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Abstract. In the moldable job scheduling problem one has to assign
a set of n jobs to m machines, in order to minimize the time it takes
to process all jobs. Each job is moldable, so it can be assigned not
only to one but any number of the equal machines. We assume that
the work of each job is monotone and that jobs can be placed non-
contiguously. In this work we present a ( 3

2
+ ε)-approximation algorithm

with a worst-case runtime of O(n log2( 1
ε
+ log(εm)

ε
) + n

ε
log( 1

ε
)log(εm))

when m ≤ 16n. This is an improvement over the best known algorithm
of the same quality by a factor of 1

ε
and several logarithmic dependencies.

We complement this result with an improved FPTAS with running time
O(n log2( 1

ε
+ log(εm)

ε
)) for instances with many machines m > 8n

ε
. This

yields a 3
2
-approximation with runtime O(n log2(logm)) when m > 16n.

We achieve these results through one new core observation: In an approx-
imation setting one does not need to consider all m possible allotments
for each job. We will show that we can reduce the number of relevant
allotments for each job from m to O( 1

ε
+ log(εm)

ε
). Using this observa-

tion immediately yields the improved FPTAS. For the other result we
use a reduction to the knapsack problem first introduced by Mounié,
Rapine and Trystram. We use the reduced number of machines to give
a new elaborate rounding scheme and define a modified version of this
this knapsack instance. This in turn allows for the application of a con-
volution based algorithm by Axiotis and Tzamos. We further back our
theoretical results through a practical implementation and compare our
algorithm to the previously known best result.

Keywords: machine scheduling · moldable · compression · convolution.

1 Introduction

The machine scheduling problem, where one assigns jobs to machines in order
to finish all jobs in a preferably short amount of time, has been a core problem
of computer science. Its applications are not only limited to the usual context
of executing programs on a range of processor cores but it also has many ap-
plications in the real world. For example one can view machines as workers and
jobs as tasks or assignments that need to be done. It is realistic in this setting
? Supported by DFG-Project JA 612 /25-1.
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that multiple workers can work on one task together to solve it more quickly.
This however gives rise to another layer of this problem, where one has to ini-
tially assign a number of machines to each job and a starting time, leading to
the problem called Parallel Task Scheduling with Moldable Jobs. Our goal is to
minimize the time when the last job finishes, which is called the makespan.

In this problem the time necessary for a job to be processed is dependent on
the number of assigned machines. We further consider in this paper the setting
where our jobs are not only moldable but also have monotone work. The work of
a job j with k machines is defined as w(j, k) := t(j, k) ·k, which intuitively is the
area of the job. We assume that this function for a fixed job j is non-decreasing in
the number of machines. This assumption is natural since distributing the task
on multiple machines will not reduce the amount of work but actually induce a
bit of overhead due to communication among the machines.

Since finding an optimal solution to this problem is NP-hard [11] our goal is to
present approximation algorithms. Such an algorithm has to guarantee for every
instance I with optimal makespan OPT (I) to find a solution with a makespan
of at most c ·OPT (I) for some multiplicative approximation ratio c > 1. In this
paper we introduce two algorithms that work with an accuracy ε > 0: The first
guarantees an approximation ratio of c1 = 1 + ε in time O(n log2( 4ε +

log(εm)
ε ))

under the additional premise that m > 8nε . Our second algorithm achieves an
approximation ratio of c2 = 3

2 + ε with running time O(n log2( 1ε + log(εm)
ε ) +

n
ε log(

1
ε )log(εm)) when 16n ≥ m. If we apply the first algorithm for ε = 1

2 and
combine both algorithms we get an efficient ( 32 + ε)-approximation.

We achieve our results through a new core observation: Although a job can
be assigned to every possible number of machines, not all m different allotments
may be relevant when looking for an approximate solution. In fact we will show
that if m is large enough we can reduce the number of relevant machine al-
lotments to O( 1ε +

log(εm)
ε ). This overall assessment is based on the concept of

compression introduced by Jansen and Land [10].
We use the reduced number of relevant allotments to schedule moldable jobs

via an instance of the knapsack problem. This approach was initially introduced
by Mounié, Rapine and Trystram [13]. We give a new rounding scheme to convert
moldable jobs into knapsack items to define a modified version of their knap-
sack instance. We construct this knapsack instance in a way that the number
of different sizes and profits is small. This allows for the efficient application of
a knapsack algorithm introduced by Axiotis and Tzamos [1] using convolution.
Their algorithm works well on such instances and thanks to our rounding we can
even do the required pre-processing for their algorithm efficiently in linear time.

1.1 Problem definitions and notations

Two problems will play an important role in this paper: The first being parallel
task scheduling with moldable jobs, which we will call moldable job scheduling
in the following. In this problem one is given a set J of n jobs and a set M
of m equal machines. We denote with [l] = {i ∈ N | 1 ≤ i ≤ l} for any l ∈ N.
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The processing time of a job in the moldable setting is given through a func-
tion t : J × [m] → R≥0 where t(j, k) denotes the processing time of job j on
k machines. We denote with γ(j, d) = min{i ∈ [m] | t(j, i) ≤ d} the number of
machines required for job j to achieve processing time smaller than d. If d is not
achievable with m machines, we say γ(j, d) is undefined.

