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4wangye@ethz.ch, University of Macau

5wattenhofer@ethz.ch, ETH Zürich
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Abstract

Combinatorial auctions (CAs) allow bidders to express complex preferences for bundles
of goods being auctioned. However, the behavior of bidders under different payment rules
is often unclear. In this paper, we aim to understand how core constraints interact with
different core-selecting payment rules. In particular, we examine the natural and desirable
non-decreasing property of payment rules, which states that bidders cannot decrease their
payments by increasing their bids. Previous work showed that, in general, the widely used
VCG-nearest payment rule violates the non-decreasing property in single-minded CAs.
We prove that under a single effective core constraint, the VCG-nearest payment rule is
non-decreasing. In order to determine in which auctions single effective core constraints
occur, we introduce a conflict graph representation of single-minded CAs and find suf-
ficient conditions for the single effective core constraint in CAs. Finally, we study the
consequences on the behavior of the bidders and show that no over-bidding exists in any
Nash equilibrium for non-decreasing core-selecting payment rules.

1 Introduction

Combinatorial Auctions (CAs) are widely used to sell multiple goods with unknown value at
competitive market prices [16]. CAs permit bidders to fully express their preferences by allowing
them to bid on item bundles instead of being limited to bidding on individual items. A CA
consists of an allocation algorithm that chooses the winning bidders, and a payment function
that determines the winner’s payments. CAs are popular, sometimes with a total turnover in
the billions of US dollars [1]. Often auction designers want an auction to be truthful, in the
sense that all bidders are incentivized to reveal their true value.
Consider the example in Table 1. This is a so-called Local-Local-Global (LLG) auction; two
bidders are local in the sense that they are only interested in one good each, while the global
bidder wants to buy all goods. If the payment scheme is the first-price payment, the winning
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Local
Bidder

1

Local
Bidder

2

Global
Bidder

Bundle {A} {B} {A,B}
Bid 6 7 9

Allocation {A} {B} {}
First-price
payment

6 7 0

VCG payment 2 3 0

VN payment 4 5 0

Table 1: An example of an auction with 3 bidders and 2 items. The two local bidders win the
auction because they bid 6 + 7 = 13, whereas the global bidder only bids 9.

local bidders would need to pay 6 + 7 = 13. They would have been better off by lying, for
instance, by bidding a total amount of 10 only.
The well-known Vickrey-Clarke-Groves (VCG) payment scheme [18, 8, 13] is the unique pay-
ment function to guarantee being truthful under the optimal welfare allocation. In our example,
the VCG payments are much lower. Indeed, VCG payments are often not plausible in practice
because of too low payments [3]. In our example, the VCG payments of 2 + 3 = 5 are less
valuable than the bid of the global bidder. Therefore, the global bidder and the seller should
ignore the VCG mechanism and make a direct deal.
Core-selecting payment rules, in particular the VCG-nearest (VN) payment [10], have been
introduced to improve the situation and to guarantee the seller a reasonable revenue [11]. The
VN payment rule selects the closest point to the VCG payments in the core, where the core
is the set of payments, for which no coalition is willing to pay more than the winners [9] (see
Figure 1).

Figure 1: Left: payment space of winning bidders in Table 1. The green point pV is the
VCG payment point, the red point PV N is the VN payment point, the orange line is the core
constraint on payments of local bidders 1 and 2, and the gray triangle is the core given by core
constraints. Right: If bidder 1 increases their bid from 6 to 7, their payment increases as well,
from 4 to 4.5.

In this paper, we study payment rules for welfare maximizing known single-minded CAs in which
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each bidder is interested in a single known bundle. The profile of desired bundles together with
the profile of bids define a number of linear constraints (the core constraints) which form a
polytope (the core).
However, also core-selecting payments such as the VN payment are not perfect. It has been
shown that bidders can sometimes decrease their payments by announcing higher-than-truthful
bids under the VN payment rule. Examples which show such overbidding behavior already
need a non-trivial amount of goods and bidders [5].
In this paper, we study the limitations of VN payments. How complicated can CAs get such
that bidders cannot profit from higher-than-truthful bids when using VN payments? What is
the relation between different core constraints and core-selecting payment rules?
In particular, we study when the non-decreasing property holds, which is a natural and desirable
property of payment rules. This property requires that a bidder cannot decrease their payment
by increasing their bid. We examine for which kind of core constraints VN payments are non-
decreasing. More precisely, we show that the non-decreasing property holds whenever a single
effective core constraint exists.
Our second result determines which kinds of auctions are non-decreasing. To do so, we introduce
a graph-based representation of CAs. We construct a conflict graph based on the overlap
between the desired bundles of the bidders. We find sufficient conditions on the conflict graph
to have a single effective core constraint. In particular, we show that this is the case if the conflict
graph is a complete multipartite graph or if any maximal independent set in the conflict graph
has at most two nodes. Furthermore, we show that for auctions with at most three winners,
the VN payment is non-decreasing, without relying on the existence of a single effective core
constraint.
Thirdly, we study the consequences on the incentives of the bidders. We prove that for a
non-decreasing payment rule, over-bidding strategy is always weakly dominated by the truthful
bidding in any Nash equilibrium in single-minded CAs. This proves a conjecture made by [5].
Finally, we also study the non-decreasing property for two other common payment rules: the
proxy and the proportional payment. Although these two payment rules are not non-decreasing
with multi-minded bidders, we prove the non-decreasing property in the case of single-minded
bidders.

