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Marta Bı́lková1[0000−0002−3490−2083], Sabine Frittella2[0000−0003−4736−8614],
Daniil Kozhemiachenko2[0000−0002−1533−8034], and

Ondrej Majer3[0000−0002−7243−1622]

1 The Czech Academy of Sciences, Institute of Computer Science, Prague
bilkova@cs.cas.cz

2 INSA Centre Val de Loire, Univ. Orléans, LIFO EA 4022, France
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Abstract. We discuss two two-layered logics formalising reasoning with
paraconsistent probabilities that combine the  Lukasiewicz [0, 1]-valued
logic with Baaz △ operator and the Belnap–Dunn logic. The first logic

Pr
 L2

△ (introduced in [7]) formalises a ‘two-valued’ approach where each
event φ has independent positive and negative measures that stand for,
respectively, the likelihoods of φ and ¬φ. The second logic 4Pr L△ that
we introduce here corresponds to ‘four-valued’ probabilities. There, φ

is equipped with four measures standing for pure belief, pure disbelief,
conflict and uncertainty of an agent in φ.

We construct faithful embeddings of 4Pr L△ and Pr
 L2

△ into one another

and axiomatise 4Pr L△ using a Hilber-style calculus. We also establish
the decidability of both logics and provide complexity evaluations for
them using an expansion of the constraint tableaux calculus for  L.

Keywords: two-layered logics ·  Lukasiewicz logic · non-standard prob-
abilities · paraconsistent logics · constraint tableaux

1 Introduction

Classical probability theory studies probability measures: maps from a proba-
bility space to [0, 1] that satisfy the (finite or countable) additivity condition:

µ

(

⋃

i∈I

Ei

)

=
∑

i∈I

µ(Ei) (∀i, j ∈ I : i 6= j ⇒ Ei ∩ Ej = ∅)
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Above, the disjointness of Ei and Ej can be construed as their incompatibility.
Most importantly, if a propositional formula φ is associated with an event (and
interpreted as a statement about it), then φ and ¬φ are incompatible and φ∨¬φ
exhausts the entire sample space.

Paraconsistent probability theory, on the other hand, assumes that the prob-
ability measure of an event represents not the likelihood of it happening but an
agent’s certainty therein which they infer from the information given by the
sources. As a single source can give incomplete or contradictory information, it
is reasonable to assume that a ‘contradictory’ event φ ∧ ¬φ can have a positive
probability and that φ ∨ ¬φ does not necessarily have probability 1.

Thus, a logic describing events should allow them to be both true and false
(if the source gives contradictory information) or neither true nor false (when
the source does not give information). Formally, this means that ¬ does not
correspond to the complement in the sample space.

Paraconsistent probabilities in BD The simplest logic to represent rea-
soning about information provided by sources is the Belnap–Dunn logic [13,4,3].
Originally, BD was presented as a four-valued propositional logic in the {¬,∧,∨}
language. The values represent the different accounts a source can give regarding
a statement φ:

– T stands for ‘the source only says that φ is true’;
– F stands for ‘the source only says that φ is false’;
– B stands for ‘the source says both that φ is false and that φ is true’;
– N stands for ‘the source does not say that φ is false nor that it is true’.

The interpretation of the truth values allows for a reformulation of BD semantics
in terms of two classical but independent valuations. Namely,

is true when is false when
¬φ φ is false φ is true

φ1 ∧ φ2 φ1 and φ2 are true φ1 is false or φ2 is false
φ1 ∨ φ2 φ1 is true or φ2 is true φ1 and φ2 are false

It is easy to see that there are no universally true nor universally false formulas
in BD. Thus, BD satisfies the desiderata outlined above.

The first representation of paraconsistent probabilities in terms of BD was
given in [14], however, no axiomatisation was provided. Dunn proposes to divide
the sample space into four exhaustive and mutually exclusive parts depending on
the Belnapian value of φ. An alternative approach was proposed in [25]. There,
the authors propose two equivalent interpretations based on the two formulations
of semantics. The first option is to give φ two independent probability measures :
the one determining the likelihood of φ to be true and the other the likelihood
of φ to be false. The second option follows Dunn and also divides the sample
space according to whether φ has value T, B, N, or F in a given state.

The main difference between these two approaches is that in [14], the prob-
ability of φ ∧ φ′ is entirely determined by those of φ and φ′ which makes it
compositional. On the other hand, the paraconsistent probabilities proposed
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in [25] are not compositional w.r.t. conjunction. In this paper, we choose the
latter approach since it can be argued [12] that belief is not compositional.

A similar approach to paraconsistent probabilities can be found in, e.g. [9,28].
There, probabilities are defined over an extension of BD with classicality and
non-classicality operators. It is worth mentioning that the proposed axioms of
probability are very close to those from [25]: e.g., both allow measures p s.t.
p(φ)+p(¬φ) < 1 (if the information regarding φ is incomplete) or p(φ)+p(¬φ) >
1 (when the information is contradictory).