For a solution of this problem we require two things: First an allotment
α : J → [m] and an assignment of starting times s : J → R≥0. For sim-
plicity we denote αj := α(j) and sj = s(j) respectively. A feasible solution
must now fulfill that at any time at most m machines are in use. Denote with
U(t) := {j ∈ J | t ∈ [sj , sj + t(j, αj)]} the jobs that are processed at time t. If at
all times t ∈ R≥0 we have that

∑
j∈U(t) αj ≤ m then the schedule defined by α

and s is feasible.
Finally we look to minimize the makespan of this schedule, which is the

time, when the last job finishes. Given an allotment α and starting times s the
makespan is defined by maxj∈J{sj + t(j, αj)}. As mentioned before the work of
a job is defined as w(j, k) = k · t(j, k). In this paper we will work under the as-
sumption that this work function for each job is non-decreasing. More precisely
for all jobs j and k, k′ ∈ [m] with k ≤ k′ we have w(j, k) ≤ w(j, k′).

The second main problem we will consider in this work is the knapsack prob-
lem 1, as it will be part of our algorithm to solve a knapsack instance. In the
knapsack problem one is given a set of n items where each item i is identified
with a profit value pi ∈ R>0 and a size or weight wi ∈ N. The task is to find a
maximum profit subset of these items such that the total weight does not exceed
a given capacity t ∈ N.

1.2 Related work

The moldable job scheduling problem is known to be NP-hard [7] even with
monotone work functions [11]. Further there is no polynomial time approxima-
tion algorithm with a guarantee less than 3

2 unless P=NP [6]. Belkhale and
Banerjee gave a 2-approximation for the problem with monotony [3], which was
later improved to the non-monotone case by Turek et al. [15]. Ludwig and Tiwari
improved the running time further [12] and achieved a running time polyloga-
rithmic in m, which is especially important for compact input encoding, where
the length of the input is dependent on logm and not m.

Mounié et al. gave a ( 32 + ε)-approximate algorithm with running time
O(nm log 1

ε ) [13]. Jansen and Land later improved this result further by giv-
ing an FPTAS for instances with many machines and complementing this with
an algorithm that guarantees a ratio of ( 32 + ε) with polylogarithmic dependence
on m. They picked up on the idea of Mounié et al. to use a knapsack instance to
find a schedule distributing jobs in two shelfs and modified the knapsack prob-
lem to solve it more efficiently. In a recent result Wu et al. [16] gave a new 3

2 -
approximation that works in time O(nm log(nm))

1 We mainly consider 0− 1 Knapsack, though some items may appear multiple times.
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The Knapsack problem as a generalization from Subset Sum is another core
problem of computer science that is NP-hard as well. For this problem pseu-
dopolynomial algorithms have been considered starting with Bellmans classical
dynamic programming approach in time O(nt) [4]. Many new results with pseu-
dopolynomial running times have recently been achieved in regards to various
parameters such as largest item size or number of different items [8,14,1,2].

One interesting connection has come up between Knapsack and the (max,+)-
convolution problem. In this problem one is given two sequences of length n
(ai)0≤i<n, (bi)0≤i<n and has to find the convolution c = a ⊕ b which is de-
fined through ci = maxj≤i(aj + bi−j) for all i ∈ N<n. This problem can be
solved in quadratic time O(n2). Cygan et al. [5] conjecture that a subquadratic
algorithm may not be possible and used this conjecture as a basis for many
fine-grained complexity results for Knapsack and similar problems. Axiotis and
Tzamos showed that with concave sequences, convolutions can be computed in
linear time O(n) and they used this to give a O(Dt) for Knapsack where D is the
number of different item sizes [1]. This approach has also been used by Polak et
al. [14] in conjunction with proximity arguments from Eisenbrand Weismantel
[8] to gain fast algorithms for knapsack with small item sizes .

1.3 Our results

We present a new algorithm, in particular a ( 32 +ε)-approximation algorithm, for
any accuracy parameter ε > 0, with a runtime polynomial in n, 1ε and in logm.
Since we are polynomial in logm our algorithm will be able to handle certain
compact input encodings and will generally scale well into large m.

The main difficulty in moldable job scheduling is that for every job we need
to choose between m different allotments and then schedule jobs efficiently. We
will however show that not all m possible allotments have to be regarded. Since
we look for an approximate solution and we have monotone jobs, it is sufficient
to only consider O( 1ε +

log(εm)
ε )) different machine counts. This leads immedi-

ately to a fully polynomial time approximation scheme (FPTAS) for instances
with many machines.

Theorem 1. Let ε > 0. For moldable job scheduling with instances wherem > 8nε
exists a (1 + ε)-approximation that runs in time O(n log2( 1ε +

log(εm)
ε )).

This result can be used for a 3
2 -approximation if we use ε = 1

2 .

Corollary 1. Consider moldable job scheduling on instances with m > 16n.
There exists a 3

2 -approximation in time O(n log2(logm)).

We complement this result with an efficient ( 32 + ε)-approximation for the
case where m ≤ 16n. For this we follow the same approach as [10,13] and we
aim to construct a knapsack instance. We will introduce a new rounding scheme
for machine counts, processing times and job works and convert these modified
jobs into knapsack items. The resulting knapsack instance will only have a small
amount of different item sizes. We then apply an algorithm introduced by Axiotis
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and Tzamos [1] that works well on such instances. Thanks to our rounding we
will be able to do the pre-processing of their algorithm in linear time as well.

