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Abstract. We propose an algorithm that aims at minimizing the inter-
node communication volume for distributed and memory-efficient tensor
contraction schemes on modern multi-core compute nodes. The key idea
is to define processor grids that optimize intra-/inter-node communica-
tion volume in the employed contraction algorithms. We present an im-
plementation of the proposed node-aware communication algorithm into
the Cyclops Tensor Framework (CTF). We demonstrate that this im-
plementation achieves a significantly improved performance for matrix-
matrix-multiplication and tensor-contractions on up to several hundreds
modern compute nodes compared to conventional implementations with-
out using node-aware processor grids. Our implementation shows good
performance when compared with existing state-of-the-art parallel ma-
trix multiplication libraries (COSMA and ScaLAPACK). In addition to
the discussion of the performance for matrix-matrix-multiplication, we
also investigate the performance of our node-aware communication algo-
rithm for tensor contractions as they occur in quantum chemical coupled-
cluster methods. To this end we employ a modified version of CTF in
combination with a coupled-cluster code (Cc4s). Our findings show that
the node-aware communication algorithm is also able to improve the per-
formance of coupled-cluster theory calculations for real-world problems
running on tens to hundreds of compute nodes.

1 Introduction

Matrix-matrix multiplication (MMM) is ubiquitous in the field of scientific com-
puting, computational physics, machine learning and many other areas of sig-
nificant technological and scientific relevance. One important area of application
of MMM in physics includes electronic structure theory, which is part of the
motivation for the present work. We note that electronic structure theory cal-
culations often involve operations on large matrices that need to be distributed
over many tens to hundreds of modern compute nodes in order to satisfy memory
requirements. Therefore, electronic structure theory calculations have evolved in
parallel to hardware improvements and newly developed efficient linear algebra
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libraries over the past few decades. In this paper, we seek to compare and im-
prove algorithms employed in popular MMM libraries including ScaLAPACK [9],
COSMA [12] and CTF [17]. In particular, we focus on the effect of network con-
tention and inter-node communication within CTF.

In addition to MMM, the present work seeks to extend the presented develop-
ment to more general tensor algebraic operations. We note that tensor algebra is
yet another important technique widely-used in electronic structure theory, espe-
cially for highly accurate and computationally expensive many-electron methods.
With the development of more sophisticated distributed tensor algebra libraries,
however, their implementation becomes simpler and allows for efficient calcula-
tions of increasingly large problems on modern HPC clusters.

We also demonstrate a real-world application that involves coupled-cluster
theory calculations. Coupled-cluster theory is a many-electron perturbation the-
ory, which is widely-used in the field of computational chemistry and many-body
physics. The solution of the underlying set of nonlinear equations involves tensor
contractions. Already for the study of relatively few atoms, the memory foot-
print of the required tensors typically exceeds even the main memory of modern
nodes. Furthermore the computational cost required by these calculations also
grows rapidly with the number of atoms. This necessitates implementations of
coupled-cluster methods employing massive parallel tensor contraction libraries.
Our node-aware CTF implementation shows speed-ups of up to 3X relative to
the prior node-oblivious implementation, for real-world coupled-cluster theory
calculations.

Overall, our paper introduces the following contributions:

– node-aware parallel algorithms for matrix multiplication and tensor contrac-
tion, which minimize inter-node communication volume,

– an implementation of these algorithms as part of the Cyclops library,
– an experimental evaluation comparing the implementation to other codes on

two supercomputers and as part of a quantum chemistry method.