Two-layered logics for uncertainty Reasoning about uncertainty can be
formalised via modal logics where the modality is interpreted as a measure of an
event. The concrete semantics of the modality can be defined in two ways. First,
using a modal language with Kripke semantics where the measure is defined
on the set of states as done in, e.g., [17,10,11] for qualitative probabilities and
in [24] for the quantitative ones. Second, employing a two-layered formalism
(cf. [16,15], [2], and [7,6] for examples). There, the logic is split into two levels:
the inner layer describes events, and the outer layer describes the reasoning with
the measure defined on events. The measure is a non-nesting modality M, and the
outer-layer formulas are built from ‘modal atoms’ of the form Mφ with φ being
an inner-layer formula. The outer-layer formulas are then equipped with the
semantics of a fuzzy logic that permits necessary operations (e.g.,  Lukasiewicz
for the quantitative reasoning and Gödel for the qualitative).

In this work, we choose the two-layered approach. First, it is more modular
than the usual Kripke semantics: as long as the logic of the event description
is chosen, we can define different measures on top of it using different upper-
layer logics. Second, the completeness proof is very simple since one only needs to
translate the axioms of the given measure into the outer-layer logic. Finally, even
though, the traditional Kripke semantics is more expressive than two-layered
logics, this expressivity is not really necessary in many contexts. Indeed, people
rarely say something like ‘it is probable that it is probable that φ’. Moreover, it
is considerably more difficult to motivate the assignment of truth values in the
nesting case, in particular, when one and the same measure is applied both to
a propositional and modalised formula as in, e.g., M(p ∧ Mq).

Plan of the paper Our paper continues the project proposed in [8] and
continued in [7] and [6]. Here, we set to provide a logic that formalises the
reasoning with four-valued probabilities as presented in [25]. The rest of the text
is organised as follows. In Section 2, we recall two approaches to probabilities over
BD from [25]. In Section 3, we provide the semantics of our two-layered logics
and in Section 4, we axiomatise them using Hilbert-style calculi. In Section 5, we
prove that all our logics are decidable and establish their complexity evaluations.
Finally, we wrap up our results in Section 6.

2 Two approaches to paraconsistent probabilities

We begin with defining the semantics of BD on sets of states. The language
of BD is given by the following grammar (with Prop being a countable set of
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propositional variables).

LBD ∋ φ := p ∈ Prop | ¬φ | (φ ∧ φ) | (φ ∨ φ)

Convention 1 In what follows, we will write Prop(φ) to denote the set of vari-
ables occurring in φ and Lit(φ) to denote the set of literals (i.e., variables or
their negations) occurring in φ. Moreover, we use Sf(φ) to stand for the set of
all subformulas of φ.

We are also going to use two kinds of formulas: the single- and the two-
layered ones. To make the differentiation between them simpler, we use Greek
letters from the end of the alphabet (φ, χ, ψ, etc.) to designate the first kind and
the letters from the beginning of the alphabet (α, β, γ, . . . ) for the second kind.

Furthermore, we use v (with indices) to stand for the valuations of single-
layered formulas and e (with indices) for the two-layered formulas.

Definition 1 (Set semantics of BD). Let φ, φ′ ∈ LBD, W 6= ∅, and v+, v− :
Prop → 2W . For a model M = 〈W, v+, v−〉, we define notions of w �+ φ and
w �− φ for w ∈ W as follows.

w �+ p iff w ∈ v+(p) w �− p iff w ∈ v−(p)

w �+ ¬φ iff w �− φ w �− ¬φ iff w �+ φ

w �+ φ ∧ φ′ iff w �+ φ and w �+ φ′ w �− φ ∧ φ′ iff w �− φ or w �− φ′

w �+ φ ∨ φ′ iff w �+ φ or w �+ φ′ w �− φ ∨ φ′ iff w �− φ and w �− φ′

We denote the positive and negative extensions of a formula as follows:

|φ|+ := {w ∈W | w �+ φ} |φ|− := {w ∈W | w �− φ}.

We say that a sequent φ ⊢ χ is valid on M = 〈W, v+, v−〉 (denoted, M |= [φ ⊢ χ])
iff |φ|+ ⊆ |χ|+ and |χ|− ⊆ |φ|−. A sequent φ ⊢ χ is BD-valid (φ |=BDχ) iff it is
valid on every model. In this case, we will say that φ entails χ.

Now, we can use the above semantics to define probabilities on the models.
We adapt the definitions from [25].

Definition 2 (BD models with ±-probabilities). A BD model with a ±-
probability is a tuple Mµ = 〈M, µ〉 with M being a BD model and µ : 2W → [0, 1]
satisfying:

mon: if X ⊆ Y , then µ(X) ≤ µ(Y );
neg: µ(|φ|−) = µ(|¬φ|+);
ex: µ(|φ ∨ χ|+) = µ(|φ|+) + µ(|χ|+) − µ(|φ ∧ χ|+).