2 Related Work

The incentives of bidders in CAs with core-selecting payment rules are not understood well [12].
Day and Milgrom claimed that core-selecting payment rules minimize incentives to misreport [9].
However, it is not known under which circumstances certain incentive properties, like the non-
decreasing property, hold. The non-decreasing property has been observed for the VN payment
rule in LLG auctions [2], but does not hold in other single-minded CAs [5]. Markakis and
Tsikirdis examined two other payment rules, 0-nearest and b-nearest, which select the closest
point in the minimum-revenue core to the origin and to the actual bids, respectively [14]. They
prove that these two payment rules satisfy the non-decreasing property in single-minded CAs.
To understand the performance of core-selecting payment rules in CAs, Day and Raghavan
propose a constraint generation to codify the pricing problem concisely [11]. Later on, Bünz et
al. proposed a faster algorithm to generate core constraints based on the idea of conflict graphs
among participants in the auction [7].
Payment properties strongly influence incentive behaviors in CAs. Previous research focused
on game-theoretic analysis [11] and showed that bidders might deviate from their truthful
valuation to under -bidding strategies (bid shading) or over -bidding strategies, where bidders
place a bid lower or higher than their valuation, respectively. Ryuji Sano [17] proved that the
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truthful strategy is not dominant in proxy and bidder-optimal core-selecting auctions without
a triangular condition. However, whether over-bidding strategies exist in any NE is still an
open question.
Previous work has shown that in both full and incomplete information setting, under-bidding
strategies always exist in Pure Nash equilibria (PNE) and Bayesian Nash equilibria (BNE) for
core-selecting CA. Beck and Ott examined over-bidding strategies in a general full-information
setting and proved that every minimum-revenue core-selecting CA has a PNE, which only
contain over-bids [15]. Although the existence of over-bidding strategies in PNE has been
proven, incentives for over-bidding when values are private are not very well understood. In
BNE, bidders choose from their action space to respond to others’ expected strategies with
a common belief about the valuation distribution among all bidders. One of the few known
facts is that bidders might over-bid on a losing bundle to decrease their payment for a winning
bundle [15, 6, 4].
Compared to previous studies our work fills the following three gaps. First, previous stud-
ies have not fully considered how core constraints influence core-selecting payment property.
This paper examines how core constraints interact with core-selecting payment rules, which
motivates better designs of CA models. Second, since we believe that graph representations
are at the heart of understanding the core constraints and core-selecting payment rules, we
represent conflicts as a graph. Finally, the relationship between non-decreasing payment rules
and incentive behaviors in CAs has not been studied yet. Our work provides new insight into
the existence of over-bidding strategies in Nash equilibria, underlining the importance of the
non-decreasing property.

3 Formal Model

We study auctions under the assumption that all bidders as well as the auctioneer act indepen-
dently, rationally, and selfishly. Each bidder aims to maximize personal utility.

3.1 Combinatorial Auctions

In a combinatorial auction (CA) a set M = {1, . . . ,m} of goods is sold to a set N = {1, . . . , n}
of bidders. In this paper, we consider single-minded CAs (SMCAs) in which every bidder only
bids on a single bundle. Let ki ⊂M be the single bundle that bidder i is bidding for and denote
k = (k1, . . . , kn) as the interest profile of the auction. We assume that the interest profile of
an auction is known and fixed. Furthermore, let vi ∈ R≥0 be the true (private) value of ki to
bidder i and bi ∈ R≥0 the bid bidder i submits for ki. The bids of all bidders are summarized
in the bid profile b = (b1, . . . , bn). We denote the bid profile of all bids except bidder i’s as b−i,
and in general, the bid profile of a set L ⊂M of bidders as bL.
A CA mechanism (X,P ) consists of a winner determination algorithm X and a payment func-
tion P . The winner determination selects the winning bids while the payment function deter-
mines how much each winning bidder must pay.

3.2 Winner Determination

The allocation algorithm X(b) returns an efficient allocation x, i.e. a set of winning bidders
who receive their desired bundles. All other bidders receive nothing. An allocation is called
efficient if it maximizes the reported social welfare which is defined as the sum of all winning
bids. We denoted the reported social welfare as W (b, x) =

∑
i∈x bi. This optimization problem

is subject to the constraint that every item is contained in at most one winning bundle.
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Every bidder intends to maximize their utility which is the difference between their valuation of
the bundle they acquire and the payment they make. The social optimum would be to choose
the allocation that maximizes the sum of valuations of the winning bundles. However, since
the valuations are private, the auctioneer can only maximize the reported social welfare.

3.3 Payment Functions

We assume the payment function satisfies voluntary participation, i.e., no bidder pays more
than they bid. So the payment pi of bidder i satisfies pi ≤ bi for every i ∈ N .
The Vickrey-Clarke-Groves (VCG) payment is the unique payment rule which always guarantees
truthful behavior of bidders in CAs. We denote bidder i’s VCG payment as pVi .

