselves and acquir-
ing training data in large quantities is difficult.

Simulation environments provide a possible solution, since generating syn-
thetic data to train perception systems is much cheaper than using real data
and also allows the simulation of rare or dangerous situations. However, the
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quality of the simulated data is often not realistic enough to transfer the trained
perception system to the real world. For the simulation of LiDAR sensors, ray
tracing can be employed. But for this to generate realistic data, the simulation
environment needs to have an extremely high degree of realism and the ray trac-
ing implementation needs to account for all the effects that occur in real LiDAR
sensors. Additionally, every specific LiDAR sensor has its own specifications and
characteristics. Of particular interest is the reflection behavior of the surfaces
hit by the LiDAR rays. Materials with higher reflectivity result in a stronger
signal, but can also cause light to be reflected away from the detector like a
mirror. This gives important cues, comparable to a grayscale camera image.
The respective measurement for this is the LiDAR intensity. While the strength
of the detected signal also depends on the distance, sensors like the Velodyne
HDL32E [23] return a distance adjusted value.

sim
point
cloud

camera image in LiDAR perspective

LiDAR intensity image

rendered camera image from simulation

depth map from simulation

real 
point
cloud

train pix2pixHD on real data

predict LiDAR intensity on synthetic data

Fig. 1: Our LiDAR point cloud simulation approach consists of two steps: First,
the neural network is trained on real data (blue box). Second, it is fed with
synthetic data to simulate point clouds (green box). We show LiDAR intensity
images using a color map for better visibility and keep depth maps in grayscale.

An option to directly capture these effects is a learning-based approach that
uses data from real test drives to simulate LiDAR sensors. If we can then simulate
LiDAR intensities, we can use them to filter a depth map, which is easily available
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in simulation environments, so that we can obtain a realistic synthetic LiDAR
point cloud in the end. Figure 1 summarizes this approach. Distinctive parts
in the point cloud then become visible like in real LiDAR point clouds, which
can improve performance in perception systems such as 3D object detection or
semantic segmentation. For the image translation task, we use pix2pixHD [26],
which follows the concept of General Adversarial Networks (GANs) [9]. We create
a polar-grid image of the point cloud from the LiDAR sensor. To have a direct
mapping, we also project the camera picture into the LiDAR perspective so that
each camera pixel corresponds to a LiDAR point. This process is described in
greater detail in Section 3.1. As this results in two matching images, pix2pixHD
can learn to translate from RGB to LiDAR intensity. While one use case for
this would be to simulate LiDAR point clouds from real test drives without the
presence of an actual LiDAR sensor, we focus on simulating realistic point clouds
from synthetic data. If we then use the simulated data as input for training real
world systems, we obtain a Real2Sim2Real pipeline that consists of the following
steps:

– Ground Truth: Generate LiDAR intensity images from the reflectivity mea-
surements in LiDAR point clouds (see Figure 2).

– Training Input: Derive data from camera images (e.g., depth and segmenta-
tion maps) and project these images into perspective of the LiDAR sensor
(see Figure 3).

– Real2Sim: Train a neural network on real data to predict LiDAR intensity
images. Using synthetic input data, the network can then simulate LiDAR
point clouds (see Figure 7).

– Sim2Real: Train real world perception systems (e.g., object detection) on
LiDAR point clouds from simulated data.

Our contribution in this is that we provide segmentation and depth data
in addition to the camera data to pix2pixHD. By doing so, we can recover
information about surfaces in the scene where no returns have been measured
by the LiDAR sensor, which enables performing the image translation task in
the LiDAR perspective. Furthermore, we evaluate the quality of the simulated
data beyond direct metrics between ground truth and generated data. Without
this we would have to rely on visual comparisons as no LiDAR ground truth
point clouds are available for the synthetic data. Thereby, we demonstrate that
by leveraging real data, our simulation produces realistic LiDAR point clouds.