To facilitate the presentation of the four-valued probabilities defined over BD

models, we introduce additional extensions of φ defined via |φ|+ and |φ|−.

Convention 2 Let M = 〈W, v+, v−〉 be a BD model, φ ∈ LBD. We set

|φ|b =|φ|+ \ |φ|− |φ|d =|φ|− \ |φ|+

|φ|c =|φ|+ ∩ |φ|− |φ|u =W \ (|φ|+ ∪ |φ|−)

We call these extensions, respectively, pure belief, pure disbelief, conflict, and
uncertainty in φ, following [25].
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Definition 3 (BD models with 4-probabilities). A BD model with a 4-
probability is a tuple M4 = 〈M, µ4〉 with M being a BD model and µ4 : 2W →
[0, 1] satisfying:

part: µ4(|φ|b) + µ4(|φ|d) + µ4(|φ|u) + µ4(|φ|c) = 1;
neg: µ4(|¬φ|b) = µ4(|φ|d), µ4(|¬φ|c) = µ4(|φ|c);
contr: µ4(|φ ∧ ¬φ|b) = 0, µ4(|φ ∧ ¬φ|c) = µ4(|φ|c);
BCmon: if M |= [φ ⊢ χ], then µ4(|φ|b) + µ4(|φ|c) ≤ µ4(|ψ|b) + µ4(|ψ|c);
BCex: µ4(|φ|b) + µ4(|φ|c) + µ4(|ψ|b) + µ4(|ψ|c) = µ4(|φ∧ψ|b) +µ4(|φ∧ψ|c) +

µ4(|φ ∨ ψ|b) + µ4(|φ ∨ ψ|c).

Convention 3 We will further utilise the following naming convention:

– we use the term ‘±-probability’ to stand for µ from Definition 2;
– we call µ4 from Defintion 3 a ‘4-probability’ or a ‘four-valued probability’.

Recall that ±-probabilities are referred to as ‘non-standard’ in [25] and [7]. As
this term is too broad (four-valued probabilities are not ‘standard’ either), we use
a different designation.

Let us quickly discuss the measures defined above. First, observe that µ(|φ|+)
and µ(|φ|−) are independent from one another. Thus, µ gives two measures to
each φ, as desired. Second, recall [25, Theorems 2–3] that every 4-probability on
a BD model induces a ±-probability and vice versa. In the following sections,
we will define two-layered logics for BD models with ±- and 4-probabilities and
show that they can be faithfully embedded into each other.

Remark 1. Note, that for every BD model with a ±-probability 〈W, v+, v−, µ〉
(resp., BD model with 4-probability 〈W, v+, v−, µ4〉), there exist a BD model
〈W ′, v′+, v′−, π〉 with a classical probability measure π s.t. π(|φ|+) = µ(|φ|+)
(resp., π(|φ|x) = µ4(|φ|x) for x ∈ {b, d, c, u}) [25, Theorems 4–5]. Thus, we can
further assume w.l.o.g. that µ and µ4 are classical probability measures on W .

3 Logics for paraconsistent probabilities

In this section, we provide logics that are (weakly) complete w.r.t. BD mod-
els with ±- and 4-probabilities. Since conditions on measures contain arith-
metic operations on [0, 1], we choose an expansion of  Lukasiewicz logic, namely,
 Lukasiewicz logic with △ ( L△), for the outer layer. Furthermore, ±-probabilities
work with both positive and negative extensions of formulas, whence it seems
reasonable to use  L2 — a paraconsistent expansion of  L (cf. [8,5] for details)
with two valuations — v1 (support of truth) and v2 (support of falsity) — on

[0, 1]. This was done in [7] — the resulting logic Pr L
2

△ was proven to be complete
w.r.t. BD models with ±-probabilities.

We begin by recalling the language and standard semantics of  Lukasiewicz
logic with △ and its paraconsistent expansion  L2

△.
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Definition 4. The standard  L△-algebra is a tuple 〈[0, 1],∼ L,△ L,∧ L,∨ L,→ L

,⊙ L,⊕ L,⊖ L〉 with the operations are defined as follows.

∼ La := 1 − a △ La :=

{

1 if a = 1

0 otherwise

a∧ Lb := min(a, b) a∨ Lb := max(a, b) a→ L b := min(1, 1−a+b)
a⊙ Lb := max(0, a+b−1) a⊕ Lb := min(1, a+b) a⊖ Lb := max(0, a−b)

Definition 5 ( Lukasiewicz logic with △). The language of  L△ is given via
the following grammar

L L∋φ := p∈Prop | ∼φ | △φ | (φ∧φ) | (φ∨φ) | (φ→ φ) | (φ⊙φ) | (φ⊕φ) | (φ⊖φ)

We will also write φ↔ χ as a shorthand for (φ→ χ) ⊙ (χ → φ).
A valuation is a map v :Prop→ [0, 1] that is extended to the complex formulas

as expected: v(φ◦χ)=v(φ)◦ Lv(χ). φ is  L△-valid iff v(φ) = 1 for every v.

