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Abstract. Deep neural networks (DNNs) are one of the most widely
used machine learning algorithm. In the literature, most of the privacy
related work to DNNs focus on adding perturbations to avoid attacks
in the output which can lead to significant utility loss. Large number
of weights and biases in DNNs can result in a unique model for each
set of training data. In this case, an adversary can perform model com-
parison attacks which lead to the disclosure of the training data. In our
work, we first introduce the model comparison attack for DNNs which
accounts for the permutation of nodes in a layer. To overcome this, we
introduce a relaxed notion of integral privacy called ϵ-integral privacy.
We further provide a methodology for recommending ϵ-Integrally private
models. We use a data-centric approach to generate subsamples which
have the same class-distribution as the original data. We have experi-
mented with 6 datasets of varied sizes (10k to 7 million instances) and
our experimental results show that our recommended private models
achieve benchmark comparable utility. We also achieve benchmark com-
parable test accuracy for 4 different DNN architectures. The results from
our methodology show superiority under comparison with three different
levels of differential privacy.

Keywords: Data privacy · Integral privacy · Deep neural networks ·

Privacy-preserving ML.

1 Introduction

In today’s world, Artificial Intelligence (AI) plays a crucial role in our day-to-
day life. AI techniques are widely used in object recognition, speech recognition,
medical imaging, robotics and many other fields. AI approaches and Machine
Learning (ML) in particular are very data hungry [1]. They tend to improve with
the quality and quantity of data. The data often include sensitive and personal
information which must be guarded to ensure security/privacy of each individual
or organization. Several guidelines exists such as Europe’s General Data Protec-
tion Regulation (GDPR), to regulate the use of data in ML. GDPR requires
that the analysis to be made should use the minimum amount of data and must
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be privacy-preserving. There exists several data masking and privacy-preserving
models such as k-anonymity [2], differential privacy [3], integral privacy [4], etc.
which try to protect privacy of individuals and organization from any adver-
saries. Adversaries aim to gain sensitive information about individual or a group
of individuals making inferences from ML models.

Data masking is used to modify sensitive information so that a record can
not be uniquely identified. K-anonymity is one of the most used data masking
methods. A database satisfies k-anonymity if for each record there are k-1 other
indistinguishable records. This can be implemented using clustering (replacing k
similar records with their mean or with their generalization). In the recent years,
much attention has been given to differential privacy (DP) and its variants (see
[5] for more details). Differential privacy is satisfied if the outputs of a query on
neighbouring datasets are similar i.e. addition or removal of one record should
not affect the outcome of the query. Differential privacy depends on a parame-
ter ϵ that establishes the level of this similarity. Theoretically, DP offers sound
privacy-preserving models but it has practical limitations such as the amount
of noise for small ϵ (high privacy) can be very high. Therefore, high sensitivity
queries require high amount of noise. However, in case of multiple queries as the
privacy budget is limited, high amount of noise is also required. High noise leads
to a loss of utility for ML models. In our approach, we have considered Inte-
gral Privacy as an alternative to DP to achieve high utility privacy-preserving
machine learning.

Integral Privacy models [4] are the data-driven models that appear recur-
rently with different training data sets. This makes inferences on sensitive in-
formation harder for an intruder. Formally, the set of integrally private models
are the set of recurrent models, i.e. generated by different datasets for the same
problem. This approach has practical limitations, as in general, we rarely have
a huge number of different datasets. The first practical approach for Integral
private model selection was given for decision trees [6], where instead of having
an available set of datasets, the authors have used sampling approaches to build
the model space and eventually suggesting models which are integrally private.
The authors expanded the idea with integral privacy guarantees for linear regres-
sion. This is given in [7]. In [8], authors have shown how maximal c-consensus
meets (see [9] for further details) can be used in the context of integral privacy
to find datasets which can produce the same models. The work presented in [6]
generates or approximates the model space for a given dataset. A stratified sub-
sampling approach is used to approximate the model space for small datasets (≈
200 instances). The authors approximate the model space using 100k, 150k and
300k subsamples from each datasets. This can be time consuming and 100-300k
subsamples may not be enough to approximate the model space for real-world
big datasets. Overall, the approach is computationally expensive.

