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Abstract. We study the approximate core for edge cover games, which
are cooperative games stemming from edge cover problems. In these
games, each player controls a vertex on a network G = (V,E;w), and
the cost of a coalition S ⊆ V is equivalent to the minimum weight of
edge covers in the subgraph induced by S. We prove that the 3

4
-core of

edge cover games is always non-empty and can be computed in polyno-
mial time by using linear program duality approach. This ratio is the
best possible, as it represents the integrality gap of the natural LP for
edge cover problems. Moreover, our analysis reveals that the ratio of ap-
proximate core corresponds with the length of the shortest odd cycle of
underlying graphs.

Keywords: Edge cover game · approximate core · linear program dual-
ity · integrality gap.

1 Introduction

Game theory studies the decision-making of rational, self-interested agents in
strategic environments [23]. Cooperative game theory is the branch of game
theory which studies situations where players are able to making binding agree-
ments about the distribution of payoffs outside the rules of the game [25]. One
central problem in cooperative game theory is to distribute the total cost of
cooperation to its participants. There are many criteria for evaluating alloca-
tions [4] [25], such as stability, fairness, and satisfaction. Emphases on different
criteria lead to different allocations, e.g., the core, the stable set, the Shapley
value, the nucleon and the nucleolus.

The core [13], which addresses the issue of stability, is one of the most at-
tractive solution concepts in cooperative game theory. The allocations in core
are stable in the sense that no subset of players has an incentive to deviate from
the grand coalition. The approximate core, which is introduced by Aigle and
Kern [10], provides an alternative solution for stability. Unlike the core which
can be empty, it offers an approximation to the core and is always existent,
as long as the approximation ratio is bad enough. Moreover, the approximate
core captures a wider range of solution concepts compared to the core, and it
eventually reduces to the core when the approximation ratio equals one. In the
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study of approximate core, a central problem is to determine the best ratio so
that the approximation to the core is as close as possible. This problem has
been widely discussed for a number of cooperative games, such as matching
games [10] [30] [32], TSP games [26] [9] [29], bin packing games [11] [18] [27] and
facility location games [14] [20].

Edge cover games was first studied by Deng et al. [7] to model the cost
allocation problem arising from edge cover problems. From Gallai’s Theorem,
the core of edge cover game can be represented by the core of matching games.
In this sense, the core of the edge cover game may be empty by using of the
fact that the core of the matching games may be empty. On the other hand, the
convex of the core can not be represented by the set of maximum independent
sets on the underlying graph.

In another work, Liu and Fang [21] studied a variant of edge cover games
and provided a complete characterization for the core and a sufficient condition
for verifying the non-emptiness of the core. In a follow-up work, Kim [19] stud-
ied rigid fractional edge cover games and its relaxed games. They showed that
a characterization of the cores of both games and found relationships between
them. Park et al. [24] also studied different variants of edge cover games, includ-
ing rigid k-edge cover games and its relaxed games. They gave a characterization
of the cores of both games, found relationships between them, and gave necessary
and sufficient conditions for the balancedness of both of them.

In this work, we study edge cover games and present a characterization for the
approximate core by employing the integrality gap of the underlying problem.
Our analysis demonstrates that the best ratio of the approximate core is upper
bounded by the reciprocal of integrality gap. Consequently, the most promising
ratio for guaranteeing the non-emptiness of approximate core in edge cover games
is 3

4 . Additionally, we illustrate that it is always feasible to construct an allocation
in the 3

4 -core of edge cover games efficiently.
The rest of this work is organized as follows. In Section 2, some notions and

notations used in this paper are introduced. Section 3 is devoted to a character-
ization for the approximate core of edge cover games with the integrality gap.
Section 4 gives the concluding remark and some possible future research for the
edge cover games.