Remark 2. Note that △, ∼, and → can be used to define all other connectives
as follows.

φ ∨ χ := (φ→ χ) → χ φ ∧ χ := ∼(∼φ ∨ ∼χ) φ⊕ χ := ∼φ→ χ
φ⊙ χ := ∼(φ→ ∼χ) φ⊖ χ := φ⊙∼χ

Definition 6 ( L2
△). The language is constructed using the following grammar.

L L2

△

∋ φ := p ∈ Prop | ¬φ | ∼φ | △φ | (φ→ φ)

The semantics is given by two valuations v1 (support of truth) and v2 (support
of falsity) v1, v2 : Prop → [0, 1] that are extended as follows.

v1(¬φ) = v2(φ) v2(¬φ) = v1(φ)
v1(∼φ) = ∼ Lv1(φ) v2(∼φ) = ∼ Lv2(φ)
v1(△φ) = △ Lv1(φ) v2(△φ) = ∼ L△ L∼ Lv2(φ)

v1(φ→ χ) = v1(φ) → L v1(χ) v2(φ→ χ) = v2(χ) ⊖ L v2(φ)

We say that φ is  L2
△-valid iff for every v1 and v2, it holds that v1(φ) = 1 and

v2(φ) = 0.

Remark 3. Again, the remaining connectives can be defined as in Remark 2. Fur-
thermore, when there is no risk of confusion, we write v(φ) = (x, y) to designate
that v1(φ) = x and v2(φ) = y.

We are now ready to present the two-layered logics. We begin with Pr
 L2

△ from [7].

Definition 7 (Pr L
2

△ : language and semantics). The language of Pr L
2

△ is given
by the following grammar

L
Pr

 L2

△

∋ α := Prφ | ∼α | ¬α | △α | (α → α) (φ ∈ LBD)

A Pr L
2

△ model is a tuple M = 〈M, µ, e1, e2〉 with 〈M, µ〉 being a BD model with ±-
probability and e1, e2 : L

Pr
 L2

△

→ [0, 1] s.t. e1(Prφ) = µ(|φ|+), e2(Prφ) = µ(|φ|−),

and the values of complex formulas being computed following Definition 6. We

say that α is Pr L
2

△ valid iff e(α) = (1, 0) in every model.
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Definition 8 (4Pr L△ : language and semantics). The language of 4Pr L△ is
constructed by the following grammar:

L
4Pr

 L
△

∋ α := Blφ | Dbφ | Cfφ | Ucφ | ∼α | △α | (α → α) (φ ∈ LBD)

A 4Pr L△ model is a tuple M = 〈M, µ4, e〉 with 〈M, µ4〉 being a BD model with 4-
probability s.t. e(Blφ) =µ4(|φ|b), e(Dbφ) =µ4(|φ|d), e(Cfφ) =µ4(|φ|c), e(Ucφ) =
µ4(|φ|u), and the values of complex formulas computed via Definition 5. We say
that α is 4Pr L△ valid iff e(α) = 1 in every model. A set of formulas Γ entails α
(Γ |=

4Pr
 L
△
α) iff there is no M s.t. e(γ) = 1 for every γ ∈ Γ but e(α) 6= 1.

Convention 4 We will further call formulas of the form Xφ (φ ∈ LBD, X ∈
{Pr,Bl,Db,Cf,Uc}) modal atoms. We interpret the value of a modal atom as a
degree of certainty that the agent has in φ. For example, e(Prp) = (3

4 ,
1
2 ) means

that the agent’s certainty in p is 3
4 and in ¬p is 1

2 . Similarly, e(Cfq) = 1
3 is

construed as ‘the agent is conflicted w.r.t. q to the degree 1
3 ’.

To make the semantics clearer, we provide the following example.

Example 1. Consider the following BD model.

w0 : p±, ✁❆q w1 : p−, q−

And let µ = µ4 be defined as follows: µ({w0}) = 2
3 , µ({w1}) = 1

3 , µ(W ) = 1,
µ(∅) = 0. It is easy to check that µ satisfies the conditions of Definitions 2 and 3.
Now let e be the  L2

△ valuation and e4 the  L△ valuation induced by µ and µ4,
respectively.

Consider two BD formulas: p∨q and p. We have e(Pr(p∨q)) =
(

2
3 ,

1
3

)

and

e(Prp) =
(

2
3 , 1
)

. In 4Pr L△ , we have e4(Bl(p ∨ q)) = 2
3 , e4(Db(p ∨ q)) = 1

3 ,
e4(Cfp) = 2

3 , e4(Cf(p ∨ q)), e4(Uc(p ∨ q)) = 0, e4(Blp), e(Ucp) = 0, e4(Cfp) = 2
3 ,

and e(Dbp) = 1
3 .

The following property of Pr L
2

△ is going to be useful further in the section.

Lemma 1. Let α ∈ L
Pr L

2

△

. Then, α is Pr L
2

△ valid iff e1(α) = 1 in every Pr L
2

△

model.