2 Node-Aware Multiplication and Contraction

Distributed-memory algorithms for matrix multiplication generally aim to min-
imize communication cost (in terms of latency, i.e., the number of messages,
and bandwidth cost, i.e., the amount of data sent). Communication cost in
this setting is often measured by the amount of matrix entries (words) sent
and received by each processor, with matching sends and receives assumed
to execute concurrently. In the memory-constrained setting, for multiplication
of n × n matrices, Cannon’s algorithm [7] achieves a communication cost of
O(n2/

√
p) when running with p processors. This cost is optimal according to

known lower bounds [11]. In practice, the SUMMA algorithm [19,2] or variants
thereof are most often implemented in libraries (e.g., ScaLAPACK and CTF
both use SUMMA). The SUMMA algorithm leverages broadcasts and reduc-
tions, which have a slightly higher latency (require O(log p) messages) than the
point-to-point messages used in Cannon’s algorithm. However, large-message
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broadcasts and reductions can be done with the same asymptotic bandwidth
cost as sends, O(n) for a message of size n, so long as n = Ω(p) [8,18]. Further,
the SUMMA algorithm is easier to extend to nonsquare matrices than Cannon’s
approach, and use of similar collective communication also allows for implemen-
tation of 3D algorithms, which minimize communication cost when additional
memory is available [3,2,15,16].

On modern supercomputers and clusters, each node contains many CPUs
and/or GPUs. Even with the use of threading, most MPI-based codes achieve
highest efficiency when executed with multiple MPI processes per node (e.g.,
one per GPU or one per NUMA region). Given the presence of multiple com-
municating processes per node, the performance of collective communication
operations, such as broadcast and reduction, become dependent on the number
of distinct nodes in the subcommunicator used for the operation. In particular,
while we have mentioned that the per-processor communication-cost is largely
independent of p, the communication volume (total number of words sent or
received by any processor) for a broadcast of a message of n words to p nodes is
n(p− 1). Unlike per-processor communication cost, communication volume does
not directly model runtime, but higher communication volume entails increased
contention for network and injection bandwidth. We propose an algorithm to
select an MPI-process-to-node mapping that minimizes the communication vol-
ume for dense matrix multiplication (and later tensor contractions) executed on
any given initial processor grid. Similarly motivated node-aware optimizations
have previously been presented for accelerating point-to-point communication in
sparse matrix vector products [13,14,5,20,6].

2.1 Node-Aware Matrix Multiplication

We first propose a scheme to map processes to nodes for matrix multiplication,
aiming to accelerate 2D (SUMMA) and 3D matrix multiplication algorithms
used by CTF [17]. CTF generally selects a 3D processor grid p1× p2× p3 (1D or
2D processor grids may be obtained by setting of p1, p2, and p3 to 1) at runtime
so as to minimize cost (based on not just communication, but a more detailed
performance model that includes predicted cost of local work and redistribution).
All communication within the matrix multiplication algorithm is performed by
concurrent broadcasts and reductions among fibers of the 3D processor grid
(e.g., p1p2 concurrent broadcasts with p3 processors involved in each). Once a
processor grid mapping is selected, the counts of words communicated along each
fiber W1, W2, and W3 are known. When executing with m processors per node,
we consider the best choice of an m1 ×m2 ×m3 intra-node processor grid with
m1m2m3 = m and pi ≡ 0 mod mi, for all i. The p/m nodes are then arranged in
a 3D processor grid of dimensions p1/m1×p2/m2×p3/m3, so that each original
fiber of size pi stretches across pi/mi physical nodes. We choose the intra-node
processor grid, so as to minimize the communication volume,

V = W1(p1/m1 − 1) +W2(p2/m2 − 1) +W3(p3/m3 − 1).
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Once the mapping is chosen, we redistribute the tensor data, which can be done
with a single round of concurrent point-to-point messages (each processor sends
all of its matrix data to a single other processor in the new mapping).

2.2 Node-Aware Tensor Contractions

CTF leverages nested SUMMA, in combination with 1D replication/reduction,
to generalize 2D and 3D algorithms for matrix multiplication to tensor contrac-
tion [17]. Processor grids p1 × · · · × pd with d > 3 are used to accommodate
nested SUMMA and to support symmetric-packed tensor formats efficiently
(only unique entries of a symmetric tensor are stored by CTF, e.g., only the
lower triangular part of a symmetric matrix). Each of these matrix multipli-
cation variants results in some amount of words broadcast or reduced along
each processor grid fiber, say Wi along fiber pi. Our node-aware mapping al-
gorithm proceeds analogously to the matrix multiplication case. We select the
best choice of m1 × · · · × md intra-node processor grid and combine it with a
p1/m1 × · · · × pd/md inter-node processor grid, so that the ith fiber of the grid
spans pi/mi distinct nodes. Again, we select the processor grid to minimize the