Theorem 2. For moldable job scheduling there exists an algorithm that for in-
stances with m ≤ 16n and for any ε > 0 yields a 3

2 + ε approximation in time:
O(n log2( 1ε +

log(εm)
ε ) + n

ε log(
1
ε )log(εm))

These two results make up one ( 32 + ε)-approximation that improves on the
best known result by Jansen and Land [10] in multiple ways. For largem we man-
age to reduce the dependency onm even further. Whenm is small we improve on
their running time by reducing the dependency on ε by a factor of 1

ε and several
polylogarithmic factors. We also argue that our algorithm is overall simpler com-
pared to theirs, as we do not require to solve knapsack with compressible items
in a complicated manner. Instead our algorithm merely constructs the modified
knapsack instance and delegates to a simple and elegant algorithm from Axiotis
and Tzamos [1].

Result Jansen & Land [10] This paper

1 + ε, (m > 8n
ε
) O(n log(m)(log(m) + log( 1

ε
))) O(n log2( 1

ε
+ log(εm)

ε
))

3
2
, (m > 16n) O(n log2(m)) O(n log2(logm))

3
2
+ ε, (m ≤ 16n) O( n

ε2
logm( logm

ε
+ log3(εm))) O(n log2( 1

ε
+ log(εm)

ε
) + n

ε
log( 1

ε
)log(εm))

2 General Techniques and FPTAS for many machines

The core technique used in this paper is the concept of compression introduced
by Jansen and Land [10]. Compression is the general idea of reducing the num-
ber of machines a job is assigned to. Due to monotony the resulting increase of
processing time can be bound.

Lemma 1 ([10]). Let ρ ∈ (0, 1/4] be what we denote in the following as a
compression factor. Consider now a job j and a number of machines k ∈ N with
1
ρ ≤ k ≤ m, then we have that t(j, b(1− ρ)kc) ≤ (1 + 4ρ)t(j, k).

The intuitive interpretation of this lemma is that if a job uses k ≥ 1
ρ machines

then we can free up to dρke machines and the processing time increases by a
factor of 4ρ. We are going to use this lemma in the following by introducing a
set of predetermined machine counts.

Definition 1. Let ρ be a compression factor and set b := 1
ρ . We define Sρ :=

[b] ∪ {b(1 + ρ)ibc | i ∈ [ dlog1+ρ(mb )e ]} as the set of ρ-compressed sizes.

Note that reducing machine numbers to the next smaller size in Sρ corresponds to
a compression and processing time may only increase by a factor of at most 1+4ρ.
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Corollary 2. Let ε ∈ (0, 1) be an accuracy parameter then ρ = ε
4 is a compres-

sion factor and |Sρ| ∈ O( 1ε +
log(εm)

ε ).

Generally our algorithms will work on the set Sρ for ρ = 4
ε and only assign

machine counts in Sρ. If m ≤ 4
ε we work with any machine number as Sρ = [m].

The algorithms we present will work in a dual approximation framework.
A dual approximation framework is a classical approach for scheduling prob-

lems. The general idea is to use an approximation algorithm with constant ratio
c on a given instance and gain a solution with makespan T . While this is only
an approximation we can conclude that the makespan T ∗ of an optimal solution
must be in the interval [Tc , T ] and we can search this space via binary search.
We can then see a candidate d ∈ [Tc , T ] as a guess for the optimal makespan.

The approximation algorithm is then complemented with an estimation al-
gorithm, that receives an instance I and a guess for the makespan d as input.
This estimation algorithm then must be able to find a schedule with a makespan
of at most (1 + ε)d if such a schedule exists. If d was chosen too small, i.e.
(1 + ε)d < OPT (I), our algorithm can reject the value d and return false.

We continue to apply this algorithm for candidates, until we find d such that
the algorithm is successful for d but not for d

1+ε . Note that if the algorithm fails
for d

1+ε we have that d = (1+ε) d
1+ε < OPT (I). Therefore the solution generated

for d has a makespan of (1 + ε)d < (1 + ε)OPT (I). Using binary search we can
find such a candidate d in O(log 1

ε ) iterations [10].

2.1 Constant factor approximation

Our constant factor approximation is gonna work in two steps: First we compute
an allotment and assign each job to a number of machines. Secondly we will use
list scheduling in order to schedule our now fixed parallel jobs.For the first step
we use an algorithm introduced by Ludwig and Tiwari [12].

Lemma 2 ([12]). Let there be an instance I for moldable job scheduling with n
jobs and m machines. For an allotment α : J → [m] we denote with

ωα := min(
1

m

∑
j∈J

w(j, α(j)),max
j∈J

t(j, α(j)))

the trivial lower bound for any schedule that follows the allotment α. Furthermore
for S ⊆ [m] we denote with ωS := min

α:J→S
ωα the trivial lower bound possible for

any allotment, which allots any job to a number of machines in S.
For any S ⊆ [m] we can compute an allotment α : J → S with ωα = ωS in

time O(n log2 |S|).