Deep Neural Networks is one of the most successful machine learning paradigms
for several computer vision tasks such as image classification [10], object detec-
tion [11], video classification [12], and many other areas. However, DNNs are
known to be highly dependent on the input data. In the last few years, interest



Integrally Private Model Selection for Deep Neural Networks 3

in adversarial DNN examples has grown [13]. DNNs are assumed to work well
with large datasets. They have large number of weights and biases which can
result in very few generators (unique in many of the cases) for each model. In
other words, generation or discovery of recurrent models in DNNs is difficult.

Considering these challenges in mind, we introduce a relaxed variant of inte-
gral privacy called ‘ϵ-Integral Privacy’ where models in the ϵ range are considered
a perturbated version of each other and, thus, they are considered ϵ-integrally
private. We also propose a model selection strategy for choosing ϵ-integrally pri-
vate models for Deep Neural Networks (DNNs). Our algorithm recommends the
mean of the top recurrent models as the private model. We distribute the data
in disjoint subsamples having same class-distribution as the original dataset. We
find that large enough disjoint subsets having same class-distribution as the orig-
inal dataset leads to the generation of the models which are utmost ϵ-different,
with utility comparable to the benchmark model. This way we do not need to
generate 100-300k sub samples. Our approach also supports the data-centric ap-
proach [14]. We are able to generate benchmark comparable models with samples
sizes 1/100th of the original dataset. There hasn’t been much work in the lit-
erature which discusses about using smaller datasets for training DNNs. The
work in [15] improves the quality of data by eliminating the invalid instances,
our approach is focused on maintaining the class-distribution of the data.

In this paper, we have also extended the potential model comparison attack
[6] for DNNs. In this type of attack, an intruder gets access to the training data
by comparing the models learned by the intruder obtained from original data
and the model obtained from a modified dataset. In case of DNNs, the attack
becomes tricky as any permutation of the similar set of nodes at any given layer l
results in the same learning. We incorporate this to extend the model comparison
attack on DNNs.

We have arbitrarily chosen a 3-hidden layered DNN for 6 datasets with varied
sizes. Our experimental results show that large enough disjoint sets lead to the
generation of ϵ-integral private models with benchmark comparable utility and
loss. We get benchmark metrics by training and testing on our chosen DNN on
70-30 split for each data. We have also compared ϵ-integral private models with
high DP (differential privacy) model, moderate DP model and low DP model;
we found integrally private models have better utility in many cases and have
significant improvement in terms of loss for most of the datasets.

This paper is organized as follows. In Section 2 we introduce the model com-
parison attack for DNNs; In Section 3 we introduce the notion of ϵ-integral pri-
vacy and present the algorithm for private model selection procedure for DNNs;
In Section 4 we present the experimental analysis to support our claim and in
Section 5 we present our conclusion and directions for future work.

2 Model comparison attack for DNNs

In this section, we describe our model comparison attack for deep neural net-
works. Deep neural networks are machine learning models which were created to
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learn like the human mind. The underlying architecture of DNNs consists of the
perceptron (or commonly known as neuron) which receives an array of inputs
and transform them into output signal(s). DNNs learns from data by putting
together a list of layers. Each layer is responsible for learning some relationship
or functionality in the input. Each layer is a collection of neurons that learns to
detect patterns in the input. Each neuron in the DNNs can be considered as a
logistic regression. DNNs are the extension of artificial neural network with two
or more hidden layers. In each neuron, the weighted sum of the input with a bias
term is computed which is then transformed using an activation function, which
is then passed on to the next layer of the DNNs. Nodes at layer l receive input
from the nodes at layer l − 1, which means each neuron has |l − 1| + 1 (+1 for
bias) number of parameters to be tuned in training. Final weights and biases of
each neuron highly depends on their initialization.