Proof. Let M = 〈W, v+, v−, µ, e1, e2〉 be a Pr L
2

△ model s.t. e2(α) 6= 0. We con-
struct a model M∗ = 〈W, (v∗)+, (v∗)−, µ, e∗1, e

∗
2〉 where e∗1(α) 6= 1. To do this, we

define new BD valuations (v∗)+ and (v∗)− on W as follows.

w ∈ v+(p), w /∈ v−(p) then w ∈ (v∗)+(p), w /∈ (v∗)−(p)

w ∈ v+(p), v−(p) then w /∈ (v∗)+(p), (v∗)−(p)

w /∈ v+(p), v−(p) then w ∈ (v∗)+(p), (v∗)−(p)

w /∈ v+(p), w ∈ v−(p) then w /∈ (v∗)+(p), w ∈ (v∗)−(p)

It can be easily checked by induction on φ ∈ LBD that

|φ|+
M

= W \ |φ|−
M∗ |φ|−

M
= W \ |φ|+

M∗

Now, since we can w.l.o.g. assume that µ is a (classical) probability measure
on W (recall Remark 1), we have that

e∗(Prφ) = (1 − µ(|φ|−), 1 − µ(|φ|+)) = (1 − e2(Prφ), 1 − e1(Prφ))
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Observe that if e(α) = (x, y), then e(¬∼α) = (1 − y, 1 − x). Furthermore, it is
straightforward to verify that the following formulas are valid.

¬∼¬α ↔ ¬¬∼α ¬∼∼α↔ ∼¬∼α
¬∼△α↔ △¬∼α ¬∼(α→α′) ↔ ¬∼α→¬∼α′

Hence, e∗(α) = (1 − e2(α), 1 − e1(α)) for every α ∈ L
Pr L

2

△

. The result follows.

At first glance, 4Pr L△ gives a more fine-grained view on a BD model than

Pr L
2

△ since it can evaluate each extension of a given φ ∈ LBD, while Pr L
2

△ always
considers |φ|+ and |φ|− together. In the remainder of the section, we show that
the two logics have, in fact, the same expressivity.

One can see from Definition 7 that ¬Prφ ↔ Pr¬φ. Furthermore,  L2 admits
¬ negation normal forms and is a conservative extension of  L [8,5]. Thus, it is
possible to push all ¬’s occurring in α ∈ L

Pr
 L2

△

to modal atoms. We will use this

fact to establish the embeddings of Pr L
2

△ and 4Pr L△ into one another.

Definition 9. Let α ∈ L
Pr L

2

△

. α¬ is produced from α by successively applying

the following transformations.

¬Prφ Pr¬φ ¬¬α α ¬∼α ∼¬α
¬(α → α′) ∼(¬α′ → ¬α) ¬△α ∼△∼¬α

It is easy to check that e(α) = e(α¬) in every Pr L
2

△ model.

Definition 10. Let α ∈ L
Pr L

2

△

be ¬-free, we define α4 ∈ L
4Pr

 L
△ as follows.

(Prφ)4 = Blφ⊕ Cfφ

(♥α)4 = ♥α4 (♥ ∈ {△,∼})

(α → α′)4 = α4 → α′4

Let β ∈ L
4Pr

 L
△
. We define β± as follows.

(Blφ)± = Prφ⊖ Pr(φ ∧ ¬φ)

(Cfφ)± = Pr(φ ∧ ¬φ)

(Ucφ)± = ∼Pr(φ ∨ ¬φ)

(Dbφ)± = Pr¬φ⊖ Pr(φ ∧ ¬φ)

(♥β)± = ♥β± (♥ ∈ {△,∼})

(β → β′)± = β± → β′±

Theorem 1. α ∈ L
Pr L

2

△

is Pr
 L2

△ valid iff (α¬)4 is 4Pr L△ valid.

Proof. Let w.l.o.g. M = 〈W, v+, v−, µ, e1, e2〉 be a BD model with ±-probability
where µ is a classical probability measure and let e(α) = (x, y). We show that
in the BD model M4 = 〈W, v+, v−, µ, e1〉 with four-probability µ, e1((α¬)4) = x.
This is sufficient to prove the result. Indeed, by Lemma 1, it suffices to verify
that e1(α) = 1 for every e1, to establish the validity of α ∈ L

Pr L
2

△

. By Lemma 1,

this is sufficient to prove the result since there to verify the validity of α ∈ L
Pr

 L2

△

,

it suffices to verify whether e1(α) = 1 for every e1.
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We proceed by induction on α¬ (recall that α↔ α¬ is Pr L
2

△ valid). If α = Prφ,

then e1(Prφ) = µ(|φ|+) = µ(|φ|b ∪ |φ|c). But |φ|b and |φ|c are disjoint, whence
µ(|φ|b ∪ |φ|c) = µ(|φ|b) + µ(|φ|c), and since µ(|φ|b) + µ(|φ|c) ≤ 1, we have that
e1(Blφ⊕ Cfφ) = µ(|φ|b) + µ(|φ|c) = e1(Prφ), as required.