communication volume, V =
∑d

i=1 Wi(pi/mi − 1).
To find the optimal cost configuration, we use exhaustive search. We enu-

merate all distinct factorizations of m = m1 · · ·md such that pi ≡ 0 mod mi.
Provided a model of the affect of communication volume on runtime, this search
could be done together with the selection of the best processor grid p1× · · ·× pd
and the tensor mapping. However, searching this larger space of mappings would
be computationally expensive. Specifically, ifK processor grids and distinct map-
pings are considered and L virtual processor grids are considered, the combined
search space is of size O(KL) instead of O(K + L).

3 Evaluation Methodology

3.1 Hardware and Software Platform

Results are collected on the CPU partition of the Raven supercomputer at the
Max Planck Computing and Data Facility. It consists of 1592 compute nodes;
each node has an Intel Xeon IceLake-SP Platinum 8360Y processor with 72 cores
and 256 GB RAM per node. As interconnect, it uses Mellanox HDR InfiniBand
network (100 Gbit/s) with a pruned fat-tree topology and non-blocking islands
of 720 nodes; all jobs run inside one island. The theoretical peaks of floating point
operations and memory bandwidth are 5.53 TFLOP/s and 320 GB/s per node,
respectively. To demonstrate the robustness of our approach, we also collect
results (for a subset of the experiments) on the Stampede2 supercomputer. Each
node has an Intel Xeon Phi 7250 CPU with 68 cores, 96GB of DDR4 RAM Note
that Stampede2 has a distinct configuration when compared to that of Raven.

We evaluate our node-aware version of CTF (CTF-na) by comparing against
the default CTF (CTF-def) [17], ScaLAPACK [9], and COSMA [12]. We use
ScaLAPACK as provided by Intel MKL (version 2022.0). All codes were compiled
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using the Intel compiler (version 2021.5) and Intel MPI (version 2021.5). In all
our calculations, we use one core per MPI rank. All codes would in principle
allow a hybrid OpenMP/MPI approach. In COSMA, the authors note that their
strategy performs best with one core per rank [12]. Our tests show that CTF
performs equally good with one to four cores per rank.

COSMA allows communication-computation overlap. Our tests show that
for the chosen matrix dimensions the results with and without overlap strategy
are very similar. The differences are at most in the order of 5%. For a more
expressive comparison against CTF and ScaLAPACK, both of which do not
offer overlapping strategies, we do not use computation-communication overlap
in any of our COSMA calculations. Furthermore, it is possible to adjust the
used memory in a COSMA calculation. More memory possibly allows to employ
a more efficient parallelization strategies, viz. a higher performance. In this work,
we use two values for the allowed memory. The lower limit is chosen to be 2.5-
times the size storing the three matrices. The upper limit is chosen to be such
that the full memory of the machine can be utilized. In the following, we will
label these schemes as COSMA-lim and COSMA-unl

3.2 Matrix-Multiplication Benchmarks

In this section, we present details about the dataset used for our main results,
which is collected from the Raven cluster. We investigate four cases of products
of an m × k matrix with a k × n matrix, namely, square (m = n = k), large
K (m = n ≪ k), large M (m ≫ n = k), and small K (m = n ≫ k). The
ratio between small and large edge is chosen to be 10 for all systems. We exploit
results for different number of nodes ranging from 1 to 288 nodes using all node
numbers which fulfill the following equation n = j · 2i, with: j ∈ [1, 3, 9]. We
consider both strong and weak scaling in our experiments. For strong scaling,
we choose the dataset size such that it is just large enough to be stored (and
contracted) on a single node which is approximately 150 GB. For weak scaling,
we use two different matrix dimensions (sizes), such that the matrices occupy
either 0.5% or 5% of the overall system memory. In subsequent sections, we
denote the strong scaling results as “strong”, while the weak scaling datasets
are referred to as “weak18” and “weak180”, corresponding to the 0.5% and 5%
memory occupation, respectively.