Definition 3.1 (VCG payment). For an efficient allocation x = X(b), the VCG payment of
bidder i is

pVi (b, x) := W (b,X(b−i))−W (b, x−i)

where x−i = x \ {i} is the set of all winning bidder except i. Note that X(b−i) is an efficient
allocation in the auction with all bids except bidder i’s bid.

The VCG payment pVi is a measurement of bidder i’s contribution to the solution. It represents
the difference between the maximum social welfare in an auction without i and the welfare of
all winners except i in the original auction.

Definition 3.2 (Core-selecting Payment Rule). For an efficient allocation x = X(b), the core
is the set of all points p(b, x) which satisfies the following constraint for every subset L ⊆ N :∑

i∈N\L

pi(b, x) ≥W (b,X(bL))−W (b, xL)

Here, xL = x∩L is the set of winning bidders in L under the allocation x. Note that X(bL) is
an efficient allocation in the auction with only the bids of bidders in L.
A payment rule is called core-selecting if it selects a point within the core. The minimum
revenue core forms the set of all points p(b, x) minimizing

∑
i∈N pi(b, x) subject to being in the

core.

The core is described by lower bound constraints on the payments such that no coalition can
form a mutually beneficial renegotiation among themselves. Those core constraints impose that
any set of winning bidders must pay at least as much as their opponents would be willing to
pay to get their items. The VN payment rule selects a payment point in the core closest to the
VCG point.

Definition 3.3 (VCG-nearest Payment). The VCG-nearest payment rule (quadratic payment,
VN payment) picks the closest point to the VCG payment within the minimum-revenue core
with respect to Euclidean distance.

We also study the proxy payment and the proportional payment, which are both core-selecting.

Definition 3.4 (Proxy Payment). The proxy payment selects the point in the core where the
winners of the auction will share the total payment equally. It is defined as the point of the
form pi(b, x) = min[α, bi] for the minimum α ≥ 0 such that the point is in the core.

Definition 3.5 (Proportional Payment). With the proportional payment rule, the winning bid-
ders’ payments are given by the point in the core that minimizes the total payment

∑
i∈N pi(b, x)

and is of the form pi(b, x) := α · bi for some α ∈ [0, 1].
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Definition 3.6 (Non-decreasing Payment Rule). For any allocation x, let Bx be the set of bid
profiles for which x is efficient. The payment-rule p is non-decreasing if, for any bidder i, any
allocation x, and bid profiles b, b′ ∈ Bx with b′i ≥ bi and b−i = b′−i, the following holds:

pi(b
′, x) ≥ pi(b, x)

4 Non-decreasing payment rules and single effective core
constraints

We begin by proving a sufficient condition on the core constraints that guarantees that VN is
a non-decreasing payment rule.
For core selecting payment rules, the core constraints bound the payments from below to
ensure that no collation has a higher reported price than the winners. However, many of the
constraints are redundant since other constraints are more restrictive. For example, consider
an LLG auction such as the one shown in Figure 1 in which the local bidders win. The core
constraints on their payment are then

p1 + p2 ≥ bG (1)

p1 ≥ bG − b2 (2)

p2 ≥ bG − b1 (3)

where bG is the bid of the global bidder. Of these constraints, (2) is immediately satisfied, as
soon (1) holds since p2 ≤ b2. The same is true for (3). So (1) is the only effective constraint.
We will formalize this idea in the following. Note that the constraints (2) and (3) discussed
above are of the form pi ≥ pVi . Such a constraint arises for every winning bidder from the core
constraint for N \ L = {i}. However, we can in general disregard core constraints of the form
pi ≥ pVi which we call VCG-constraints since we are minimizing the distance between p and pV

and no other constraint forces pi < pVi .

Definition 4.1. Consider an SMCA with a fixed interest profile and a fixed winner allocation.
Intuitively, we say a single effective core constraint (SECC) exists, if the fact that a single
core constraint holds implies that all other core constraints are satisfied for all bid profiles.
More formally, an SECC exists, if the polytope defined by this core constraint together with
the voluntary participation constraints exactly equals the core (which is defined by all core
constraints).

Theorem 4.2. The VN payment rule is non-decreasing for SMCAs with a single effective core
constraint.

Proof. To prove this theorem we will first compute an explicit formula for the VN payments.
The payments of all losing bidders are 0. For all winning bidders whose payment is not part of
the SECC, the VN payment simply equals the VCG payment. Let S be the set of winners whose
payment is part of the SECC. Then we have the following constraints on the VN payments to
S, where (4) is the SECC with some lower bound B.∑

i∈S
pV N
i ≥ B (4)

pV N
i ≤ bi for i ∈ S (5)
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The quadratic optimization problem to be solved is minimizing the Euclidean distance between
pV N and pV under the constraints above. For the solution of this optimization, the voluntary
participation constraint (5) will be active for some i. Let A be the set of indices for which (5)
is active, i.e. pV N

i = bi for i ∈ A.
For the remaining i ∈ S \ A, we write pV N

i = pVi + δi. The single effective core constraint (4)
can now be rewritten as ∑

i∈S\A

δi ≥ B −
∑

i∈S\A

pVi −
∑
i∈A

bi.

Minimizing the Euclidean distance between pV N and pV is equivalent to minimizing
∑

i∈S\A δ
2
i .