2 Preliminaries

A cooperative cost game Γ (N, c) consists of a player set N = {1, 2, . . . , n} and
a characteristic function c : 2N → R, where for each coalition S ⊆ N , c(S)
represents the cost incurred by the players in S. The core of the game Γ (N, c)

is the set of vectors a ∈ R
|N |
+ satisfying:

a(S) ≤ c(S) for all S ⊆ N,

a(N) = c(N).
(1)

where a(S) =
∑

i∈S ai. We say a vector a ∈ R
|N |
+ satisfies the core property if

a(S) ≤ c(S) for any S ⊆ N . Given 0 ≤ α ≤ 1, the α-core of the game Γ (N, c) is
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the set of vectors a ∈ R
|N |
+ satisfying:

a(S) ≤ c(S) for all S ⊆ N,

a(N) ≥ αc(N).
(2)

A vector in the α-core guarantees that no coalition will cost more than the cost
it makes on its own, and the total cost of that allocation is at least α times of
the cost of all players. It is appealing to find the largest value α guaranteeing
the α-core being non-empty. When the core is non-empty, the core is precisely
the α-core for α = 1.

Let G = (V,E) be an undirected graph with vertices set V and edges set E.
For any non-empty set U ⊆ E, the induced subgraph on U , denoted by G[U ],
is a subgraph of G with edges in U . For any vertex subset S ⊆ V , δ(S) denotes
the set of edges incident to exactly one vertex in S. If S contains a single vertex
v, we use δ({v}) as an abbreviation for δ(v).

An edge cover of G is a set of edges K ⊆ E such that δ(v) ∩K 6= ∅ for any
v ∈ V . Given a non-negative weight function w on E that assigns a cost to each
edge, the minimum weight edge cover problem aims to find an edge cover such
that the total weight of edges is minimized. The value of a minimum weight edge
cover, denoted by γ(G,w), is called the weighted edge cover number.

Edge cover games study how to allocate the total cost of the edge cover
among all players. More precisely, ΓG(V, c) is the edge cover game defined on
an edge-weighted graph G = (V,E;w). The player set of ΓG(V, c) consists of
the vertices in V . For any coalition S ⊆ V , the cost function c : 2V → R+ is
defined by the minimum weight of edge set covering S. In other words, c(S) =
γ(G[E[S] ∪ δ(S)], w) where E[S] denotes set of edges that both endpoints are
contained in S.

3 The approximate core of edge cover games

It is showed that the core of an edge cover game is non-empty if and only if
there is no integrality gap for the underlying problem [7]. It turns out that the
approximate core of edge cover games also admits a characterization with the
integrality gap of the underlying problem. Moreover, the largest ratio guarantee-
ing the approximate core being non-empty is upper bounded by the reciprocal
of integrality gap. Hence the problem of finding the largest ratio for the approxi-
mate core boils down to computing the integrality gap. This section is threefold.
Subsection 3.1 shows how to compute an optimal half-integral edge cover. Sub-
section 3.2 utilizes the fractional edge cover computed in Subsection 3.1 to prove
the integrality gap of edge cover problems. Subsection 3.3 uses the integrality
gap of edge cover problems to characterize the approximate core of edge cover
games.

3.1 Computing an optimal half-integral edge cover

To compute the integrality gap of edge cover problems, we resort to a class
of special fractional edge covers, the optimal half-integral edge covers. We show
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that an optimal half-integral edge cover can always be found efficiently. Formally,
a vector x is called half-integral if 2x is integral.

The following linear program (3) captures the minimum weight edge cover
problem on G = (V,E;w) by restricting variables to 0 and 1.

minimize
∑

e∈E

wexe (3a)

subject to
∑

e∈δ(v)

xe ≥ 1 v ∈ V, (3b)

xe ≥ 0 e ∈ E. (3c)

A feasible solution to LP (3) is called a fractional edge cover in G. An optimal
solution to LP (3) is called a minimum fractional edge cover in G. In the case
of bipartite graphs, the weight of minimum fractional edge cover has the same
value as weighted edge cover number γ(G,w).

Lemma 1 (Schrijver [1]). If G is a bipartite graph, then LP (3) has an integral

optimal solution.

In the following, we show how to obtain an optimal fractional solution to
LP (3) that is half-integral. We employ the technique of edge doubling proposed
by Nemhauser and Trotter [22], whereby we create two copies of the vertex
set V , denoted as V ′ and V ′′, such that each vertex v ∈ V corresponds to
v′ ∈ V ′ and v′′ ∈ V ′′. Next, we construct the graph G′ = (V ′ ∪ V ′′, E′), where
E′ = {u′v′′|uv ∈ E} ∪ {u′′v′|uv ∈ E}, and assign weight wuv to each of edges
u′v′′ ∈ E′ and u′′v′ ∈ E′. Since G′ is bipartite, it is possible to efficiently compute
a minimum edge cover of G′, denoted as F . We set x = 1F , meaning that xe = 1
if e ∈ F and xe = 0 otherwise.