2.1 Framework

In this section, we propose our framework. Let X be the training set from the
original dataset D, G be the model generated on X. In our work, we have con-
sidered DNNs as learning algorithm. Let us denote an initial architecture and
weight by Arch and let A be the algorithm.

We assume the intruder has some background knowledge S∗ ∈ D. They are
the records that are known to be used to train the model. The intruder also has
access to the model. That to G which was learned from the training set X on the
initial architecture Arch. That is, G = DNN(Arch,X). With this information,
the intruder aims to gain knowledge on the training set and do membership
inference attacks

The intruder essentially can perform the model comparison attack once they
can generate the model space associated to S∗. The intruder can perform compar-
ison with the models in model space and his knowledge of G. After comparison,
if there is a single generator for the model, the intruder gets complete access to
the training set and their inferences. If there are more than one generator for the
model, an intruder can do membership inference attack for dominant records by
finding the intersection between the generators.

2.2 Intruders Approach

The intruder has some background information S∗. Then, they can draw a block
of subsamples S = {S1, S2, ..., Sn} where Si ⊆ S∗ to generate the (approxi-
mated) model space. Each subsample is a set of instances from S∗ which are
used to generate a DNN (see Fig. 1). Generation of the complete model space
can be computationally expensive but can be approximated using sampling ap-
proaches.

Comparison of two DNNs for model comparison attack is a difficult task
because we need to deal with a combinatorial problem. We need to align neurons
in each layer. Observe that layers in both DNNs must contain the same neurons
i.e. for two DNNs to be the same they must have equal layers; and for two layers
to be equal, neurons in one layer must be some permutation of the neurons in
the other layer. Given r neurons, we will have r! possible permutations.
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Fig. 1: Demonstration of model generation using algorithm A for subsamples
S1, S2, ..., Sn.

Each model in the generated model space can be compared with the original
model G. In case of DNNs, each model has one or very few generators due to
the high number of parameters of the model. Therefore, after the comparison
attack, the intruder may be able to uniquely identify the training set used to
generate the model. When there are more than one generator for a model G,
an intruder can check for membership inference by finding the dominant records
from the intersection of the generators for the model.

2.3 Integral Privacy

This privacy model [4] aims to protect the disclosure of training data and in-
ferences from a model comparison attack. Let A be an algorithm to compute
model G from a given population of samples P . The model G is integrally
private if it can be generated by enough number of samples from the popu-
lation. Let S∗ be the background information available to the intruder, then
Gen∗(G,S∗) = {S′ \ S∗ |S∗ ⊆ S′ ⊆ P,A(S′) = G} is the possible set of genera-
tors for the model G. K-anonymous integral privacy holds when there are at least
k disjoint generators in the set Gen∗(G,S∗). Disjoint generators are required to
avoid membership inference attacks. Formal definition for Integral privacy is as
follows.

Integral privacy. Let P be the set of samples or a dataset. For model G ∈ G
generated by algorithm A on samples S ⊆ P , let Gen∗(G,S∗) represent the set
of all generators of G which are consistent with the background knowledge S∗.
Then, the model G is said to be k-anonymous integrally private if Gen∗(G,S∗)
contains at least k sets of generators and

⋂

S∈Gen∗(G,S∗)

S = ∅ (1)

3 ϵ-Integrally private model selection for DNNs

To construct the complete model space is computationally intractable for large
sets. Consider an example of a dataset with 5000 instances. Considering all
possible datasets to produce all possible models of the model space (say Mc)
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corresponds to producing 25000 generators and the corresponding models. The
alternative to Mc is to construct an approximation of the model space (Me)
using sampling. This approach was used in previous works [6] [7]. Nevertheless,
even in this case the number of generators and their corresponding models can
be high and computationally expensive. In case of bigger datasets say with 5
million instances, the process of building an approximation of a model space
will be very costly. In our approach, we have focused on reducing the huge
computational requirement to recommend relaxed integrally private deep neural
network models.