The induction steps are straightforward since the semantic conditions of sup-
port of truth in  L2

△ coincide with the semantics of  L△ (cf. Definitions 6 and 5).

Theorem 2. β ∈ L
4Pr

 L
△

is L
4Pr

 L
△

valid iff β± is Pr L
2

△ valid.

Proof. Assume w.l.o.g. that M = 〈W, v+, v−, µ4, e〉 is a BD model with a 4-
probability where µ4 is a classical probability measure and e(β) = x. We de-
fine a BD model with ±-probability M

± = 〈W, v+, v−, µ4, e1, e2〉 and show that
e1(β±) = x. Again, it is sufficient for us by Lemma 1.

We proceed by induction on β. If β = Blφ, then e(Blφ) = µ4(|φ|b). Now
observe that µ4(|φ|+) = µ(|φ|b∪|φ|c) = µ4(|φ|b)+µ4(|φ|c) since |φ|b and |φ|c are
disjoint. But µ4(|φ|+)=e1(Prφ) and µ4(|φ|c)=µ4(|φ∧¬φ|+) since |φ∧¬φ|+ = |φ|c.
Thus, µ4(|φ|b) = e1(Prφ⊖ Pr(φ ∧ ¬φ)) as required.

Other basis cases of Cfφ, Ucφ, and Dbφ can be tackled in a similar man-
ner. The induction steps are straightforward since the support of truth in  L2

△

coincides with semantical conditions in  L△.

4 Hilbert-style axiomatisation of 4Pr L△

Let us proceed to the axiomatisation of 4Pr L△ . Since its outer layer expands  L△,
we will need to encode the conditions on µ4 therein. Furthermore, since  L (and
hence,  L△) is not compact [22, Remark 3.2.14], our axiomatisation can only be
weakly complete (i.e., complete w.r.t. finite theories).

The axiomatisation will consist of two types of axioms: those that axioma-
tise  L△ and modal axioms that encode the conditions from Definition 3. For the
sake of brevity, we will compress the axiomatisation of  L△ into one axiom that
allows us to use  L△ theorems4 without proof.

Definition 11 (H4Pr L△ — Hilbert-style calculus for 4Pr L△). The calculus
H4Pr L△ consists of the following axioms and rules.

 L△:  L△ valid formulas instantiated in L
4Pr

 L
△
.

equiv: Xφ↔Xχ for every φ, χ∈LBD s.t. φ⊣⊢χ is BD-valid and X∈{Bl,Db,Cf,Uc}.

contr: ∼Bl(φ ∧ ¬φ); Cfφ↔ Cf(φ ∧ ¬φ).

neg: Bl¬φ↔ Dbφ; Cf¬φ↔ Cfφ.

mon: (Blφ⊕ Cfφ) → (Blχ⊕ Cfχ) for every φ, χ ∈ LBD s.t. φ ⊢ χ is BD-valid.

part1: Blφ⊕ Dbφ⊕ Cfφ⊕ Ucφ.

part2: ((X1φ ⊕ X2φ ⊕ X3φ ⊕ X4φ) ⊖ X4φ) ↔ (X1φ ⊕ X2φ ⊕ X3φ) with Xi 6= Xj,
Xi ∈ {Bl,Db,Cf,Uc}.

4 A Hilbert-style calculus for  L can be found in, e.g. [26], and the axioms for △ in [1].
A concise presentation of a Hilbert-style calculus for  L△ is also given in [7].
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ex: (Bl(φ∨χ)⊕Cf(φ∨χ)) ↔ ((Blφ⊕Cfφ)⊖(Bl(φ∧χ)⊕Cf(φ∧χ))⊕(Blχ⊕Cfχ)).

MP:
α α → α′

α′
.

△nec:
H4Pr L△ ⊢ α

H4Pr L△ ⊢ △α
.

The axioms above are simple translations of properties from Definition 3. We
split part in two axioms to ensure that the values of Blφ, Dbφ, Cfφ, and Ucφ
sum up exactly to 1.

Theorem 3. Let Ξ ⊆ L
4Pr

 L
△ be finite. Then Ξ |=

4Pr
 L
△ α iff Ξ ⊢H4Pr

 L
△ α.

Proof. Soundness can be established by the routine check of the axioms’ valid-
ity. Thus, we prove completeness. We reason by contraposition. Assume that
Ξ 0H4Pr

 L△ α. Now, observe that H4Pr L△ proofs are, actually,  L△ proofs with
additional probabilistic axioms. Let Ξ∗ stand for Ξ extended with probabilis-
tic axioms built over all pairwise non-equivalent LBD formulas constructed from
Prop[Ξ ∪{α}]. Clearly, Ξ∗

0H4Pr
 L
△ α either. Moreover, Ξ∗ is finite as well since

BD is tabular (and whence, there exist only finitely many pairwise non-equivalent
LBD formulas over a finite set of variables). Now, by the weak completeness of
 L△, there exists an  L△ valuation e s.t. e[Ξ∗] = 1 and e(α) 6= 1.