After establishing the foundations in the related work, there are two core
parts in our paper that are both evaluated, corresponding to our pipeline. First,
the simulation of LiDAR intensities in Section 3 and secondly, the generation
of synthetic point clouds in Section 4. This is followed by a discussion of the
implications for practical use cases in developing autonomous driving systems
and ends with the conclusion.
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2 Related Work

Simulation Environments There are multiple capable simulation environments
to test and develop advanced driving assistance and autonomous driving sys-
tems. However, open source tools like CARLA [5] or AirSim [22] only have
basic sensor implementations, which are not sufficient for realistic simulation.
Vista [2] on the other hand employs data-based sensors, but is less focused on
optimal integration into driving simulation workflows. Commercial products, es-
pecially NVIDIA DRIVESim [17], are promising but usually employ high quality
physics-based implementations. Our approach on the other hand is supposed to
be integrated easily without requirements to the simulation environment and
should allow simple implementation of new sensors. A further relevant approach
is Pseudo-LiDAR [27,28]. Here, predicted depth maps are converted and down
sampled to mimic LiDAR point clouds so that they can be used for object de-
tection. We make use of this concept to generate point clouds from synthetic
depth maps.

Image2Image Translation For learning-based LiDAR simulation, Image2Image
translation has shown promising results. This can be achieved effectively with
GANs as shown by pix2pix [13]. In contrast to this, CycleGAN [29] can translate
between two domains without the need for paired data. Further improvements
for paired images were made by pix2pixHD [26] and SPADE [19]. Vid2Vid [25]
improves the temporal consistency for a video sequences and World-Consistent
Video2Video Translation [14] further proposes solutions for long-term consis-
tency. Even though, test drive data is most of the time given as video sequences,
approaches that process multiple consecutive frames simultaneously are prob-
lematic for LiDAR intensity, because the reflected light strongly depends on the
angle. As this changes when the car is moving, warping between frames cannot
be simply performed to improve the training. Additionally, using the camera
images as input already gives good data for temporal consistency.

LiDAR Simulation Methods for LiDAR simulation based on machine learn-
ing use similar approaches. LiDARSim [15] learns a mapping between a re-
constructed dense point cloud and individual scans using a U-Net [20] based
architecture. However, this approach makes it difficult to integrate the LiDAR
simulation in simulation environments. There also is research regarding unpaired
training, in this case using simulated unrealistic and real point clouds or point
clouds from different sensors [21]. While this offers great flexibility and various
use cases, there is a conceptual problem to learn the LiDAR behavior for specific
materials or objects in the scene.

This behavior can be learned with paired GAN-based approaches that utilize
camera images during training [16,10]. These approaches operate in the camera
perspective, but the former further uses depth and segmentation images as addi-
tional input. The latter also simulates LiDAR intensity in addition to dropping
rays. Our approach incorporates both concepts but performs the image transla-
tion in the LiDAR perspective, which has the distinct advantage that there is
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no need for upscaling the LiDAR image to the camera resolution. Aside from
usual interpolation artifacts, LiDAR data has the problem that gaps can either
result from the sampling pattern of the sensor or the reflection properties of the
surfaces hit. Only blurring the LiDAR points avoids larger interpolation errors,
but also prevents the network to discern between the two different kinds of gaps.
Fully matching the resolution of the camera, on the other hand, tends to also
fill reflection gaps in the LiDAR data. As our method transforms the camera
images into the LiDAR perspective, it does not suffer from these problems. In
addition, training can be completed faster because only the lower resolution of
the LiDAR sensor is used.

Training Data For training the network, we focus on the KITTI [8,7] dataset,
as it includes various benchmarks and hand labeled data, which is helpful for
training on high quality data, so the network can generalize well to the perfect
synthetic samples and gives many options for evaluation. It uses a Velodyne [24]
HDL-64E LiDAR sensor with 64 laser rows. Furthermore, VKITTI [6,3] creates a
virtual model of five sequences of the KITTI dataset in a semiautomatic process.
While the result is not a direct digital twin, as the geometry and object place-
ment differs, it still provides a good starting point for comparative evaluations.
VKITTI provides stereo color images and corresponding depth, class segmenta-
tion and instance segmentation maps. It also contains the extrinsic and intrinsic
camera parameters for each frame and bounding boxes for the cars. Thus, we
make this the basis for our synthetic data.

3 Simulating LiDAR Intensity

To leverage the simulation environment, a data-based sensor should make use
of the available ground truth data. The generation of realistic materials is often
challenging and would be even more problematic to obtain from real world se-
quences. Instead, we focus on readily available data: RGB renderings (camera
images), depth, semantic and instance segmentation masks.

3.1 Generating the Training Data

As these are supposed to be used during inference in the simulation, the training
also needs to be performed with these modalities as input. The ground truth for
the training is obtained from only the LiDAR data.