Define x∗ from x by

x∗
uv =

1

2
(xu′v′′ + xu′′v′) for all uv ∈ E. (4)

The following lemma shows that x∗ defined in (4) is an optimal half-integral
edge cover of G.

Lemma 2. x∗ is an optimal fractional edge cover of G.

Proof. We first show that x∗ is feasible for LP (3). For any vertex v ∈ V , we
have

∑

uv∈δ(v)
x∗
uv =

1

2

∑

u′′v′∈δ(v′)
xu′′v′ +

1

2

∑

u′v′′∈δ(v′′)
xu′v′′ ≥ 1, (5)

which implies the feasibility of x∗. If x∗ is not an optimal half-integral edge
cover in G, there will be an optimal fractional edge cover z in G such that
∑

e∈E weze <
∑

e∈E wex
∗
e. Then, we define a feasible edge cover z in G′:

zu′v′′ = zu′′v′ = zvu for all uv ∈ E. (6)
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This reduction get feasible of z and we have

2
∑

e∈E

wex
∗
e =

∑

u′v′′∈E′
wuvxu′v′′ +

∑

u′′v′∈E′
wuvxu′′v′

≤
∑

u′v′′∈E′
wuvzu′v′′ +

∑

u′′v′∈E′
wuvzu′′v′

= 2
∑

e∈E

weze

(7)

which contradicts with the assumption
∑

e∈E weze <
∑

e∈E wex
∗
e. ⊓⊔

We can adjust the half-integral edge cover in the Lemma 2 so that the sub-
graph induced by fractional components of x∗ can be decomposed into vertex-
disjoint odd cycles. This can be achieved by rounding x∗ iteratively.

Lemma 3. There exists an optimal half-integral edge cover x̃ such the subgraph

induced by fractional components of x̃ can be decomposed into vertex-disjoint odd

cycles.

Proof. Initially, we set x̃ equal to x∗ and describe a procedure that generates
another optimal solution with strictly more integer coordinates than x̃. Let H
be the subgraph of G induced by the set of edges {e ∈ E|x̃e = 1

2}. First, we
round x̃ to eliminate all of paths and even cycles in H .

Let P = v1v2 . . . vk be the longest path in H . Note that if e is an edge incident
to v1 and different from v1v2, then xe 6= 1

2 ; otherwise, H would contain either
a cycle or a longer path. Therefore, the edge v1v2 is the only edge connected to
v1 that has a half-integral value on x̃. As x̃ is feasible for LP (3), at least one
edge incident to v1 has a value of 1 in x̃. Thus we have x̃(δ(v1)) ≥

3
2 . Likewise,

we can deduce that x̃(δ(vk)) ≥
3
2 . Define x′ and x′′ as follows:

x′
e =











x̃e −
1
2 , if e = vivi+1, 1 ≤ i ≤ k − 1 and i is odd,

x̃e +
1
2 , if e = vivi+1, 1 ≤ i ≤ k − 1 and i is even,

x̃e, if e /∈ E(P ),

and

x′′
e =











x̃e +
1
2 , if e = vivi+1, 1 ≤ i ≤ k − 1 and i is odd,

x̃e −
1
2 , if e = vivi+1, 1 ≤ i ≤ k − 1 and i is even,

x̃e, if e /∈ E(P ).

There are two admissible solutions to LP (3). Moreover,

∑

e∈E

wex̃e =
1

2

(

∑

e∈E

wex
′
e +

∑

e∈E

wex
′′
e

)

Vectors x′ and x′′ have integer coordinates in P , and share the same coordinates
with x̃ on the other edges. As x̃ is an optimal fractional edge cover, x′ and x′′

are also optimal solutions.
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For any even cycle C = v1v2 . . . vk in H with v1 = vk, we can use similar
method to round x̃. Define x′ and x′′ as follows:

x′
e =











x̃e −
1
2 , if e = vivi+1, 1 ≤ i ≤ k − 1 and i is odd,

x̃e +
1
2 , if e = vivi+1, 1 ≤ i ≤ k − 1 and i is even,

x̃e, if e /∈ E(C),

and

x′′
e =











x̃e +
1
2 , if e = vivi+1, 1 ≤ i ≤ k − 1 and i is odd,

x̃e −
1
2 , if e = vivi+1, 1 ≤ i ≤ k − 1 and i is even,

x̃e, if e /∈ E(C).