It remains to construct a 4Pr L△ model M falsifying Ξ∗ |=
4Pr

 L
△ α using e. We

proceed as follows. First, we set W = 2Lit[Ξ
∗∪{α}], and for every w ∈ W define

w ∈ v+(p) iff p ∈ w and w ∈ v−(p) iff ¬p ∈ w. We extend the valuations to φ ∈
LBD in the usual manner. Then, for Xφ ∈ Sf[Ξ∗ ∪ {α}] we set µ4(|φ|x) = e(Xφ)
according to modality X.

Observe now that any map from 2W to [0, 1] that extends µ4 is, in fact,
a 4-probability. Indeed, all requirements from Definition 3 are satisfied as Ξ∗

contains all the necessary instances of probabilistic axioms and e[Ξ∗] = 1.

Remark 4. Observe that we could use a classical probability measure in the proof
of Theorem 3 because of [25, Theorem 5].

5 Decidability and complexity

In the completeness proof, we reduced H4Pr L△ proofs to  L△ proofs. We know
that validity and finitary entailment of  L△ are coNP-complete (since  L is coNP-
complete and △ has truth-functional semantics).

Likewise, Pr L
2

△ proofs are also reducible to  L2 proofs (cf. [7, Theorem 4.24])
from substitution instances of axioms Prφ→ Prχ (for φ |=BD χ), ¬Prφ↔ Pr¬φ,
and Pr(φ ∨ χ) ↔ (Prφ⊖ Pr(φ ∧ χ)) ⊕ Prχ. Thus, it is clear that the validity and

satisfiability of 4Pr L△ and Pr L
2

△ are coNP-hard and NP-hard, respectively.

In this section, we provide a simple decision procedure for Pr L
2

△ and 4Pr L△

and show that their satisfiability and validity are NP- and coNP-complete, re-
spectively. Namely, we adapt constraint tableaux for  L2 defined in [5] and expand
them with rules for △. We then adapt the NP-completeness proof FP( L) from [23]
to establish our result.
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Definition 12 (Constraint tableaux for  L2
△ — T

(

 L2
△

)

). Branches contain
labelled formulas of the form φ 61 i, φ 62 i, φ >1 i, or φ >2 i, and numerical
constraints of the form i ≤ j with i, j ∈ [0, 1].

Each branch can be extended by an application of one of the rules below.

¬61

¬φ 61 i

φ 62 i
¬62

¬φ 62 i

φ 61 i
¬>1

¬φ >1 i

φ >2 i
¬>2

¬φ >2 i

φ >1 i

∼61

∼φ 61 i

φ >1 1 − i
∼62

∼φ 62 i

φ >2 1 − i
∼>1

∼φ >1 i

φ 61 1 − i
∼>2

∼φ >2 i

φ 62 1 − i

△61

△φ >1 i

i ≤ 0

∣

∣

∣

∣

φ >1 j

j > 1

△>1

△φ 61 i

i ≥ 1

∣

∣

∣

∣

φ 61 j

j < 1

△62

△φ 62 i

i ≥ 1

∣

∣

∣

∣

φ 6 j

j ≤ 0

△>2

△φ >2 i

i ≤ 0

∣

∣

∣

∣

φ > j

j > 0

→61

φ1 → φ2 61 i

i ≥ 1

∣

∣

∣

∣

∣

∣

φ1 >1 1 − i + j

φ2 61 j

j ≤ i

→62

φ1 → φ2 62 i

φ1 >2 j

φ2 62 i + j

→>1

φ1 → φ2 >1 i

φ1 61 1 − i + j

φ2 >1 j

→>2

φ1 → φ2 >2 i

i ≤ 0

∣

∣

∣

∣

∣

∣

φ1 62 j

φ2 >2 i + j

j ≤ 1 − i

Let i’s be in [0, 1] and x’s be variables ranging over the real interval [0, 1]. We
define the translation τ from labelled formulas to linear inequalities as follows:

τ(φ61 i) = xLφ ≤ i; τ(φ>1 i) = xLφ ≥ i; τ(φ62 i) = xRφ ≤ i; τ(φ>2 i) = xRφ ≥ i

Let • ∈ {61,>1} and ◦ ∈ {62,>2}. A tableau branch

B = {φ1 ◦ i1, . . . , φm ◦ im, φ
′
1 • j1, . . . , φ

′
n • jn, k1 ≤ l1, . . . , kq ≤ lq}

is closed if the system of inequalities

τ(φ1 ◦ i1), . . . , τ(φm ◦ im), τ(φ′1 • j1), . . . , τ(φ′n • jn), k1 ≤ l1, . . . , kq ≤ lq

does not have solutions. Otherwise, B is open. A tableau is closed if all its
branches are closed. φ has a T

(

 L2
△

)

proof if the tableau beginning with {φ 61

c, c < 1} is closed.