Since we have a lower bound on the sum of the δi, the minimum possible value of
∑

i∈S\A δ
2
i is

achieved when all δi are equal, i.e.

δi = δ =
1

|S \A|

B − ∑
j∈S\A

pVj −
∑
j∈A

bj

 (6)

for i ∈ S \A. With that we conclude

pV N
i =

{
bi for i ∈ A
pVi + δ for i ∈ S \A.

(7)

Finally, we verify that VN is non-decreasing. Assume bidder i increases their bid and this does
not change the allocation x. If i is a losing bidder in x, their VN payment is 0 and can obviously
not decrease. Furthermore, if i is a winning bidder, but i’s payment is not part of the SECC,
i’s VN payment will equal their VCG payment which does not change as it only depends on
the other bids. From now on, we assume that bidder i is a winning bidder whose payment is
part of the SECC, i.e. i ∈ S.
Consider how the quadratic optimization problem changes when increasing bidder i’s bid. One
constraint and the point pV move continuously with this change. So clearly the solution, i.e.
pV N , also moves continuously. During this move some of the constraints (5) will become active
or inactive. We call the moments when this happens switches and examine the steps between
two consecutive switches.
As pV N changes continuously around switches, equation (7) will yield the same result at the
switch, no matter if we consider the switching constraint to be active or not. So for every single
step we can assume that the set of active constraints is the same at the beginning and the end
of the step. If suffices to show that bidder i’s payment does not decrease in every step between
two switches.
Assume bidder i’s bid increases from bi to b′i in a certain step and let b = (bi, b−i) and b′ =
(b′i, b−i) denote the corresponding bid profiles. We distinguish two case based on if i is in the
set of active constraints in this step or not. If i’s constraint is active, i.e. i ∈ A, we have
pV N
i (b, x) = bi and pV N

i (b′, x) = b′i in (7). Then the voluntary participation constraint implies

pV N
i (b, x) = bi ≤ b′i = pV N

i (b′, x).

Otherwise, for i /∈ A, we have pV N
i (b, x) = pVi + δ and pV N

i (b′, x) = pVi + δ′ where δ′ is the term
in (6) for the bidding profile b′ with the increased bid. Then it remains to argue that δ ≤ δ′.
This is true since neither B nor |S \ A| in (6) change. The sum

∑
j∈A bj also stays the same

since i /∈ A. Furthermore,
∑

j∈S\A p
V
j decreases or stays the same because the VCG payments

of all other bidders decrease or stay the same when a winning bidder increases their bid.

So the existence of an SECC is a sufficient condition for the VN payment to be non-decreasing.
It is however, not a necessary condition as the example in Section A in the appendix shows.
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5 Graph Representation of Auction Classes

In the following, we examine for which auction classes there is guaranteed to exist only a
single effective core constraint. To this end, we consider a representation of the auction
classes as graphs. More precisely, we construct a conflict graph from the interest profile of
an auction which represents the overlap between the bundles as follows. For an interest profile
k = (k1, . . . , kn) of an SMCA, consider the graph G = (V,E), where V = {k1, . . . , kn}, i.e. each
node represents a bidder. Two nodes are connected by an edge if and only if the corresponding
bundles intersect in at least one item. Two simple examples are shown in Figure 2.

Figure 2: Two examples of conflict graphs. The left one corresponds to the interest profile
({A}, {B}, {C}, {D}, {A,B,C,D}), the right one to ({A,B}, {B,C}, {C,D}, {D,A}).

Every set of winners of the auction corresponds to a maximal independent set (MIS) in the
graph.
Note that every graph with n nodes is the conflict graph of an SMCA with n bidders, i.e. the
mapping is surjective: Given a graph, we associate a distinct item with every edge. For every
node we then choose the bundle containing all items of adjacent edges. While different interest
profiles are mapped to the same conflict graph, auctions with the same conflict graph lead to
equivalent core constraints.

Lemma 5.1. Interest profiles with the same conflict graph have equivalent core constraints (up
to renaming the bidders) for all possible bid profiles.

Proof. For two interest profiles with isomorphic conflict graphs, let us renumber the bidders in
one profile such that the isomorphism maps the i-th bidder in one graph to the i-th bidder in
the other graph for all i ∈ {1, . . . , n}. Remember Definition 3.2 of the core constraints:∑

i∈N\L

pi(b, x) ≥W (b,X(bL))−W (b, xL)

Note that for every L, the sets xL and X(bL) depend only on the conflict graphs and the bid
profile. So the same is true for the whole right side on the inequality.

Only by looking at the conflict graph, we can tell by the following sufficient conditions if an
SECC exists.

Lemma 5.2. Every auction whose conflict graph is a complete multipartite graph has a single
effective core constraint.