There are two admissible solutions to LP (3). Moreover,

∑

e∈E

wex̃e =
1

2

(

∑

e∈E

wex
′
e +

∑

e∈E

wex
′′
e

)

Thus x′ and x′′ are also optimal solutions, have integer coordinates in C and
share the same coordinates with x̃ on the other edges.

We continue this process until H does not contain any path or even cycle.
Next, we proof that any two odd cycles in H are vertex-disjoint. If two odd
cycles in H are vertex-disjoint but not edge-disjoint, we can combine them into
an even cycle and then round it. Therefore, to prove that any two odd cycles
are vertex-disjoint, it is sufficient to show that they are edge-disjoint. Suppose
that H contains two cycles C1 and C2. Let P = v1v2 . . . vk be the longest path
belong to C1 ∩ C2. We use the same method to obtain two vectors x′ and x′′

which have integer coordinates on P . Then, we can replace x̃ by x′ or x′′ and
continue this procedure until any two odd cycles in H are edge-disjoint. ⊓⊔

3.2 Integrality gap of edge cover problems

This subsection studies the integrality gap of edge cover problems which will
be used in characterizing the approximate core for edge cover games. The edge

cover polytope of G, denoted by IP(G), is the convex hull of incidence vectors of
all edge covers of G. The fractional edge cover polytope of G, denoted by P(G), is
the convex hull of all fractional edge covers of G. It follows that P(G) is precisely
the polytope defined by constraints (3b) and (3c). According to Edmonds [8],
IP(G) can be described by P(G) after imposing the following odd set constraints:

x(E[U ] ∪ δ(U)) ≥ ⌈
1

2
|U |⌉ for all U ⊆ V, |U | odd. (8)

The integrality gap of the edge cover problem on G, denoted by ρ(G), is
defined by

ρ(G) = max
w:R|E|→R+

min{wx : x ∈ IP(G)}

min{wx : x ∈ P(G)}
. (9)

We have the following result for ρ(G).
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Theorem 1. Let G = (V,E) be a graph. Then, ρ(G) = 1 + 1
ℓ(G) , where ℓ(G)

is the length of the shortest odd cycle in G. Moreover, if G is bipartite, then

ρ(G) = 1.

Proof. We employ the result of Carr and Vempala [6]. A dominant D(P ) of a
polyhedron P ⊆ R

n is the set of points y ∈ R
n which dominates some vector

x ∈ P , i.e., D(P ) = {y ∈ R
n : ∃x ∈ P, y ≥ x}.

Lemma 4 (Carr and Vempala [6]). Given a polyhedron P and its convex

hull of the integer points Z, the integrality gap of the linear programming on P
is r if and only if r ≥ 1 is the smallest real number such that for any point x∗

of P , rx∗ ∈ D(Z).

If G is bipartite, ρ(G) = 1 follows from Lemma 1 directly. Hence we assume
that G is non-bipartite.

We first show that ρ(G) ≥ 1+ 1
ℓ(G) . Let C

∗ be a shortest odd cycle in G. We

obtain that

ρ(G) = max
w:R|E|→R+

min{wx : x ∈ IP(G)}

min{wx : x ∈ P(G)}

≥
min{1C∗x : x ∈ IP(G)}

min{1C∗x : x ∈ P(G)}

=
(|C∗|+ 1)/2

|C∗|/2

= 1 +
1

ℓ(G)
.

(10)

Here the second-to-last equality holds because the minimum edge cover of C∗

can be attained by any matching in C∗ that exposes exactly one vertex, while
the minimum fractional edge cover of C∗ corresponds to an half-integral edge
cover.