Let us consider the problem of finding the set of different models of the
model space. First, let us recall that each neuron at layer l in DNNs receive
inputs from all the neurons in layer l− 1, which in turn require weights and bias
for the neuron. The weights and biases in DNNs can take any value between
-1 and +1. Even for a small DNN there can be a unique generator for each
model or only very few models will have more than one generator. Our initial
studies on DNNs confirms this even when we round-off weights to 3 digits. It
is worth mentioning here that initialization of DNNs also affects the number of
generators. More concretely, we may not get the same generators on differently
initialized models. This makes achieving integral privacy difficult.

Because of this in our approach, we have adopted the relaxed version of
integral privacy which we call ’ϵ-Integral privacy’ in which models utmost ϵ
different from each other are considered. In case of DNNs, two models are utmost
ϵ different if and only if the difference between weights for same connection
between neurons is at most ϵ. In case of DNNs, two models are utmost ϵ different
if and only if the difference between weights for the same connections between
neurons is always less than ϵ I.e. if G1, G2 represent the weights for two DNNs
then ||G1 − G2|| ≤ ϵ, where ||G1 − G2|| represent the difference between every
same connection between neurons for both DNNs. Now, let Gen∗(G,S∗, ϵ) denote
the set of possible pairwise disjoint generators for the models which are utmost ϵ
different than G (generators that are consistent with the background knowledge
S∗), then k-anonymous ϵ-Integral privacy holds if Gen∗(G,S∗, ϵ) has at least k
elements and their intersection is empty. A more formal definition follows.

ϵ-Integral privacy: Let P be the set of samples or datasets. For a model G
∈ G generated by algorithm A on samples S ⊆ P , let Gen∗(G,S∗, ϵ) represent the
set of all generators of G which are consistent with the background knowledge
S∗ and are utmost ϵ different. Then, the model G is said to be k-anonymous
ϵ-Integrally private if Gen∗(G,S∗, ϵ) contains at least k elements and

⋂

S∈Gen∗(G,S∗,ϵ)

S = ∅ (2)

Now, we will focus on the private model selection procedure for DNNs. Our
approach to generate subsampling is data centric. We choose a subsample of
size N with same class-distribution as the original dataset D. We denote these
subsamples by S1, S2, ..., Sn (here n = ⌊|D|/N⌋). With this, we also satisfy there
is no intersection between subsamples i.e. S1 ∩S2 ∩... ∩ Sn = ∅. This condition
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Algorithm 1 Integrally private model selection procedure for Deep Neural Net-
works for a given perturbed dataset D′. The algorithm return top 5 integrally
private models with their accuracies

Inputs: D - Perturbed Dataset
N - Size of subsamples
ϵ - Privacy parameter
A - Algorithm to generate DNNs
Output: returns a list of integrally private models with their accuracies
Algorithm:

S = Generate_subsample(D, N) ▷ Generate n subsamples of size N
ModelList = [[]]
for Si in S do

Mi ← A(Si)
present = False
for each mj ∈ ModelList do

if compare_model(mj , Mi) ≤ ϵ then

ModelList[j].append(Mi)
present = True
break

end if

end for

if present == False then

ModelList.append(list(Mi))
end if

end for

chosen_models = choseXModels(ModelList)
▷ Chose top X recurring models

meanModels = A(mean(chosen_models)) ▷ Compute mean models
statistics = computeMetrics(meanModels) ▷ Statistics of mean models
return meanModels, statistics

is important to avoid membership inference attack from the intersection analysis
between generators.

Now, we propose our algorithm for choosing integrally private models for
DNNs. Its flowchart is given in Fig. 2. The algorithm is as follows for a given
dataset D. First, we generate n subsamples each of size N having the same class-
distribution as the original. Second, we compute models and cluster them so that
each cluster has models that are utmost ϵ different from each other. Finally, we
can choose a cluster of models which are recurring in nature and has high utility.
In our methodology, we chose the mean of all the models in the cluster as our
recommended model. I.e. we generate a new model whose weights are the mean
of the weights of all the ϵ-integrally private models. This is our recommended
model.
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Fig. 2: Flowchart of the proposed methodology to recommend an ϵ-integral pri-
vate model.