Proof. If the conflict graph of an auction is a complete multipartite graph, the bidders can be
grouped into k bidder groups B1, . . . , Bk, where no edge between two bidders within the same
group exists, but any two bidders in different groups are connected by an edge.
We argue that the winning set must be one of these bidder groups. A winning set clearly can
not contain bidders from different groups since their bundles overlap. Moreover, if the winning
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set is only a subset of a bidder group, the current winner allocation does not maximize reported
social welfare, since the rest of the group can simply be added to the winners.
Let Bw be the winning bidder group. We now argue that only a single effective core constraint
exists. For any subset L ⊆ N , we have the core constraint∑

i∈N\L

pi(b, x) ≥W (b,X(bL))−W (b, xL). (8)

First, note that the core constraint is not effective if N \ L contains a losing bidder. Adding
this losing bidder to L does not change the left-hand side (LHS) of (8) since this losing bidder’s
payment must be 0. On the other hand, the right-hand side (RHS) will not decrease since
W (b, xL) does not change. Hence, the new constraint covers the previous one.
So we only need to consider the core constraints with N \ L ⊂ Bw. Choose L′ such that
Bw \ L′ = N \ L. Furthermore, let Bo be the winning bidder group in the auction with only
the bidders N \Bw. The term W (b,X(bL)) on the RHS equals either

∑
i∈L′ bi or

∑
i∈Bo

bi. If
the former is true, the RHS is 0 and the constraint is clearly not effective. In the latter case,
the constraint is of the form ∑

i∈Bw\L′

pi(b, x) ≥
∑
i∈Bo

bi −
∑
i∈L′

bi.

Because of pi(b, x) ≤ bi, any such constraints is covered by the constraint∑
i∈Bw

pi(b, x) ≥
∑
i∈Bo

bi

which is therefore the single effective core constraint.

Note, both graphs in Figure 2 are complete bipartite meaning an SECC exists for any auctions
with such a conflict graph. Another sufficient condition for the existence of an SECC is the
following.

Lemma 5.3. If every MIS in the conflict graph contains at most 2 nodes, the auction has a
single effective core constraint.

Proof. As seen in the previous proof, we only need to consider core constraints where N \ L
contains only winning bidders. So we get a constraint of the form pi + pj ≥ B, and one each
for pi and pj . These are either pi ≥ 0 or pi ≥ B − bj (and similarly for pj). Because pi ≤ bi
and pj ≤ bj , pi + pj ≥ B is the only effective core constraint.

The Lemmas 5.2 and 5.3 show two sufficient conditions for the existence of a single effective
core constraint. They are however not necessary. This is illustrated by the example shown in
Section B of the appendix. While its conflict graph has a MIS of size larger than 2 and is not
a complete multipartite graph, we prove that it has a SECC.
So looking at the conflict graph can tell us when the auction has a SECC and consequently, if
certain payment rules are non-decreasing for this auction. On the other hand, by understanding
induced subgraphs of the conflict graph, we can also determine that the non-decreasing property
of a payments rule is violated for this auction.

Lemma 5.4. Consider two interest profiles k and k′ with corresponding conflict graphs G and
G′. If G′ is an induced subgraph of G and a payment rule is not non-decreasing for k′, then
the payment rule is also not non-decreasing for k.

9



Proof. According to Definition 3.6, a payment rule not being non-decreasing for k′ means
there exists an allocation x and bid profiles b and b′ with b′i ≥ bi and b−i = b′−i such that
pi(b

′, x) < pi(b, x). By simply choosing zero (or arbitrarily small) bids for all bidders in G \G′,
we also find two bid profiles with the same property for k.

Bosshard et al. proved that the VN payment violates the non-decreasing property by proposing
an interest profile and corresponding bids [5]. Hence, VN is also not non-decreasing for any auc-
tion that contains the graph of this example as an induced subgraph. This principle motivates
the search for minimal examples of overbidding, as well as proving further sufficient conditions
for when overbidding does not occur. In the following, we show a sufficient condition for the
non-decreasing property, without relying on the existence of a single effective core constraint.

Theorem 5.5. The VN-payment rule is non-decreasing for all auctions that have an interest
profile for which every winner allocation contains at most three winners.

Proof. The case that the auction is won by two bidders is already treated in Lemma 5.3. Assume
three bidders win the auction, and without loss of generality, let the winners be bidders 1, 2
and 3. Then the core constraints are

pV N
1 + pV N

2 + pV N
3 ≥W (b,X(bN\{1,2,3})) (9)

pV N
1 + pV N

2 ≥W (b,X(bN\{1,2}))− b3 (10)

pV N
2 + pV N

3 ≥W (b,X(bN\{2,3}))− b1 (11)

pV N
1 + pV N

3 ≥W (b,X(bN\{1,3}))− b2. (12)

Remember, that we can ignore core constraints of the form pV N
i ≥ pVi (VCG-constraints).

Furthermore, assume without loss of generality that bidder 3 increases their bid.
Let M be the minimum revenue determined by the core constraints. There are two possibilities
for the minimum revenue core: First, if the plane described by (9) is not fully covered by the
constraints (10), (11) and (12), the minimum revenue is M = W (b,X(bN\{1,2,3})). We further
discuss this case in the next paragraph. The second possibility is that the plane described by
(9) is fully covered by the other constraints, and M > (b,X(bN\{1,2,3})). Then the minimum
revenue core is a single point determined by equality holding in (10), (11) and (12). Since the
right sides of (10), (11) and (12) are not larger than the right side of (9), all three constraints are
needed to fully cover the plain. In particular, bidder 3 must be part of X(bN\{1,2}), otherwise
(9) implies (10), and the plane is not fully covered. But this means, that increasing b3 does
not change the right sides of (10). As the same is true for (11) and (12), increasing b3 does not
move the minimum revenue core and thereby the VN payment point.
In the following, we assume that constraint (9) is active, and M = W (b,X(bN\{1,2,3})). We
argue similarly to the proof of Theorem 4.2: All changes in the VN payments are continuous in
the change of the bid b3. At any time, a number of constraints are active, and this set of active
constraints changes at certain switches. To prove, the payment does not decrease overall, it
suffices to prove it does not decrease between two switches, when the set of active constraints
does not change. In the following, we distinguish three possible cases.
1st case: Only constraint (9) is active. Hence, the VCG payments are(

pV1 +
M − (pV1 + pV2 + pV3 )

3
, pV2 +

M − (pV1 + pV2 + pV3 )

3
, pV3 +

M − (pV1 + pV2 + pV3 )

3

)
.