We apply this lemma but limit machine numbers to ρ-compressed sizes Sρ
for ρ = ε

4 . With that we gain an approximate value of ω[m]

Lemma 3. Given an instance I for moldable job scheduling with n jobs, m
machines and accuracy ε < 1. In time O(n log2( 4ε +

log(εm)
ε )) we can compute an

allotment α : J → [m] such that ωα ≤ (1 + ε)ω[m].
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Proof. Let ρ = ε
4 , b =

1
ρ and Sρ be the set of ρ-compressed sizes by definition 1.

We now use lemma 2 to compute an allotment α′ : [n]→ Sρ such that ωα′ = ωSρ
and note that the proposed running time follows from corollary 2 and lemma 2.
It remains to show that ωα′ ≤ (1 + ε)ω[m].

For this let α be an allotment with ωα = ω[m]. We now modify this allotment
by rounding its assigned number of machines down to the next value in Sρ. To
be more precise let α′′ : [n] → Sρ; j 7→ max{s ∈ Sρ|s ≤ α(j)}. Note that based
on the definitions and lemma 2 it follows immediately that ωα ≤ ωα′ ≤ ωα′′ . We
will conclude the proof by showing that ωα′′ ≤ (1 + ε)ωα.

We note that the rounding from α to α′′ is a compression. To see that consider
two consecutive item sizes bb(1+ ρ)(i−1)c, bb(1+ ρ)(i)c for some i and note that:

bb(1 + ρ)(i)c − bb(1 + ρ)(i−1)c ≤ b(1 + ρ)(i) − (b(1 + ρ)(i−1) − 1)

= b(1 + ρ)(i) − b(1 + ρ)(i−1) + 1

= ρb(1 + ρ)(i−1) + 1 ≤ ρb(1 + ρ)(i)

Since we only round a job down when α(j) < bb(1 + ρ)(i)c we get that
α(j)−α′′(j) ≤ ρα(j). According to lemma 1 the processing time of the job may
only increase by a factor of at most 1 + 4ρ = 1 + ε. Therefore we have

max
j∈J

t(j, α′′(j)) ≤ max
j∈J
{(1 + ε)t(j, α(j))} = (1 + ε)max

j∈J
t(j, α(j)).

Since the work function is monotone ωα′′ ≤ (1 + ε)ωα follows directly.
ut

With this allotment we use list scheduling to achieve a constant factor ap-
proximation [9]. We use this in our dual-approximation framework. In thenext
sections we will assume that we are given a makespan guess d and give the
required estimation algorithms for the desired results.

Corollary 3. The proposed algorithm is an approximation algorithm with a
multiplicative ratio of 4 and requires time O(n log2( 4ε +

log(εm)
ε )).

Proof. The running time results mainly from applying lemma 3 to gain an al-
lotment α with ωα ≤ (1 + ε)ω[m]. Applying list scheduling to our computed
allotment yields a schedule with makespan 2ωα ≤ 2(1+ ε)ω[m] ≤ 4OPT (I). ut

3 FPTAS for large machine counts

In the following we assume that for every instance we have m > 8nε . Jansen and
Land showed that an FPTAS can be achieved by simply scheduling all jobs j
with γ(j, (1+ ε)d) machines at time 0. They consider all possible number of ma-
chines for each job. We argue that it is sufficient to consider assigning a number
in S ε

4
to achieve a similar result. We will however require another compression

to make sure our solution is feasible.
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Lemma 4. Given an instance I with n jobs, m > 8nε machines and a target
makespan d, we can in time O(n log( 4ε +

log(εm)
ε )) find a schedule with makespan

(1 + 3ε)d if d ≥ OPT (I) or confirm that d < OPT (I).

Proof. Let Sρ be the set of ρ-compressed sizes for ρ = ε
4 and b = 1

ρ . Let
γ′(j, d) := max{s ∈ Sρ|s ≤ γ(j, d)} and denote a job as narrow when γ′(j, d) ≤ b
or wide when γ′(j, d) > b. The schedule we propose results from scheduling nar-
row jobs with γ′(j, d) machines and wide jobs with a compressed number of
machines, that is b(1 − ρ)γ′(j, d)c. We schedule all jobs at time 0 next to each
other. The running time results from finding γ′(j, d) for all jobs via binary search.
Note that if γ′(j, d) is undefined for some job, then d was chosen too small.

Every job j scheduled with γ(j, d) machines has processing time of at most d.
Rounding down the number of machines to γ′(j, d) may increase the processing
time by a factor of 1+4ρ, as this process corresponds to a compression. We then
apply another compression to wide jobs, which may increase the processing time
again by the same factor. In total the new processing time of a job is bound by
: (1 + 4ρ)((1 + 4ρ)t(j, γ(j, d))) ≤ (1 + ε)2d ≤ (1 + 3ε)d.

It remains to show that our schedule uses at mostmmachines in total. Jansen
and Land showed that

∑
j∈J γ(j, d) ≤ m+n. We assume that

∑
j∈J γ(j, d) > m,

since otherwise our schedule would be feasible already. Denote with JW , JN the
set of wide and narrow jobs. We can see that that

∑
j∈JN γ(j, d) ≤ n · b = 4nε <

1
2m and therefore

∑
j∈JW γ(j, d) > 1

2m. We will show that our rounding and
compression procedure will free up enough machines.