Algorithm 1 formalizes this approach. In the algorithm we have a dataset D,
Algorithm A, privacy parameter ϵ and size of each subsample N as inputs. We
initialize an empty list of lists and append models which are utmost ϵ distant
apart from the first one. For our results we can either chose the top recurring
model or X most frequent models (for more ambiguity) which is done in func-
tion choseXModels(). Our recommended model is the mean of the models in
the cluster. For X ϵ−ranged models, we recommend X mean models and their
statistics as the output of our proposed algorithm.

4 Experimental Results

In this section, we present our experimental results for our proposed methodol-
ogy. Our approach is valid for both numerical/categorical data and for classifi-
cation problems with an arbitrary number of classes. Table 1 shows the details
of the datasets we have considered for our experiments namely Adult, Susy, ai4i
and HepMass from UCI repository [16]; and Churn_Modelling, Diabetes [17].
Of these datasets, Churn_Modelling and Adult have categorical data and Di-
abetes is a multi-class problem. We have considered small datasets (≈ 10-50K
instances), medium dataset (≈ 250K instances) and large datasets (≈ 5-7 million
instances) for our experimental study. Table 1 also shows the size of the subsam-
ples. The size is chosen so that there are enough subsamples to find integrally
private models.
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Dataset # instances # attribute Data type # classes subsample size

Adult 48842 14
Categorical

Integer
2 1000

Susy 5000000 18 Real 2 10000

ai4i 10000 14 Real 2 500

HepMass 7000000 28 Real 2 10000

Churn
Modelling

10000 21
Categorical

Real
2 500

Diabetes 254000 21 Real 3 5000

Table 1: Details of the used Datasets

To compare the performace of our approach and 2 benchmark, we have used
an architecture of 5-layered DNN with 3-hidden layers with 5-10-5 neurons. As
we explain later, we have considered other architectures as well. Then, we have
taken ϵ = 0.05 for all the datasets, other values could be used depending on the
application requirements.

The results of our methodology have been compared with results with a
differential private solution [18] and the benchmark results. Benchmark results
are obtained by training the model with 70-30 train-test split of original dataset.
Now, let us look at the number of generated models from randomly chosen
subsamples of the size given in Table 1. In case of the adult dataset, the total
possible models which can be considered for integral privacy are 47, similarly for
ai4i dataset we have 19, for susy dataset we have 498, for hepmass dataset we
have 698, for churn modelling dataset we have 18, and for diabetes dataset we
have 49 models to be considered for integral privacy.

Fig. 3 shows the training f1 score of top 5 (for ai4i and Churn Modelling
datasets there are 2 and 3 generators only) recurring models along with the
training score of the benchmark model in black solid line and three level of
differential privacy(DP): high privacy (ϵ ≈ 0.1, represented by ), moderate
privacy (ϵ ≈ 0.5, represented by ·−) and low privacy (ϵ ≈ 1.0, represented by
). In general, higher DP privacy (low ϵ, ) leads to lower training score and

higher training loss. In the plots, the f1 scores of all the models are in the light
shade, and the dark solid line represents the mean of the ϵ ranged integral private
models. Observe from Fig. 3a and 3b, we achieve better training score than the
benchmark training scores while from Fig. 3c, 3d, 3e and 3f we can observe
benchmark comparable results. It can be seen from Fig. 3a, 3c and 3d, integrally
private models have better training score than all three variants of differentially
private models on the other hand Fig. 3b, 3e and 3f, the training utility of
integrally private model is comparable with the differentially private models.
We get similar results for the training loss as shown in Fig. 4. We have denoted
the loss of each model in the lighter shade solid line, their mean loss in dark solid
line, the benchmark model loss with solid black line and three level of differential
privacy: high privacy with , moderate privacy with ·− and low privacy with
. It can be seen that the loss for integrally private models is comparable with
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(a) (b) (c)