3.3 Experimental Methodology

For each combination of parameters considered, we perform five contractions
(runs) using each of the five strategies (CTF-def, CTF-na, ScaLAPACK, COSMA-
lim and COSMA-unlim) on the same node allocation (i.e. via a single job submis-
sion to the cluster). We exclude the two slowest runs and compute the average
based on the remaining three runs. We submit each job twice in order to have
two random node allocations. Consequently, all presented data points are mean
values averaged from 6 calculations, each. Typically, the standard deviation of
the mean value is below 1 GFLOPS/core, so we do not include any error bars.
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In the presented results node-aware redistribution is performed whenever a
topology with a lower inter-node communication is found. We stress that this
might not always be an optimal strategy since it does not take into account the
time required for redistributing the data from the default to node-aware topol-
ogy before performing the contractions. When we integrate our strategy in the
coupled-cluster calculations, the performance model accounts for the redistribu-
tion time thus finding the overall optimal solution.

4 Performance Results/Evaluation

4.1 Memory Footprint

Prior to comparing the performance of the various implementations, we analyze
their memory requirements. We refer to the maximum memory consumption
by the implementation (when executing the contraction) as high-water mark
(HWM). In Figure 1, we present HWM for weak180 calculations for all consid-
ered matrices, representing the maximum memory consumption. If we exclude
the results for one to three nodes, we observe that ScaLAPACK maintains a
nearly constant ratio of HWM over storage size, averaging around 1.66. This
is true for all type of matrix contractions. For CTF, the ratio is between 2.5
and 5, depending on the number of nodes and the contraction type. The ad-
ditional memory overhead compared to ScaLAPACK is explained by the extra
redistribution buffers and the 2.5D algorithm. COSMA-lim shows a very similar
HWM as CTF with values between 4 and 7 for the ratio HWM over storage size.
This enables a fair comparison between CTF and COSMA in the case of simi-
lar memory constraints. Disregarding a handful of outliers COSMA-unl shows a
ratio between 10 and 18. We recall that for these calculations the storage size is
5% of the main memory, implying that the COSMA calculation utilizes a large
fraction of the total main memory. We note that CTF-na has the same memory
footprint as CTF-def.
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4.2 Matrix multiplication

In the section, we present one of the primary results of this work. Figure 2 shows
the performance results for all the matrix sizes and implementations considered
(see Section 3.3). We first note that for all contraction types and all scaling
scenarios, COSMA-unl achieves the best performance. The improvement over the
second best method is very pronounced for situations where the operations per
core are low, i.e. large node numbers in strong scaling scenario and for the weak
scaling scenario with 18 MB. For the weak scaling scenario with 180 MB, the
improvements are much smaller. We note, however, that the memory footprint
of COSMA-unl is relatively high in all calculations as depicted in the previous
sections. The goal of the present work is to advance memory efficient tensor
contraction algorithms with high scalability on multi-core nodes.
Square: The performance for the square contractions is shown in the top panels
of Figure 2. When employing more than ten nodes, CTF-na shows the second
best performance followed by COSMA-lim, ScaLAPACK, and CTF-def exhibit
a very similar performance. For small node numbers the same trend is generally
present, however, the results are way more noisier here. We note that CTF-na is
particularly efficient for the large memory weak scaling scenario (180MB). Large
square MMM present one of the best application regimes of CTF-na compared
to the even more efficient but memory intense COSMA-unl implementation.