Observe that the → and ∼ rules for 61 coincide with the analoguous rules in
the constraint tableaux for  L as given in [18,19,21]. Thus, we can use the calculus

both for 4Pr L△ and Pr L
2

△ . Note also that we need to build only one tableau for
L
Pr L

2

△

formulas because of Lemma 1.

The next statement can be proved in the same manner as [5, Theorem 1].

Theorem 4 (Completeness of tableaux).

1. φ is  L△ valid iff it has a T
(

 L2
△

)

proof.

2. φ is  L2
△ valid iff it has a T

(

 L2
△

)

proof.

Theorem 5. Satisfiability of Pr L
2

△ and 4Pr L△ is NP-complete.

Proof. Recall that Pr L
2

△ and 4Pr L△ can be linearly embedded into one another
(Theorems 1 and 2). Thus, it remains to provide a non-deterministic polynomial

algorithm for one of these logics. We choose Pr L
2

△ since it has only one modality.
Let α ∈ L

Pr L
2

△

. We can w.l.o.g. assume that ¬ occurs only in modal atoms and

that in every modal atom Prφi, φi is in negation normal form. Define α∗ to be
the result of the substitution of every ¬p occurring in α with a new variable p∗. It
is easy to check that α is satisfiable iff α∗ is. We construct a satisfying valuation
for α∗.
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First, we replace every modal atom Prφi with a fresh variable qφi
. Denote

the new formula (α∗)−. It is clear that the size of (α∗)− (|(α∗)−|) is only linearly
greater than |α|. We construct a tableau beginning with {(α∗)− >1 c, c ≥ 1}.
This gives us an instance of the MIP equivalent to the  L-satisfiability of (α∗)−

(cf. [18,19,20] for more details). Now, write zi for the values of qφi
’s in (α∗)−.

Our instance of the MIP also has additional variables xj ranging over [0, 1] as
well as equalities k = 1 and k′ = 0 obtained from entries k ≥ 1 and k′ ≤ 0. It is
clear that both the number of (in)equalities l1 and the number of variables l2 in
the MIP are linear w.r.t. |(α∗)−|. Denote this instance MIP(1).

We need to show that zi’s are coherent as probabilities of φi’s (here, i ≤ n
indexes the modal atoms of (α∗)−). We introduce 2n variables uv indexed by
n-letter words over {0, 1} and denoting whether the variables of φi’s are true
under v+.5 We let ai,v = 1 when φi is true under v+ and ai,v = 0 otherwise.
Now add new equalities denoted with MIP(2 exp) to MIP(1), namely,

∑

v uv = 1
and

∑

v(ai,v · uv) = zi. It is clear that the new MIP (MIP(1) ∪ MIP(2 exp))
has a non-negative solution iff α is satisfiable. Furthermore, although there are
l2 + 2n + n variables in MIP(1) ∪ MIP(2 exp), it has no more than l1 + n + 1
(in)equalities. Thus by [16, Lemma 2.5], it has a non-negative solution with at
most l1 + n+ 1 non-zero entries. We guess a list L of at most l1 + n+ 1 words
v (its size is n · (l1 + n+ 1)). We can now compute the values of ai,v’s for i ≤ n
and v ∈ L and obtain a new MIP which we denote MIP(2poly):

∑

v∈L uv = 1
and

∑

v∈L(ai,v · uv) = zi. It is clear that MIP(1) ∪ MIP(2poly) is of polynomial
size w.r.t. |α| and has a non-negative solution iff α is satisfiable. Thus, we can
solve it in non-deterministic polynomial time as required.

6 Conclusion

We presented logic 4Pr L△ formalising four-valued probabilities proposed in [25]
using a two-layered expansion of  Lukasiewicz logic with △. We established faith-

ful embeddings between 4Pr L△ and Pr L
2

△ , the logic of ±-probabilities [7]. More-

over, we constructed a sound and complete axiomatisation of 4Pr L△ and proved
its decidability using constraint tableaux for  L△.

Several questions remain open. In [7], we presented two-layered logics for
reasoning with belief and plausibility functions. These logics employ a ‘two-
valued’ interpretation of belief and plausibility (i.e., φ has two belief assignments:
for φ and for ¬φ). It would be instructive to axiomatise ‘four-valued’ belief and
plausibility functions and formalise reasoning with those via a two-layered logic.

Moreover, we have been considering logics whose inner layer lacks implica-
tion. It is, however, reasonable to assume that an agent can assign certainty
to conditional statements. Furthermore, there are expansions of BD with truth-
functional implications (cf. [27] for examples). A natural next step now is to
axiomatise paraconsistent probabilities defined over a logic with an implication.

5 Note that ¬ does not occur in (α∗)− and thus we care only about e1 and v+.
Furthermore, while n is the number of φi’s, we can add superfluous modal atoms or
variables to make it also the number of variables.
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