Consider a wide job j and write γ(j, d) = γ′(j, d) + r for some r. Since j was
assigned to b(1−ρ)γ′(j, d)cmachines, the number of freed up machines is at least:

γ(j, d)− b(1− ρ)γ′(j, d)c ≥ γ′(j, d) + r − (1− ρ)γ′(j, d)
= ργ′(j, d) + r

≥ ρ(γ′(j, d) + r) = ρ(γ(j, d))

In total we free at least
∑
j∈JW (ργ(j, d)) > ρ 1

2m > ε
44

n
ε = n machines. Our

schedule therefore uses at most
∑
j∈J γ(j, d)−n ≤ m+n−n = m machines. ut

Note that we can apply this lemma for ε′ = ε
3 or an even more simplified al-

gorithm thats results by rounding down γ(j, (1+ε)d), which also allows a simple
schedule with less than m machines [10]. If we use this algorithm in our dual
approximation framework we achieve the desired FPTAS.

Proof (of Theorem 1). We conclude for the runtime that we have to apply our
dual approximation framework, meaning we apply the constant factor approx-
imation and then for log( 1ε ) makespan guesses we apply lemma 4. Combining
these running times we get a time of O(n log2( 1ε +

log(εm)
ε )). ut
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4 (3
2
+ ε)-Approximation

We will now consider the goal of achieving a 3
2 + ε multiplicative approximation

ratio. Our algorithm will operate again in the context of the dual approximation
framework. Therefore we assume a makespan guess d and give an estimation
algorithm. Our estimation algorithm will reduce the scheduling problem to a
knapsack instance in a way that was initially introduced by Mounié et al. [13].
This approach was also used by Jansen and Land [10] who gave a modified version
of this knapsack instance. We however propose a new simpler rounding scheme
that uses ρ-compressed sizes for ρ = 4

ε and further modify item profit. In that way
we do not need a complicated algorithm to solve the knapsack problem, but we
can actually apply the result from Axiotis and Tzamos [1] in an efficient manner.

At the start we split the set of jobs in small and big jobs J = JB(d) ∪ JS(d)
with JS(d) := {j ∈ J | t(j, 1) ≤ d

2} and JB(d) = J\JS(d). Since we can add
small items greedily at the end in linear time [10], we only need to schedule
large jobs. We give a short run-down on the most important results in regards
to the knapsack instance introduced by Mounié et al. .

Their main idea was to distribute all jobs into two shelfs with width m.
The first shelf S1 has height d and the second shelf S2 has height d

2 . If a job
j was scheduled in either shelf with height s ∈ {d, d2} then j would be allotted
to γ(j, s) machines. In order to assign jobs to a shelf, they use the following
knapsack instance:

Consider for each job j ∈ JB(d) an item with size sj(d) := γ(j, d) and profit
pj(d) := w(j, γ(j, d/2)) − w(j, γ(j, d)) and set the knapsack size to t := m.
Intuitively this knapsack instance chooses a set of jobs J ′ to be scheduled in S1.
These jobs are chosen such that their work increase in the S2 would be large.

We will denote this problem as KP (JB(d),m, d) where the first two param-
eters declare the items and knapsack size and the third parameter is the target
makespan, which then determines the size and profits of the items. Given a so-
lution J ′ ⊆ J we denote the total work of the resulting two-shelf schedule by
W (J ′, d) and note that:

W (J ′, d) =
∑
j∈J′

w(j, γ(j, d)) +
∑

j∈JB(d)\J′
w(j, γ(j,

d

2
))

=
∑

j∈JB(d)

w(j, γ(j,
d

2
)) +

∑
j∈J′

w(j, γ(j, d))−
∑
j∈J′

w(j, γ(j,
d

2
))

=
∑

j∈JB(d)

w(j, γ(j,
d

2
))−

∑
j∈J′

pj(d)

As the knapsack profit is maximized, the total work W (J ′, d) is minimized.
The result from Mounié et al. which we use is summarized in these two lemmas.
We refer to either [10,13] for a detailed description of these results.

Lemma 5 ([13]). If there is a schedule for makespan d, then there is a solution
J ′ ⊆ JB(d) to the knapsack instance with W (J ′, d) ≤ md−W (JS(d), d).
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Lemma 6 ([13]). If there is a solution J ′ ⊆ JB(d) to the knapsack instance
with W (J ′, d) ≤ md −W (JS(d), d), then we can find a schedule for all jobs J
with makespan 3

2d in time O(n log n).

Based on these lemmas we can easily reject a makespan guess d if W (J ′, d)
is larger than md −W (JS(d), d). We note as well that lemma 6 can be applied
if we find a solution for a higher makespan.

Corollary 4 ([10]). Let d′ ≥ d and J ′ ⊆ JB(d) be a feasible solution of the
knapsack problem KP (JB(d),m, d

′) with W (J ′, d) ≤ md′ −W (JS(d), d). Then
we can find a schedule with makespan at most 3

2d
′ in time O(n log n).