LiDAR Data Processing To transform a LiDAR point cloud into an image with-
out sampling gaps, we must recover the way the points should have been mea-
sured. Given an elevation angle and the azimuth (resulting from the laser arrays
and rotating sensor), a LiDAR point is located at the detected distance at these
angle coordinates. However, if we reverse this and try to map the individual
points to pixel coordinates, we notice that this is not consistent. There can be
gaps in the resulting image, which only should be the case when there is no
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denoise

store
LiDAR 

intensities
as image

part of the LiDAR point cloud seen by front camera

Fig. 2: Data processing and generation for LiDAR intensity simulation with
pix2pixHD.

detection at all. While the columns are quite accurate, the points are often reg-
istered at the wrong row. To obtain a dense image, we exploit that the points
in the KITTI files are ordered linewise. Consequently, jumps between quadrants
allow assignment of rows for each point.

As our goal is to learn a mapping between camera and LiDAR, only the
overlapping parts can be used. The camera only covers about 80 degree of the
360-degree LiDAR panorama and the lowest rows of the sensor are blocked by
the ego car and also not in the camera perspective. This effectively leads to
a crop of 372 × 44 pixels, where each pixel gives a LiDAR intensity and lies
inside the camera view. As a last step, we denoise the polar-grid LiDAR images
with LIDIA, a universal learned denoiser, as shown in Figure 2. Even though
noise is part of realistic LiDAR intensity, we decided to exclude it from our
experiments as good as possible to focus on how well the network can learn
the ideal reflective properties of materials. However, this could be analyzed in
future work, as different materials could produce specific noise patterns in the
measured intensities.

Camera Data Processing For the real input data, we need to start from the
available sensors: LiDAR and RGB camera. Based on these, we can predict dense

camera image

semantic segmentation

dense predicted depth map

edge map (from class and instance segmentation)

Fig. 3: Processing KITTI images for training: a projection from camera perspec-
tive to LiDAR perspective is necessary.
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depth maps via the depth completion network PENet [12]. Depth completion
means that the network uses the LiDAR point cloud as basis to predict a dense
depth map. Hence, we not only use LiDAR data in the ground truth but also
as input. This is no issue as we strictly want to predict reflection behavior in
the form of LiDAR intensity. Perfect depth maps are already available in the
simulation environment for inference, later. The predicted depth maps have a
slightly lower resolution of 1216 × 352 pixels due to the training process, so we
crop the original camera image as well.

For semantic and instance segmentation, we rely on manually labeled data, as
given for the Semantic Instance Segmentation Evaluation Benchmark [1]. How-
ever, this could also be achieved with an appropriate neural network. Instead of
directly using the instance segmentation maps for training, we follow pix2pixHD
and generate edge maps from the segmentation and instance data.

To project the camera data into the LiDAR perspective, we also need depth
information for every pixel. Here, we can use the same predicted depth map that
is one of the inputs for learning the intensity prediction. Due to the offset between
camera and LiDAR sensor on the vehicle, there are parts in the image that were
not seen by the LiDAR because of occlusions. We detect these areas generously
by checking whether multiple pixels from the camera image would fall into the
same LiDAR pixel coordinate and mask out occluded areas. These masks are
then added as don’t care labels to the segmentation masks. When projecting the
camera images, we also adjust the resolution to the LiDAR crop (372 × 44) so
that each LiDAR ray corresponds to one camera pixel, as shown in Figure 3.

3.2 Results and Evaluation

We use the pix2pixHD implementation from Imaginaire [18] and train for 20
epochs with batch size 8, enable the local enhancer network, but deactivate
horizontal image flipping during training. Otherwise, we keep the default con-
figuration.

We train on 16 sequences (about 6000 images) of the training and validation
data of the segmentation benchmark and use the five sequences (about 2000 im-
ages) that are also modeled in VKITTI for evaluation. In particular, we compare
between different runs of camera images and derived images individually, as well
as one variant where we use all available input data. Images are always scaled
to a resolution of 512 × 64. As metric, we use the Fréchet inception distance
(FID) [11], which has proven to be an effective way to compare similarity be-
tween generated and real images. The numerical results can be seen in Table 1
and the corresponding images in Figure 4.

Table 1: FID between ground truth and predictions on validation set at epoch
20.