Then we show that ρ(G) ≤ 1 + 1
ℓ(G) . Let x̃ denote the optimal half-integral

edge cover of G constructed in Lemma 3. Lemma 4 implies that the condition
ρ(G) ≤ 1 + 1

ℓ(G) holds if and only if (1 + 1
ℓ(G))x̃ belongs to IP(G). Since that

(1 + 1
ℓ(G) )x̃ is a feasible fractional edge cover, we only need to show that it

satisfies (8). Let H1 and H2 be the subgraph of G induced by the fractional and
integral components of x̃ respectively. Then H1 consists of vertex-disjoint cycles
by Lemma 3. Moreover, by picking alternate edges in each path with a length
greater than 3, we can assume that H2 is composed of vertex-disjoint stars. Let
U be any odd set of vertices in G. For any components K of G[E[U ] ∪ δ(U)],
there are four possible cases:

1. K be a star in H2[E[U ]], then x̃(E[K]) = |E[K]|,
2. K be a star in H2[δ(U)], then x̃(E[K]) = |E[K]|,
3. K be a path in H1[E[U ] ∪ δ(U)], then x̃(K) = 1

2 |E[K]|, and
4. K be an odd cycle in H1[E[U ] ∪ δ(U)], then x̃(K) = 1

2 |E[K]|.
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If there is no odd cycle in G[E[U ] ∪ δ(U)], then we have

(

1 + 1
ℓ(G)

)

x̃(E[U ] ∪ δ(U)) ≥ x̃(E[U ] ∪ δ(U))

= |E[U ]|+ |δ(U)|

≥ ⌈ 1
2 |U |⌉.

The last inequality bases on the observation that x̃(K) ≥ ⌈ 1
2 |V [K]|⌉ when K

falls in the first three cases, where V [K] denotes the set of vertices of K.
Otherwise, H1 contains an odd cycle, thus ℓ(G) ≤ |U |. It follows that

(

1 + 1
ℓ(G)

)

x̃(E[U ] ∪ δ(U)) ≥ |U|+1
|U| x̃(E[U ] ∪ δ(U))

≥ |U|+1
|U| · |U|

2

= ⌈ |U|
2 ⌉.

Therefore, we conclude that (1 + 1
ℓ(G))x̃ belongs to IP(G). ⊓⊔

3.3 Characterizing approximate core with integrality gap

In this subsection, we introduce a characterization for the approximate core of
edge cover games. For any vertex v, N(v) denotes the set of vertices adjacent to
v. If a vertex subset S ⊆ N(v), δ(v, S) denotes the set of crossing edges between
v and S. In additionally, the induced subgraph G[δ(v, S)] is called a star or a
v-star with v being the center.

Liu and Fang [21] showed that the core of edge cover games is closely related
to the stars in the underlying graph. Based on the observation that any minimum
edge cover can be partitioned into some vertex-disjoint stars, we introduce the
following characterizations for the core property.

Lemma 5. A vector a ∈ R
|V |
+ satisfies the core property of ΓG(V, c) if and only

if for any vertex v ∈ V and vertex subset T ⊆ N(v) the inequality a(T ∪ {v}) ≤
∑

e∈δ(v,T ) we holds.

Proof. Let a ∈ R
|V |
+ be a vector satisfying the core property in ΓG(V, c), i.e.,

a ≥ 0 and a(S) ≤ c(S) for any subset S of V . Since T ⊆ N(v), δ(v, T ) is an edge
cover for T ∪ {v}. It follows that a(T ∪ {v}) ≤ c(T ∪ {v}) ≤

∑

e∈δ(v,T ) we.

To prove the converse, it suffices to show that a(S) ≤ c(S) for any S ⊆ V . Let
K denote the set of edges which covers S with minimum weight. It is evident
that K admits a star decomposition represented by K1,K2, . . . ,Kl. For each
i = 1, 2, . . . , l, we define ui as the center of the star Ki, and Ti as the set of
vertices in the star Ki except ui. Hence, we have a(S) ≤

∑l

i=1 a(Ti ∪ {ui}) ≤
∑l

i=1

∑

e∈δ(ui,Si)
we =

∑

e∈K we = c(S). ⊓⊔

Based on the linear programming formula of the α-core, we show that dual
solutions of this game characterize the core property.
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Lemma 6. A vector a ∈ R
|V |
+ satisfies the core property of ΓG(V, c) if and only

if it is a dual feasible solution to the LP (3).