When b3 is increased, the minimum revenue M = W (b,X(bN\{1,2,3})) does not change. Fur-
thermore, pV1 and pV2 stay the same or decrease. So bidder 3’s payment does not decrease
according to the formula above.
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2nd case: The constraints (9) and (10) are active. This implies

pV N
3 = b3 +M −W (b,X(bN\{1,2}))

pV N
1 + pV N

2 = W (b,X(bN\{1,2}))− b3.

As b3 increases, W (b,X(bN\{1,2})) can increase by at most as much as b3. Hence, the payment
pV N
3 will not decrease.

3rd case: Constraints (9) and (11) are active. (Note that the case when constraints (9) and
(12) are active is equivalent due to symmetry.) This implies

pV N
1 = b1 +M −W (b,X(bN\{2,3}))

pV N
2 + pV N

3 = W (b,X(bN\{2,3}))− b1.

These equations describe a line on which the VN payment points lies. Increasing b3 does not
change the right side of the equation. Furthermore, it may decrease pV2 , but does not change
pV3 . Since pV N is the closest point to pV on the line, this can, if it causes a change, only lead
to a decrease of pV N

2 and an increase of pV N
3 .

6 Over-bidding for Non-decreasing Payment Rules

In this section, we show that no over-bidding is profitable for non-decreasing payment rules,
which proves a conjecture by [5].

6.1 Over-bidding on Winning Bids

As long as an over-bid does not change the winner allocation compared to the truthful bid, it will
not increase the bidders utility. This follows directly from the definition of the non-decreasing
payment rules: Increasing a bid will not decrease the payment. However, the allocated value
stays the same since the allocation does not change.
Since any efficient allocation remains efficient when increasing a winning bid, over-bidding when
the truthful bid is already a winning bid is not profitable. This implies the following lemma.

Lemma 6.1. Consider an SMCA with a core-selecting, non-decreasing payment rule. If for
a bidder i and fixed bids of the other bidders b−i, the truthful bid vi is a winning bid, then
overbidding decreases bidder i’s utility.

6.2 Over-bidding on Losing Bids

A losing bid has zero utility due to voluntary participation, i.e., no bundle is acquired, no value
is gained, and the payment is zero. A losing over-bid equally results in zero utility. Thus, an
over-bidding strategy that increases the utility must result in winning the auction.
The following lemma shows that it is not possible to gain a positive utility by over-bidding,
where the truthful bid is losing.

Lemma 6.2. Consider an SMCA with a core-selecting, non-decreasing payment rule. If for
a bidder i and fixed bids of the other bidders b−i, the truthful bid vi is a losing bid, then
over-bidding is not profitable for bidder i.

11



Proof. Consider a bidder i who loses when bidding their truthful private value vi, but wins
with an overbid boi > vi. We write the truthful and the over-bidding bid profile as bv = (vi, b−i)
and bo = (boi , b−i), respectively. Furthermore, let xv and xo denote the efficient allocations for
the bidding profiles bv and bo, respectively. Note that i /∈ xv, but i ∈ xo.
The fact that bidder i loses with bid vi implies that W (bv, xo) < W (bv, xv). Let ε = W (bv, xv)−
W (bv, xo). We choose boi = vi + ε as the smallest overbid, such that xo is an efficient allocation.
Then W (bo, xo) = W (bv, xv). Note that it suffices to consider this overbid since any further
increase of the bid beyond this value decreases bidder i’s utility according to Lemma 6.1.
We calculate the VCG payment of bidder i for the bidding profile bo. The maximum reported
social welfare without bidder i equals W (bo, xv) = W (bv, xv) since bidder i loses in xv. Fur-
thermore, the total reported social welfare of xo excluding i equals W (bo, xo)− boi . Therefore,

pVi (bo, xo) = W (bv, xv)− (W (bo, xo)− boi ) = boi .

As mentioned in Section 4, a core constraint of the form pi(b
o, xo) ≥ pVi (bo, xo) exists for every

bidder. But this means that bidder i’s payment is at least boi > vi resulting in a negative utility
for bidder i.

Together Lemmas 6.1 and 6.2 imply the desired result.

Theorem 6.3. In an SMCA with a core-selecting, non-decreasing payment rule, over-bidding
strategy is always weakly dominated by truthful bidding in any Nash equilibrium.