The node-aware algorithm significantly improves the results compared to the
results with CTF in default topology. For more than 50 nodes the performance
improves by a factor of 1.5-5.5X in weak and strong scaling scenarios. Further,
CTF-na outperforms COSMA-lim when using more than ten nodes.
Large K: For the large K contraction (second row of Figure 2) COSMA-unl
achieves the best performance and ScaLAPACK the worst performance. Here
COSMA-lim, CTF-def, and CTF-na show very similar results. There are two
reasons why CTF outperforms ScaLAPACK significantly for this contraction
type. Firstly, within this contraction, CTF communicates the matrix C as it is
the smallest occurring matrix. Secondly, CTF employs the SUMMA 2.5D al-
gorithm. In this case, the node-aware topology does not lead to any further
improvements of the CTF-def algorithm. The reason for this is that the default
processor grid for these contractions already achieves low inter-node communi-
cation volume.
Large M : The performance for the large M contractions is shown in the third
row of Figure 2. Once more, COMSA-unl exhibits throughout the best perfor-
mance for all calculations. However, all four other implementations show similar
results. CTF-na shows an improvement over CTF-def only on some node counts.
Small K: The performance for the small K contractions is shown in the bottom
row of Figure 2. The small K results are similar to the results of the square con-
traction. The node-aware topology outperforms the default calculation especially
for large number of nodes. COSMA-unl outperforms all other implementations
in the strong scaling regime, as well as for the weak scaling scenario with 18 MB.
However, for the 180 MB scenario and more than 50 nodes CTF-na achieves very
similar results as COSMA-unl
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large M , and small K. The results use matrix sizes of 80 MB per processor.

Weak scaling performance on Stampede2: In addition to the results ob-
tained on Raven, we have also investigated the performance of the different
MMM libraries on Stampede2. The Stampede2 compute nodes are equipped
with significantly less main memory than Raven nodes, making it more difficult
to perform calculations with implementations that exhibit a large memory foot-
print such as COSMA. Figure 3 depicts performance results for weak scaling.
Square and Small K: The results obtained are similar to those obtained for
Raven. ScaLAPACK exhibits the worst performance. CTF-na improves signifi-
cantly over CTF-def for large numbers of nodes. COSMA-unl and COSMA-lim
perform slightly worse than CTF-na for large numbers of nodes. While COSMA-
unl exceeded available memory in some cases, it outperforms COSMA-lim in
most cases. We also note that some node counts exhibit a much poorer perfor-
mance for all employed libraries. A more careful analysis of these outliers reveals
that this reduction is not caused by increased communication volume, but by
performance drops in the GEMMs.
Large K: Here CTF-na shows no improvement over CTF-def and ScaLAPACK
yields the lowest performance. Interestingly the performance of COSMA is very
similar, whereas on the Raven system COSMA clearly outperformed CTF.
Large M : The large M contractions on Stampede2 show similar patterns to
Raven. CTF-na is not improving over CTF-def for large node counts due to ef-
ficiency of the default mapping of CTF-def.

Summary:

We now summarize the most important findings for the performance analy-
sis. Table 4.2 lists mean values of the achieved speedups for CTF-na compared to
the four other implementations. Averaged results are provided for calculations
employing less and more than 50 nodes, respectively. The values are smaller
or equal than 1 only for the case of COSMA-unl, indicating that COSMA-unl
achieves in all scenarios the best performance compared to the other methods
at the price of a larger memory footprint. All other reported values are equal to
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Table 1. Measured speedup of CTF-na on Raven. compared to the other algorithms.
For the different scenarios and contraction types. Averaged values are provided for less
and more than 50 nodes, respectively.

strong weak 18 weak 180
N < 50 N > 50 N < 50 N > 50 N < 50 N > 50

square CTF-def 1.2 2.6 1.3 2.5 1.1 1.7
ScaLAPACK 1.3 2.3 1.3 2.1 1.4 1.8
COSMA-unl 0.9 0.7 0.8 0.8 0.9 1.0
COSMA-lim 1.1 1.8 1.2 1.5 1.1 1.2

large K CTF-def 1.0 1.0 1.0 1.0 1.0 1.0
ScaLAPACK 1.8 4.1 1.9 3.9 1.7 2.5
COSMA-unl 0.8 0.6 0.7 0.6 0.8 0.8
COSMA-lim 1.0 1.3 1.0 1.2 0.9 1.0