We now construct a modified knapsack instance in order to apply this corol-
lary for d′ = (1+4ε)d. First of all we reduce machine counts to ρ-compressed sizes
for ρ = ε

4 . Consider Sρ and b := 1
ρ and let γ′(j, s) := max{k ∈ Sρ|k ≤ γ(j, s)} for

any job j and s ∈ {d2 , d}. With p̃j(d) := γ′(j, d2 )t(j, γ
′(j, d2 )− γ

′(j, d)t(j, γ′(j, d)
denote the intermediary profit that is going to be further modified.

We further consider a job wide in a shelf if it uses more than b machines in
the respective shelf, that is if γ′(j, s) ≥ b for the respective s ∈ {d2 , d}. If a job
is not wide we call it narrow instead, with respect to some shelf.

For jobs that are narrow in both shelfs we will directly modify the
profits. Let j be a job with γ′(j, s) < b for both s ∈ {d2 , d}, then we
round the intermediary profit up to the next multiple of εd by setting
p′j(d) := min{iεd | iεd ≥ p̃j(d) and i ∈ N∗≤ 2

ε2
}. This is well defined since the orig-

inal profit in this case is bounded by w(j, d2 ) < bd2 = 2
ε2 εd. For later arguments

denote the modified work with w′(j, d2 ) := w(j, d2 ) and w
′(j, d) := w′(j, d2 )−p

′
j(d).

For jobs j that are wide in both shelfs, that is when γ′(j, d2 ) ≥ γ′(j, d) ≥ b,
we will modify the processing time. In particular we set t′(j, s) := 1

1+4ρs for s ∈
{d2 , d}, which results in modified work values w′(j, s) := t′(j, s)γ′(j, s). We then
define the new profit based on the modified works as: p′j(d) := w′(j, d2 )−w

′(j, d).
That leaves jobs that are narrow in one shelf and wide in the other. Consider

such a job j with γ′(j, d2 ) ≥ b > γ′(j, d). For the narrow version we round again
the processing time t′(j, d2 ) :=

1
1+4ρ

d
2 and obtain w′(j, d2 ) := t′(j, d2 )γ

′(j, d2 ). As
for the wide job we round down the work w(j, γ′(j, d)) to the next multiple of
iεd. To be precise we set w′(j, d) := max{iεd | iεd ≤ w(j, γ′(j, d)) and i ∈ N≤ 4

ε2
}.

Note that the unmodified work is bounded by w(j, d2 ) ≤ w(j, d) < bd = 4
εd =

4
ε2 εd. We then obtain the modified profit value p′j(d) = w′(j, d2 )− w

′(j, d).
With these modified profits and sizes s′j(d) = γ′(j, d) we then solve the re-

sulting problem KP ′(JB(d),m, d, ρ) to obtain an optimal item set J ′.

Lemma 7. Let J ′ be a solution to KP ′(JB(d),m, d, ρ) and d′ = (1+ 4ε)d, then
with unmodified processing times and machine numbers J ′ is also a solution to
KP (JB(d),m, d

′). Furthermore if there is a schedule with makespan d, we have
that W (J ′, d′) ≤ md′ −W (JS(d), d).
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Proof. For the first part we have to show that all jobs in J ′ fit into the respective
knapsack when a processing time of d′ or d′

2 for each shelf is allowed. Consider
all jobs j ∈ J ′ with γ(j, d) ≤ b and take note that these jobs have the same
size in both knapsack instances, since γ(j, d′) ≤ γ(j, d). For any of the wide jobs
j ∈ J ′ we have that t(j, γ′(j, d)) ≤ (1+4ρ)d ≤ d′ and therefore γ(j, d′) ≤ γ′(j, d).
We then get

∑
j∈J′ γ(j, d

′) ≤
∑
j∈J′ γ

′(j, d) ≤ m since J ′ solves the modified
knapsack instance which has capacity m.

Before we consider the total work of J ′ we want to make some observations
from our rounding: We reduced the number of machines for each job by rounding
the sizes. This will only reduce the work of each job due to monotony compared
to the original knapsack instance by Mounié et al.. We then only proceed to
reduce work further for narrow jobs by at most εd and reduce the processing
time of wide jobs by a factor 1

1+4ρ .

Note that setting t′(j, s) = 1
1+4ρs for a wide job j and shelf size s is actually

reducing processing time and this can be seen through an indirect proof. Assume
therefore t(j, γ′(j, s)) < 1

1+4ρs and let sk+1 := γ′(j, d) and let sk be the next
smaller size in Sρ. Reducing the number of machines to sk is a compression and
we then have t(j, sk) ≤ (1 + 4ρ)t(j, sk+1) < s. With this γ′(j, s) was not chosen
minimal.

In general we have that w′(j, s) ≤ w(j, s) and want to continue to give an
upper bound on w(j, s). Note that we may assume that processing times do not
increase with increasing numbers of machines. Otherwise we could simply omit
numbers of machines that increase processing times and always schedule on the
smaller number. With this we get that w(j, s) ≤ (1 + ρ)γ′(j, s)t(j, γ′(j, s)).

Note that for jobs j in shelf 2 we only decrease the processing time if they
are wide and therefore we get:

w(j,
d

2
) ≤ (1 + ρ)γ′(j,

d

2
)(1 + 4ρ)t′(j, γ′(j,

d

2
)) = (1 + ρ)(1 + 4ρ)w′(j,

d

2
).