7 Non-decreasing Property of Other Core-Selecting Pay-
ment Rules

We showed in the previous section, that the non-decreasing property ensures that bidders can
not profit from overbidding. However, until now, we have a limited understanding of which
payment rules are non-decreasing. In this section, we investigate two common core-selecting
payment rules, namely the proxy and the proportional payments, and examine their non-
decreasing properties.
Bosshard et al. argued that the proxy and the proportional payments are non-decreasing [5].
However, a counterexample with two bidders and two items A and B exists: Assume b1(A) = 12,
b1(AB) = 18 and b2(B) = 9. Under the proportional rule we have that p1 = 8 and p2 = 6.
However, if we increase b1(A) to 15, we get p1 = 5 and p2 = 3. This counterexample occurs
because the core constraint for bidder 2 has been lowered by the increase of b1(A). In this
section, we correct the proof of Proposition 2 in [5].

Lemma 7.1. The proxy payment function and the proportional payment function are non-
decreasing for SMCA.

Proof. We prove the statement for the proportional payment rule, the argument works analo-
gously for proxy payment rule.
First, we show that for SMCAs with continuous payment function, there exists a core constraint
which is active, and that is not affected by increasing bids for any winning bidders.
Consider a winning bidder i increasing their bid by an arbitrarily small amount ε from bi to
b′i = bi + ε. Because the bids are continuous, there exists a core constraint which is active for
both p and p′. Let us denote this core constraint with CC, which is generated by the set of
bidders L. If i /∈ L, then increasing bi to b′i does not change CC, which is sufficient for the
non-decreasing proof in [5]. Otherwise, we have i ∈ L.

12



Consider the efficient allocation X(bL) in the auction with only the bids of bidders in L. Since
bi < b′i, there are three scenarios:
1st case: X(bL)i = 0 and X(b′L)i = 0. Then CC decreases by b′i − bi, which is denoted as
CC ′. However, there exists another core constraint CC−i which is generated by the set of L\ i.
Increasing bi to b′i does not change CC−i. Moreover, constraint CC−i which is∑

j∈N\L

pj(b, x) + pi ≥W (b,X(bL))− (W (b, xL)− bi)

covers CC: ∑
j∈N\L

pj(b, x) ≥W (b,X(bL))−W (b, xL).

Therefore, p and p′ are all on CC−i that is not affected by increasing bids from bi to b′i.
2nd case: X(bL)i = 1 and X(b′L)i = 1. Then CC is not affected by increasing bids from bi to
b′i.
3rd case: X(bL)i = 0 = 0 and X(b′L)i = 1. Then there is a switching point b∗i , such that i
is in one of the efficient allocations with bid b∗L, but i is not in the efficient allocations with
bids b−L for any b−i < b∗i . Then we can first use the same argument as in the first scenario to
show that p and p∗ are all on the CC−i that is not affected by increasing bids from bi to b∗i .
Then, we use the same argument as in the second scenario to show that CC−i is not affected
by increasing bids from b∗i to b′i.
Therefore, for SMCAs, there exists a core constraint that is active, and is not affected by
increasing bids for any winning bidders. Let p̂ be the unique point on the line of payments
proportional according to b′ with p̂i = pi. Because bi < b′i, we have p̂j < pj ,∀j 6= i. Therefore,
p̂ lies weakly below the core constraint CC, thus pi < p′i and the proportional payment function
are non-decreasing for SMCA.

8 Conclusion

In this paper, we study the relationship between payment rules and core constraints in CAs. We
show how core constraints interact with an incentive property of payment rules in SMCAs, more
precisely, that a single effective core constraint results in the non-decreasing property of the VN
payment rule. Additionally, we introduce a conflict graph representation of SMCAs and prove
sufficient conditions on it for the existence of a single effective core constraint. Furthermore,
we examine the conjecture that over-bidding is never favorable in any Nash equilibrium of CAs
with non-decreasing payment rules.
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A Example from Section 4

As proved in Theorem 4.2, the existence of an SECC is a sufficient condition for the VN payment
to be non-decreasing. It is however, not a necessary condition as the following example shows
(see Table 2).

Bidder 1 2 3 4 5

Bundle ki {A} {B} {C} {A,B} {A,C}

Table 2: An example of an SMCA with more than a single effective core constraint that is
non-decreasing.

If the bidders b1, b2 and b3 win the auction, we have the following two core constraints:

p1 + p2 ≥ b4
p1 + p3 ≥ b5

In general, none of the two fully covers the other so there is more than one effective core con-
straint. However, this example is actually non-decreasing. To prove this, we briefly discuss two
necessary conditions for when overbidding can occur. Firstly, increasing bid bi must decrease
the VCG payment pVj of another winner. This is clear since increasing bi will not change pVi
and cannot increase another winner’s VCG payment. Furthermore, if the VCG payment does
not change, the VCG nearest clearly will not either.
Secondly, the decrease of pVj must move the VCG nearest point, and not only decrease pV N

j ,

but also pV N
i . The VCG nearest point will move along a number of faces of the core. Each of

the faces if defined by a subset of core constraints being tight. During the movement along at
least one of these faces, pV N

i must decrease.
In this example, there are only the two core constraints p1+p2 ≥ b4 and p1+p3 ≥ b5. So the only
face to consider is the line defined by both constraints being tight. This can be parametrized
as  0

b4

b5

+ x

 1

−1

−1


with x ∈ R. Note that only the second and third entry of the directional vector have the same
sign. Hence, 2 and 3 are the only potential indices j such that a decrease of pVj could cause

pV N
j and pV N

i decrease. However, the VCG payments are

pV1 = max(b4 − b2, b5 − b3)

pV2 = max(b4 − b1, 0)

pV3 = max(b5 − b1, 0).