Input Data RGB Semantic Edges Depth Combined

FID 89.44 77.01 102.61 81.43 73.81
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(a) First row: ground truth LiDAR in-
tensity, below: input images. Images are
cropped slightly for better visibility.

(b) First row: LiDAR intensity prediction
from combined input, below: predictions
from individually trained networks.

Fig. 4: Qualitative evaluation with sequence from the KITTI validation split
using different input data configurations.

In general, the numbers show a clear picture of what the network learns from
the data and how this generalizes to unseen data. Class segmentation and depth
provide information that applies very similarly to materials and geometry across
scenes and thus promote generalization capabilities. The same is true for the edge
maps in theory, albeit they contain considerably less information by themselves.
The RGB camera images behave very differently. They are full of high frequent
information, which also makes it very hard for the network to apply on new data.
The value of including RGB images is not diminished by this, as they provide
valuable information for simulating intensities that correspond to the specific
materials in the frame and also help with temporal stability.

Generalization on Synthetic Data VKITTI provides the necessary data, but it
has to be adjusted slightly to adhere to the training format. The depth maps need
to be scaled into the same range as in the completed depth images. The color-
based classes of VKITTI need to be mapped to KITTI class identifiers. The color-
based instance segmentation maps of VKITTI need to be mapped to subsequent
numbers. The conversion results are shown in Figure 5. Even though the training
is performed on data converted into the LiDAR perspective, the network itself
learns a mapping between camera-derived data and LiDAR intensity. This means
that we can directly evaluate the network on the synthetic images. As long as
the aspect ratio and resolution are comparable, the generated data is plausible.
Without further projection, this would simulate a LiDAR sensor that has the
same position as the camera and a resolution corresponding to the training
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camera image

semantic segmentation

dense predicted depth map

edge map (from class and instance segmentation)

Fig. 5: Processing VKITTI images for training: instead of projection, we directly
downsample the images to a resolution of 372 × 44 pixels.

resolution. A higher resolution LiDAR could be simulated by simply sampling a
different set of pixels from the source image.

We show the results of the networks trained on the different kinds of real
world input images with synthetic data input from VKITTI in Figure 6, using
the corresponding KITTI validation sequence. This is the same sequence for
which we have already showed the predicted intensities in Figure 4, but there
are notable differences between the real and the synthetic scene itself. Still, the
predictions align reasonably well, especially considering that there is a domain
gap, not only between camera and rendered image but also between perfect and
predicted depth maps as well as between the segmentation maps because of dif-
ferent class labels. However, we cannot evaluate the performance quantitatively
in the same way. We provide a solution to this by creating point clouds from the
predicted intensity and analyze them for the task of training object detection.

4 Object Detection with Simulated LiDAR Point Clouds

To further evaluate the realism of the simulated point clouds, we train an object
detection network on VKITTI and evaluate the performance on real KITTI
data. Furthermore, we also evaluate a model trained on real KITTI data on the
synthetic point clouds. In each case, the network architecture is Voxel-R-CNN [4].
The unstructured point clouds are first encoded into voxels. This means that it
should be rather robust against sensor noise or aliasing from the depth projection
in synthetic point clouds.

Generating Point Clouds from Synthetic Data In order to use the VKITTI
dataset analogously to the KITTI dataset, we have to generate the point clouds
from the depth maps and reconstruct the calibration files. For the image files,
we use the RGB images of the left VKITTI camera (Camera 0) and generate the
3D and 2d bounding box information in the correct format with the information
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(a) First row: ground truth LiDAR inten-
sity (KITTI), below: input images. Images
are cropped slightly for better visibility.

(b) First row: LiDAR intensity prediction
from combined input, below: predictions
from individually trained networks.

Fig. 6: Qualitative evaluation with the VKITTI sequence corresponding to the
KITTI sequence in Figure 4 using different input data configurations.

from the supplied text files. We remove bounding boxes that exceed a maximum
distance of 80 meters and exclude scenes that contain no objects completely.

In contrast to the real KITTI data, we define no objects as completely visible,
because VKITTI gives very accurate occlusion values, which however do not
exceed a visibility of 90 percent. This has no effect on the training process
itself, only during evaluating on the VKITTI sequences there will be no easy
category for evaluating object detections. Instead, these samples will be part of
the moderate difficulty.