Proof. Consider the dual of LP (3).

maximize
∑

v∈V

yv (11a)

subject to yu + yv ≤ wuv uv ∈ E, (11b)

yv ≥ 0 v ∈ V. (11c)

On the one hand, let a ∈ R
|V |
+ be a vector satisfying core property of edge

cover game ΓG(V, c). By Lemma 5, it is easy to verify that au + av ≤ wuv for
any edge uv ∈ E. This implies that a is a feasible solution to LP (11).

On the other hand, let y be a feasible solution of LP (11), we show that y
satisfies the core property. Let v ∈ V and T ⊆ N(v). Since yu + yv ≤ wuv, it
follows that y(T ∪{v}) ≤ y(T )+ |T |yv ≤

∑

e∈δ(v,T ) wuv. By Lemma 5, a satisfies
the core property. ⊓⊔

Now we are ready to characterize the approximate ratio in terms of the
integrality gap.

Theorem 2. Let ΓG(V, c) be the edge cover game defined on non-bipartite graph

G = (V,E;w). Then the
ℓ(G)

1+ℓ(G) -core of ΓG(V, c) is always non-empty and can

be computed efficiently. Moreover,
ℓ(G)

1+ℓ(G) is the largest ratio guaranteeing the

non-emptiness of the approximate core of ΓG(V, c).

Proof. An optimal solution a∗ to the dual of LP (3) can be computed in poly-
nomial time using standard linear programming techniques. By Lemma 6, a∗

satisfies the core property, i.e., a∗(S) ≤ c(S) for any coalition S ⊆ V . Besides,
we have

ρ(G)a∗(V ) = ρ(G) ·min{wx : x ∈ P(G)}

≥ min{wx : x ∈ IP(G)}

= c(V ).

According to the definition of the approximate core, a∗ is a ℓ(G)
1+ℓ(G) -core for

ΓG(V, c). Algorithms for finding a shortest odd cycle of a graph can be finished
in time O(|V ||E|) by using breadth-first search in [16]. Thus we can calculate
ρ(G) in polynomial time of |V | and |E|.

Now we show that ℓ(G)
1+ℓ(G) is the largest ratio guaranteeing the non-emptiness

of the approximate core. Suppose a is a vector in the α-core of ΓG(V, c). By the
definition, the a satisfies the core property. Thus a is a feasible dual solution to
LP (3) by Lemma 6. We have

αγ(G,w) = αc(V ) ≤ a(V ) ≤ min{wx : x ∈ P(G)},
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where the last inequality follows by the weak duality theorem of linear program-
ming. It follows that

α ≤
min{wx : x ∈ P(G)}

γ(G,w)
.

By the definition of integrality gap, we have α ≤ 1
ℓ(G) . ⊓⊔

Since the length of the shortest odd cycle is at least 3, the ratio will degenerate
to 3

4 if there is any triangle in the graph.

Corollary 1. Let ΓG(V, c) be the edge cover game defined on graph G = (V,E;w).
Then the 3

4 -core of ΓG(V, c) is always non-empty. Moreover, an allocation in the
3
4 -core of ΓG(V, c) can be computed efficiently.

4 Conclusion

In this paper, we considered a cost allocation problem for the edge cover game.
We characterize approximate core by using the dual solution of the nature linear
programming problem. Therefore, the best approximate factor depends on the
integrality gap between the integer linear programming problem and its relax-
ation. To estimate this factor, we employ linear programming rounding tech-

niques and prove that it is 1 + 1
ℓ(G) . This result ensures that the

ℓ(G)
1+ℓ(G) -core of

the edge cover game is always non-empty. Additionally, when the shortest odd
cycle in the underlying graph is equal to 1, our proposed solution degenerates
into a factor of 3

4 .
One possible working direction for edge cover games is to study the allocation

of nucleon, where Faigle et al. [12] studied the nucleon of matching games and
Kern and Paulusma [17] studied the nucleon of simple flow games. Our result
might be helpful since a nucleon locals in the allocation of the largest satisfaction
ratio. Besides, variants of edge cover games introduced by Liu and Fang [21] are
also worth studying.
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