For wide jobs j in shelf 1 we do the same. However for narrow jobs of this shelf
we reduce the work further by εd. Doing the same estimation for w(j, d) that
we did for w(j, d2 ) and adding this additional increase, we can conclude that:
w(j, d) ≤ (1 + ρ)(1 + 4ρ)w′(j, d) + εd.

For the second part of the statement we get through lemma 5 that there is
an optimal solution J∗ to KP (JB(d),m, d) with W (J∗, d) ≤ md−W (JS(d), d).
Further J∗ is also a feasible solution for the modified knapsack problem, since our
modifications only reduce item sizes. Our modified knapsack instance, similar to
the original one, will maximize knapsack profits, which in turn then minimizes
total work of a two-shelf schedule with modified work values. Since J ′ is an op-
timal solution of the modified instance, we have that the total modified work of
J ′ is larger than the modified work of J∗. To be precise we have:

∑
j∈J′

w′(j, d) +
∑

j∈JB(d)\J∗
w′(j,

d

2
)) ≤

∑
j∈J∗

w′(j, d) +
∑

j∈JB(d)\J∗
w′(j,

d

2
)).
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We now can conclude that the total work of the two-shelf schedule implied
by J ′ is bound:

W (J ′, d) =
∑
j∈J′

w(j, d) +
∑

j∈JB(d)\J′
w(j,

d

2
)

≤
∑
j∈J′

((1 + ρ)(1 + 4ρ)w′(j, d) + εd) +
∑

j∈JB(d)\J′
(1 + ρ)(1 + 4ρ)w′(j,

d

2
)

≤ |J ′|εd+ (1 + ρ)(1 + 4ρ)(
∑
j∈J′

w′(j, d) +
∑

j∈JB(d)\J′
w′(j,

d

2
))

≤ |J ′|εd+ (1 + ρ)(1 + 4ρ)(
∑
j∈J∗

w′(j, d) +
∑

j∈JB(d)\J∗
w′(j,

d

2
))

≤ |J ′|εd+ (1 + ρ)(1 + 4ρ)(
∑
j∈J∗

w(j, d) +
∑

j∈JB(d)\J∗
w(j,

d

2
))

≤ mεd+ (1 + ρ)(1 + 4ρ)(md−W (JS(d), d))

≤ (1 + 4ε)md−W (JS(d), d) = md′ −W (JS(d), d)

Lastly due to monotony of work we have also that W (J ′, d′) ≤ W (J ′, d), which
concludes the proof.

ut

4.1 Solving the knapsack problems

As we already mentioned we intend to use an algorithm from Axiotis and Tzamos
[1]. Their algorithm works in two main steps. In the first step the items of the
knapsack instance are partitioned into sets containing items of equal size. The
knapsack problem is then solved for each item set separately and for every item
size s with item set Is = {i ∈ I | si = s} a solution array Rs is generated where
Rs[t

′] denotes the maximum profit achievable for a knapsack of size t′ ≤ t using
only items with size s. Note that by the nature of this problem Rs[t

′] will always
be given by the sum of profits of the b t

′

s c items with the highest profit in Is.
These solution arrays Rs have a special structure as Rs[k · s] = Rs[k · s+ s′]

for all s′ < s and k ∈ N. Further considering the unique entries we have that
Rs[(k+1) ·s]−Rs[k ·s] ≥ Rs[(k+2) ·s]−Rs[(k+1) ·s] for each k, since the profit
of the items added decreases. This structure is also called s-step concave as the
unique entries build a concave sequence. In the second step of their algorithm
they combine the solution arrays in sequential order via convolution to generate
a final solution array R = R1 ⊕R2 ⊕ · · · ⊕R[smax].

A very important result from Axiotis and Tzamos is that if these convolutions
are done in sequential order, then one sequence will always be s-concave for some
respective s. They proved in their paper that convolution with one s-step-concave
sequence can be done in linear time, opposed to the best known quadratic time.
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Lemma 8 ([1]). Given any sequence A and Rh for some h ∈ N, each with t
entrys, we can compute the convolution A⊕Rh in time O(t).

In our setting the knapsack capacity is given by t = m. Thanks to our round-
ing we only have |Sρ| different item sizes, which defines the number of convolu-
tions we have to calculate. We however must also compute the initial solutions
that consist of the highest profit items for each size. Thanks to rounding item
profits we can also sort these efficiently to generate the initial solutions arrays Rh.

Lemma 9. Given a modified knapsack instance KP ′(JB(d),m, d, ρ), we can
compute for all t ≤ t the entry Rh[t′] in time O(n+m( 1ε +

log(εm)
ε )).

Proof. Our goal is to sort items by profits and subsequently add up the highest
profits to fill the arrays Rh. We will sort items based on how they were rounded:

Consider jobs j with γ′(j, s) < b for both s ∈ {d2 , d} and denote the number
of these jobs with n1. By scaling their profits with 1

ε
1
d we obtain profits of the

form p̃j(d) = i for some i ∈ N≤ 2
ε2
. We can sort profits using radix sort in time

O(n1 +
1
ε ) where we encode them using O(1) digits ranging from 0 to 1

ε .
Consider now the n2 jobs j with γ′(j, d2 ) ≥ γ

′(j, d) ≥ b. If we scale the profit
of these items with 1+4ρ

d then we have that p̃j(d) = 1
2γ
′(j, d2 ) − γ

′(j, d). These
items can be sorted by profit using bucket sort in O(n2 +m).