large M CTF-def 1.0 1.3 1.0 1.3 1.0 1.2
ScaLAPACK 1.2 1.3 1.0 1.3 1.2 1.3
COSMA-unl 0.9 0.7 0.7 0.7 0.9 0.9
COSMA-lim 1.1 1.6 1.1 1.3 1.0 1.1

small K CTF-def 1.1 1.6 1.1 1.7 1.0 1.4
ScaLAPACK 1.2 1.5 1.0 1.6 1.1 1.4
COSMA-unl 0.8 0.7 0.7 0.8 0.9 1.0
COSMA-lim 1.0 1.7 1.0 1.5 1.0 1.2

1.0 or larger than 1.0, implying that CTF-na achieves the same or better per-
formance than CTF-def, COSMA-lim and ScaLAPACK most cases. Compared
to ScaLAPACK the speedup is on average between 1.4 and 4.1 for square, large
K and small K for all scenarios when using more than 50 nodes. The speedup
compared to ScaLAPACK is only about 1.3 in the case of large M . Compared
to COSMA-lim, CTF-na achieves on average a speedup between 1.2 and 1.5 for
more than 50 nodes in the cases of square and small K MMMs. This speedup
reduces to about 1.0 to 1.2 in the cases of large K and large M . Similarly, com-
pared to CTF-def, which disregards node-awareness, we see significant speedups
for square and smallK contractions. Whereas only minor improvements for large
K and large M contractions.

5 Performance of coupled-cluster calculations

We now present results for more general tensor contractions, going beyond ma-
trix matrix multiplications. This section presents performance results obtained
for coupled cluster calculations as implemented in the Cc4s code [1], which em-
ploys the CTF library. CC methods are widely used in the field of electronic
structure theory to study many-electron systems [4]. From a computational per-
spective, CC methods involve high order tensor contractions. The CC method,
which employs single and double particle-hole excitation operators, is called
CCSD. The computational cost of a CCSD calculation is dominated by solving
the nonlinear doubles amplitude equations given by
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where the dimensions are chosen such that dim(i) = dim(j) = dim(k) = dim(l)
and dim(a) = dim(b) = dim(c) = dim(d). The amplitude equations are solved
iteratively employing a Jacobi method such that most of the computational cost
originates from tensor contractions as defined by terms on the right-hand-side
of the above equation. CCSD exhibits a memory footprint and computational
cost that scales as O(N4) and O(N6), respectively. N is proportional to the
number of electrons in the system. The dimension of the indices i, j, k, ... and
a, b, c, ... corresponds to the number of occupied orbitals and the number of
virtual orbitals, respectively. In a typical calculation, the number of virtual or-
bitals is 10-30 times larger than the number of occupied orbitals. As a result
the so-called particle-particle-ladder (ppl) term, rabij =

∑
cd v

ab
cdt

cd
ij , is treated in

a special way to avoid storing the tensor vabcd in main memory. This is achieved
by computing slices of vabcd on-the-fly and contracting them consecutively.

In addition to the CCSD method, we also investigate the performance of
drCCD, which is a popular approximation to the CCSD method. The drCCD
method only includes so-called ring diagrams in the amplitude equations, corre-
sponding to terms given by rabij =

∑
ck v

ak
ic t

cb
kj .

Table 2. Performance given in GFLOPS/core from different coupled-cluster calcula-
tions for three different node counts.