For a specific LiDAR sensor position, there are three possibilities. First, the
point cloud generated from the depth map and the predicted intensity can be
projected into the LiDAR coordinate system. Second, equivalent to the train-
ing procedure, the camera data can be projected first and in this form be fed
into the network. Last, an additional camera could be simulated at the desired
LiDAR position. This should in most cases be the most accurate solution, but
cannot be applied on already existing data like VKITTI. For our evaluation,
we choose the first option and convert the depth maps to point clouds follow-
ing Pseudo-LiDAR [27]. We make one important modification: the intensity of
LiDAR points is set to 0 instead of 1. Training on real point clouds and evaluat-
ing on synthetic point clouds with intensity 1 causes the detection performance
to collapse because the detector then considers every point as retro-reflective.
Adding the intensity simulation enables us to assign an intensity to points or
drop them completely with low intensity. We apply this conservatively and only
drop points with 0 intensity (see Figure 7). We only use the network once for
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each frame and upscale the low resolution intensity map to the cropped KITTI
resolution of 1216 × 352, which assigns an intensity of 0 to the border pixels
from the original KITTI and VKITTI resolution of 1242 × 375 pixels. This
allows using the full available resolution of the depth map. After generating a
point cloud from it, we sparsify the point cloud according to the desired sensor
specifics following the Pseudo-LiDAR method [28].

synthetic data from simulation

pix2pix
HD

Fig. 7: Generating synthetic point clouds from depth maps and predicted LiDAR
intensity.

Generating point clouds from VKITTI results in about 2000 samples for
training. We generate three different sets of simulated VKITTI point clouds and
compare them against real KITTI point clouds, following the procedure above:
one with 32 lines and two with 64 lines, once without further processing and
once with dropping points according to the predicted intensity.

(a) Real point cloud (blue) and point cloud
from projected synthetic depth (red).

(b) Using simulated intensity in addition
to the depth (green).

Fig. 8: Comparison between synthetic and real point clouds. Using the same
image area as during training causes the lowest LiDAR rays to be cut off.
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The reason for also evaluating a variant with only 32 lines is to gain insights
whether the observed effects could also simply result from having less points
overall. Visualizations of the 64 line point clouds are given in Figure 8. This also
shows the geometry discrepancy between VKITTI and KITTI. However, this is
not a problem for comparing the general object detection performance, because
we do not compare point clouds individually. The point cloud with simulated
intensity on the right (Figure 8b) matches the real point cloud structure, having
more sparsity in the distant parts and around reflective and transparent surfaces.

To analyze the results, we follow the KITTI object detection benchmark,
which comes with 7481 point cloud and labels that are roughly split in half for
training and evaluation. It divides the samples for evaluation into easy, moderate
and hard depending on the size, occlusion and truncation in the camera image.
The network outputs 3D and 2D bounding boxes, a top-down bird’s eye view
detection (bev) and average orientation similarity (aos), while we follow the
KITTI object evaluation to calculate the detection scores. We always train Voxel-
RCNN for 80 epochs for stable results and average the last 5 epochs to account
for remaining fluctuations between epochs.

easy 3D@0.70 bev@0.70 3D@0.50 bev@0.50 2D aos

VKITTI (64 Lines) 63.78 75.32 79.93 80.24 79.24 78.58
VKITTI (32 Lines) 61.4 73.61 78.28 78.62 77.3 76.62
IntensitySim (64) 63.22 80.33 85.69 86.15 83.83 82.1
KITTI 91.94 95.36 98.51 98.55 98.46 98.43

moderate 3D@0.70 bev@0.70 3D@0.50 bev@0.50 2D aos

VKITTI (64 Lines) 50.5 62.43 68.54 68.91 66.59 65.05
VKITTI (32 Lines) 47.56 59.57 65.16 65.51 63.73 61.81
IntensitySim (64) 51.74 70.77 75.51 79.71 72.78 70.54
KITTI 82.9 91.19 94.78 95.46 94.65 94.52

hard 3D@0.70 bev@0.70 3D@0.50 bev@0.50 2D aos

VKITTI (64 Lines) 48.7 62.07 69.01 70.02 66.84 65.05
VKITTI (32 Lines) 45.2 58.15 64.04 65.42 62.9 60.93
IntensitySim (64) 50.27 69.74 74.76 79.07 71.95 69.42
KITTI 80.45 88.94 94.49 94.59 92.34 92.14

Table 2: Voxel R-CNN Objected detection evaluation on KITTI point clouds,
the first column specifies the data set used for training.