For the remaining n3 of the jobs j with γ′(j, d2 ) ≥ b > γ′(j, d) we have to
consider the modified profits p′j(d) :=

d
2(1+4ρ)γ

′(j, d2 ) − iεd for some i ∈ N. We

scale these profits with 2(1+ε)
dε2 to obtain p̃j(d) = γ′(j, d2 )

1
ε2 −

2id
ε ≤

m
ε2 . These

items can be sorted with radix sort in time O(n3 +
m
ε ) by encoding profits with

two digits ranging from 0 to m
ε .

Putting these three steps together takes time O(n1+n2+n3+
1
ε +m+ m

ε ) =
O(n + m

ε ). We can additionally merge the three sorted lists via merge sort in
O(n) and iterate through all items to fill the actual solution arrays. The number
of total entries we have to fill in is at most m( 4ε +

log(εm)
ε ) since we have m entries

in each array, and one array for every item size. ut

Technically we only need the unique entries of these solution arrays to apply
the algorithm [14]. These could effectively be calculated in time O(n + m

ε ) but
combining all arrays will dominate the running time regardless.

Corollary 5. We can compute R1 ⊕R2 ⊕ · · · ⊕R|Sρ| in time O(m(|Sρ|)).

With this knapsack solution we can construct a schedule using corollary 4.
We note that this final construction using the procedure from Mounié et al. [13]
can be implemented in time O(n) by using rounded processing times[10].

Proof (of Theorem 2).
We apply the dual approximation framework, which means we compute an

upper bound for d in time O(n log2( 1ε +
log(εm)

ε )). We end up with log( 1ε ) candi-
dates for d and construct knapsack instances for all of them.
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To do so we need to identify their machine count among compressed sizes.
This can be done in O(n log( 1ε +

log(εm)
ε )) via binary search. All further modifi-

cations to knapsack items can be done in O(n). In total for all candidates these
steps take time O(n log2( 1ε +

log(εm)
ε )).

Solving the resulting knapsack problem for one candidate can be done in time
O(m( 1ε+

log(εm)
ε )) ⊆ O(m 1

ε log(εm)). By applying this to all candidates and since
m ≤ 16n we get a final running time of O(n log2( 1ε +

log(εm)
ε )+ n

ε log(
1
ε )log(εm)).

ut

5 Implementation

We implemented all algorithms introduced and used in this paper, along with
a version of the algorithm introduced by Jansen and Land [10]. We note that
we did not implement the final version of their algorithm to solve Knapsack
with compressible items, as it was very intricate and complicated. Instead our
implementation computes their modified knapsack instance and solves it via
their proposed dynamic programming approach.

The implementations and experiments were conducted on a Raspberry Pi
4 Model B and we limited the experiment to one CPU-core as we did not use
any mean of parallelization. We uploaded a version of our implementation to
GitHub (https://github.com/Felioh/MoldableJobScheduling). In the following
we mainly tested for the part where m ≤ 16n as we deem this the more relevant
comparison between the two results.

5.1 Computational results

As for test instances we generated sets of randomized instances for moldable job
scheduling. Machine numbers mainly range from 30 to 100 and jobs from 10 to
120. We tested on these instances for ε = 1

10 and the results can be seen in the
figures in the appendix. Figures 1 and 2 show the difference of average runtime
between our algorithm and the one by Jansen and Land. Note that the runtime
of our algorithm is subtracted from the runtime of their algorithm. Hence we can
see that our algorithm does slightly better for the analyzed number of jobs and
machines and that our algorithm seems to scale better with growing numbers of
machines and jobs.

In figures 3 through 5 we compare the average makespans of both algorithms
to compare solution quality. In most cases that solution quality is generally quite
similar but in some cases slightly better for our algorithm. We believe that our
algorithm does better in regards to solution quality due to our rounding. For
one our rounding of machine numbers to values in Sρ is in its core a compression
but does not fully utilize the potential introduced in lemma 1. Since we do not
reduce the machine counts by the maximal possible amount, our effective error is
smaller. In a similar manner are the additional modifications of knapsack items
mainly catered to achieving a simple structure that also keeps the additional
error small.
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6 Conclusion

In this paper we presented our new 3
2 + ε-approximation, that results from the

combination of different techniques from moldable scheduling, knapsack and con-
volution. Our algorithm gives a theoretical improvement in terms of the known
upper bound for this problem, but also proves to be faster in practice as shown
by our experiments. An interesting takeaway from our result is that it is sufficient
to reduce moldable scheduling to only a certain set of machine counts thanks to
compression. In fact it is not necessary to regard all possible allotments, when
one wants to find an approximate solution.
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A Computational Results (Graphs and Diagrams)

Fig. 1. Average runtime difference in relation to job numbers.

Fig. 2. Average runtime difference in relation to machine numbers.
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Fig. 3. Average makespan comparison limited to instances with same machines.

Fig. 4. Average makespan comparison limited to instances with same machines.
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Fig. 5. Average makespan comparison limited to instances with same machines.
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