32 nodes 72 nodes 128 nodes
dim(i)=116 dim(i)=142 dim(i)=164

dim(a)=1161 dim(a)=1422 dim(a)=1642

Method default node-aware default node-aware default node-aware

CCSD 19.4 21.0 20.5 24.0 25.0 25.0
CCSD (no ppl) 26.6 32.6 25.1 37.0 37.3 37.5
drCCD 37.4 37.9 24.7 39.0 38.6 38.5
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We now seek to discuss the performance of the following types of CC calcu-
lations: drCCD, CCSD and CCSD excluding the ppl-term. Performance results
have been obtained using the default CTF version and the node-aware CTF
version. Figure 4 depicts the performance of drCCD calculations in strong and
weak scaling scenarios. Our findings show that the improvements are not as pro-
nounced as for the case of MMMs. Only for the strong scaling case we observe
significant improvements when comparing CTF-na to CTF-def for about 100
nodes. For the weak scaling case with smaller problem sizes, CTF-na achieves
no significant improvements compared to CTF-def. For weak scaling case, CTF-
na improves the performance of CTF-def for only a few cases. An analysis of
these cases (such as, for example 48 and 72 nodes) reveals that they correspond
to core counts for which the default topology leads to a significantly increased
inter-node communication volume compared to the node-aware topology. How-
ever, CTF-na is able to achieve excellent and stable performance for all node
numbers. For practical calculations that cannot be tuned to circumvent spe-
cial node numbers, where CTF-def performs less efficient, CTF-na presents a
valuable improvement. We find that higher-order tensors are more often already
distributed in an communication efficient manner using the default topology,
which is why the node-aware distribution often has a negligible effect. However,
we find for some node counts significant improvement up to 3X. We also explore
the performance of CCSD calculations. These calculations are computationally
even more expensive than drCCD. Table 5 lists results for a selected number of
nodes, including special cases described above for drCCD. In addition to CCSD
calculations, we also measure the performance of CCSD excluding the ppl-term
(CCSD no ppl). The presented results imply that the evaluation of the ppl-term
is performed at lower efficiency than the other tensor contractions. The cause
for the bad performance is not related to the node-aware topology and will be
explained in future work. Consequently, we will restrict the following discussion
on CCSD calculation excluding the ppl-term.

Similar to drCCD, observe performance improvements of CCSD calculations
when using CTF-na instead of CTF-def only for some node numbers. There are
cases where a drCCD calculation is not improved by node-awareness, whereas
the CCSD calculation improves by 10-20%. This is because the processor grid
for every single contraction is determined on runtime and generally differs for
different contractions as they appear in the CCSD equations.

6 Related Work

There have been several works that derive communication-optimal algorithms
for matrix-matrix multiplication [10,12,16]. CARMA [10] has provided the first
approach to minimize communication for any M , N , K and any number of
processors/available memory. COSMA [12] provides a theoretically optimal dis-
tributed dense matrix-matrix algorithm as well as the current best known im-
plementation. Similar to CTF, COSMA finds the best layout via a cost model
subject to memory constraints. It leverages RDMA, and a custom implementa-
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tion of a binary tree collective. It also proposes to overlap communication with
computation. Both CTF and COSMA rely on an analytical model and minimize
the communication cost. In this work, we explore a cost model that goes beyond
what is considered in CTF and COSMA. We take into account the communica-
tion cost not just between MPI processes but also across nodes in the network.
Further, we are able to obtain nearly the same performance and in some cases
better, without low-level optimizations that may be less portable.

In [5], the authors propose a node-aware sparse matrix-vector multiply, where
values are gathered in processes local to each node before being sent across the
network, followed by a redistribution at the receiving node. This optimized point-
to-point communication leads to reduction in communication cost. A similar
technique is used in [13] when using enlarged conjugate gradient methods.

7 Conclusion

In this work we have presented a modification to the Cyclops Tensor Framework
that employs node-aware processor grids. We have shown that the achieved
performance improvements due to the node-aware topology in CTF are most
strongly pronounced in the case of square and small K matrix-matrix products.
In the case of large K and large M matrix multiplication, the default processor
grids employed by CTF are already efficient. Although the memory-unlimited
version COSMA achieves overall the best performance for matrix multiplication,
CTF with node-awareness is competitive and often more performant when the
same memory limit is imposed on COSMA.

In addition to the results for MMMs, we have also investigated the perfor-
mance of the modified version of CTF for tensor contractions in coupled-cluster
theory calculations. Our findings show that the improvements due to node-aware
topologies are less significant, but allow for more consistent performance across
different node counts. As the number of cores per node continues to grow on
modern architectures, the benefit of node-aware mapping is likely to be more
pronounced in the future.
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