In particular, increasing b2 or b3 will not decrease pV3 and pV2 , respectively. So no bidder can
decrease their payment by increasing their bid.

B Example from Section 5

The example in Table 3 (with the conflict graph in Figure 4) illustrates that while the conditions
in Lemmas 5.2 and 5.3 are sufficient, they are not necessary.
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Figure 3: The conflict graph of the auction in Table 2. The bidders 4, 5 are colored in black.
The bidders 2, 3 are colored in blue. The bidder 1 is colored in red.

Bidder 1 2 3 4 5

Bundle ki {A,B} {B,C} {C,D} {D,A,E} {E}

Table 3: An example of an SMCA that has a SECC, where the conflict graph has a MIS of size
larger than 2 and is not a complete multipartite graph.

Lemma. There exists an SMCA that is not a complete multipartite graph which has an SECC
and has an MIS of size larger than 2.

Proof. Consider the SMCA with the interest profile shown in Table 3 (and with the graph
representation shown in Figure 4). If two or fewer bidders win, we know from Lemma 5.3 that
an SECC exists. The only possibility for at least 3 bidders winning is if bidders 1, 3 and 5 win.
Then the core constraints on the payments of the winners are the following:

p1 + p3 + p5 ≥ b2 + b4 (CC1)

p1 + p5 ≥ max((b2 + b4), b3)− b3 (CC2)

p3 + p5 ≥ max((b2 + b4), b1)− b1 (CC3)

p1 + p3 ≥ max((b2 + b4), (b2 + b5))− b5 (CC4)

We first show that CC2 and CC3 are never effective core constraint. If CC2 is non-trivial, then
we have p1+p5 ≥ b2+b4−b3. Since p3 ≤ b3, CC2 is satisfied as soon as the payments of winners
satisfies CC1. Therefore, CC2 is never an effective core constraint. As CC3 is symmetric to
CC2, so we can use the same argument to show CC3 is also never an effective core constraint.
We now show that the CC1 is always a tight core constraint of any VCG-nearest payment, i.e.,
p1 + p3 + p5 = b2 + b4. We prove this statement by showing that the following three scenarios
are impossible.
The first scenario is that neither CC1 nor CC4 is tight for the VCG-nearest point. In such
a scenario, the payment must be equal to the VCG-payment, as those are the remaining
constraints on every individual winning bidders payments. Since CC1 is not tight, we have
pV1 + pV3 + pV5 > b2 + b4 which implies

Figure 4: The conflict graph of the auction in Table 3. The MIS with three nodes (bidders
1, 3, 5) is colored in red.

16



max
(
(b2 + b4), (b1 + b3), (b2 + b5)

)
+ max

(
(b1 + b5), (b2 + b4), (b2 + b5)

)
+ max

(
(b2 + b4), (b1 + b3)

)
> b2 + b4 + 2(b1 + b3 + b5).

If (b2 + b4) is maximal in any of the three items, we see that the above inequality cannot hold,
due to the fact that bidders 1, 3, 5 winning which means max(b2 + b4, b2 + b5) ≤ b1 + b3 + b5.
Therefore, we obtain the following expression,

max
(
(b3 + b5), (b2 + b5)

)
+ max

(
(b1 + b5), (b2 + b5)

)
+(b1 + b3) > b2 + b4 + 2(b1 + b3 + b5)

However, all possible outcomes of the left side are strictly inferior to the right side. Therefore,
pV1 + pV3 + pV5 ≤ b2 + b4, which contradicts to our assumption for the first scenario that CC1 is
not tight.
The second scenario is that CC4 is tight and CC1 is not tight. Then we have either p1 + p3 =
b2 + b4 − b5, or p1 + p3 = b2.
If p1 + p3 = b2 + b4 − b5, then p1 + p3 + p5 ≤ b2 + b4 because p5 ≤ b5. This implies that CC1 is
tight, which contradicts to our assumption of the second scenario.
If p1 + p3 = b2, we have p5 > b4 because CC1 is not tight. Then we know that p5 equals the
VCG-payment pV5 , as it is the remaining constraint on bidder 5’s winning payment. However,
pV5 > b4 implies that,

max((b2 + b4), (b1 + b3))− (b1 + b3) > b4

b2 + b5 > b1 + b3 + b5

This contradicts the assumption that bidders 1, 3, 5 are winning. Therefore, CC1 is a tight
constraint for all VCG-nearest payment in the SMCA.
The next step of the proof is to show that CC4 is always covered by CC1. If b2 + b4 > b2 + b5,
because b5 ≥ p5, it is trivial that CC4 always satisfies when CC1 satisfies. Otherwise, if
b2 + b5 > b2 + b4, we subtract CC4 p1 + p3 ≥ b2 from CC1 p1 + p3 + p5 = b2 + b4 (as CC1 is
always tight). Then we have p5 ≤ b4, which indicates that if CC1 holds, then CC4 also holds.
Therefore, CC1 is the only effective core constraint in the SMCA.
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