Evaluation on KITTI In the first experiment, we have trained a Voxel R-CNN
on KITTI point clouds as well as all types of our synthetic point clouds. All of
these models are then evaluated on the real data, see Table 2. First, we notice
that there is a significant gap between the models trained on real and synthetic
data for generalization. The difficult part is to determine how much can be
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attributed to the individual scene differences, point cloud structure or data set
selection. We see that simply reducing the point density to 32 lines decreases
performance. In theory, an increase could have been possible if there were no
sparse car samples in the synthetic for the network to learn to detect them in
real data. The IntensitySim point clouds, on the other hand, also consist of fewer
points, but the detection performance increases for almost every metric, which
means that points have been dropped correctly. Only for the easy samples, the
performance slightly decreases compared to the regular VKITTI point cloud.
This is not unexpected because the detection of these rely on a representative
number of dense car samples in the training set.

moderate 3D@0.70 bev@0.70 3D@0.50 bev@0.50 2D aos

VKITTI (64 Lines) 88.78 95.79 98.94 99.25 98.59 97.89
VKITTI (32 Lines) 72.93 90.74 94.3 97.54 89.78 88.48
IntensitySim (64) 86.33 99.11 99.89 99.92 99.78 98.35
KITTI 82.9 91.19 94.78 95.46 94.65 94.52

hard 3D@0.70 bev@0.70 3D@0.50 bev@0.50 2D aos

VKITTI (64 Lines) 77.18 87.84 92.47 93.94 90.59 89.51
VKITTI (32 Lines) 61.2 80.42 85.12 89.96 79.68 77.85
IntensitySim (64) 81.19 95.02 96.89 96.97 95.97 94.37
KITTI 80.45 88.94 94.49 94.59 92.34 92.14

Table 3: Voxel R-CNN Objected detection evaluation on VKITTI point clouds,
the first column specifies the data set used for training (no samples for easy
difficulty).

Training on KITTI and Evaluation on VKITTI The second experiment eval-
uates the detection performance of a model trained on real KITTI data when
applied on synthetic data, in our case the VKITTI point clouds. With the perfect
synthetic data, object detection is often too exact in simulation environments.
On the other hand, there might be a domain gap, that prevents the network
from reaching the optimal performance. The data in Table 3 shows that the
latter largely is the case. This is significant as the performance increases despite
having less points per sample for detection. Furthermore, it indicates that the
intensity was simulated realistically. Again, simply reducing the point cloud res-
olution causes the network trained on higher resolution KITTI point clouds to
miss many objects.

5 Discussion

When designing a system that in the end is supposed to bring autonomous
driving functions to the street, we carefully have to consider the limitations of
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the simulation capabilities. In our case, we want the network to learn a mapping
between data from camera and LiDAR. Yet, the information given in single
camera frames cannot determine the reflection behavior of the materials seen by
the LiDAR. Materials exist, that look exactly the same in the camera images
but not for the LiDAR. Trying to test specific situations with such a sensor in
the simulation is therefore a problematic approach when we want to replicate
real world behavior exactly. Conversely, the data-based sensor can be used to
generate diverse virtual training data.

Going back from this general observation to the data of our experiments,
we consider improving the training data as very important. For the real data
set, higher resolution LiDAR sensors could improve the training drastically and
the data projection methods can be optimized. Here, both the predicted depth
and the occlusion masking can introduce artifacts in the training data. While
VKITTI offered interesting insights because of its similarity, having a dynamic
simulation environment would allow greater flexibility for generating synthetic
training data and thus also experiments that investigate how to optimize gen-
eralization from synthetic to real data, in particular, when it is based on real
data.

6 Conclusion

We have proposed a pipeline to simulate LiDAR point clouds, including intensity,
from real data and validate the realism by observing the generalization of an ob-
ject detection network. In particular, we employed pix2pixHD for Image2Image
translation and Voxel-R-CNN for object detection using KITTI point clouds
and synthetic data from VKITTI as starting points. Converting these appropri-
ately resulted in reasonable visual quality and FID scores, showing that using all
available data as input performed best. The data from the object detection ex-
periments strongly indicates that our LiDAR simulation approach can increase
the realism of the synthetic point clouds, thus creating a valuable starting point
for evaluating different data configurations.
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