(d) (e) (f)

Fig. 3: f1 score of top 5 ϵ-recurring models over training data for (a) Adult (b)
ai4i (c) HepMass (d) Churn Modelling (e) Diabetes (f) Susy Datasets

the benchmark model loss. We can observe from Fig. 4b, 4c and 4d, integrally
private models have significant improvement in terms of training loss from DP
variants while Fig 4a, 4e shows some improvement from DP variants in contrast
to Fig. 4f where low, moderate DP privacy has improvement in training loss
from integrally private models.

The concept of data-centric AI simply suggests that good quality of data
can lead to good models. In our approach, we have only used 0.15% to 2% of
the original data, but with the same class-distribution, to train our model (see
table 1 for subsample size). We got surprising result when we compared their
performance on test data i.e. 30% of the original data. Fig. 5 shows the result
on the test data, lighter shade circles represent the test result for each model
while dark solid colored circle represents their mean value. From Fig. 5, we can
say that our ϵ-integrally private models achieve benchmark comparable f1 score
on much bigger test datasets (15 to 200 times).

Our recommended model is the mean of all the models in the ϵ-integral
private range. The result in Fig 5 motivated us to compare performance of the
aggregated ϵ-integrally private models with the original training and testing
datasets. Fig. 6 shows the comparison of f1 score on training data (in solid color
circles) and test data (in hollow circles) with benchmark training score (in solid
line) and benchmark test score (in dashed line). Our recommended models have
benchmark comparable f1 score on all the datasets.

Table 2 shows the recurrence of the recommended model with the test accu-
racy on much bigger test sets. We have considered 4 different architectures: DNN-
1 has 3-hidden layers (with 5-10-5 neurons respectively) architecture; DNN-2
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(a) (b) (c)

(d) (e) (f)

Fig. 4: Training loss of top 5 ϵ-recurring models for (a) Adult (b) ai4i (c) HepMass
(d) Churn Modelling (e) Diabetes (f) Susy Datasets

(a) (b) (c)

(d) (e) (f)

Fig. 5: f1 score of top 5 ϵ-recurring models on bigger test data for (a) Adult (b)
ai4i (c) HepMass (d) Churn Modelling (e) Diabetes (f) Susy

has 1- hidden layer (with 1024 neurons) architecture; DNN-3 has 3-hidden lay-
ers (with 10-20-10 neurons respective) architecture; and DNN-4 has 5-hidden
layers (with 5-10-20-10-5 neurons respectively) architecture. Table 2 shows that
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Dataset
DNN-1 DNN-2 DNN-3 DNN-4

recurrence test_acc recurrence test_acc recurrence test_acc recurrence test_acc

Adult 10 0.8387 89 0.7797 16 0.8286 36 0.8284

Susy 64 0.7758 366 0.7917 8 0.7636 6 0.7882

ai4i 17 0.9647 19 0.9723 12 0.9683 10 0.9747

HepMass 171 0.8325 562 0.8344 68 0.8325 51 0.8336

Churn
Modelling

9 0.8145 13 0.8520 10 0.7927 10 0.7870

Diabetes 12 0.8627 21 0.8596 13 0.8634 5 0.8596

Table 2: Different architectures and their f1 score on 30% test dataset.

the proposed methodology produces benchmark comparable results for different
DNN architectures as well.

(a) (b) (c)

(d) (e) (f)

Fig. 6: f1 score on train and test data for mean of the ϵ-recurring models for (a)
Adult (b) ai4i (c) HepMass (d) Churn Modelling (e) Diabetes (f) Susy

4.1 Discussion

In summary, our results with varied sized, multi-class and categorical datasets
suggest that we can achieve ϵ-integral privacy with good utility (comparable to
benchmark utility) from the list of the recommended models depending on the
value of k (number of models in ϵ range) with no additional computational cost.

The good results of our approach can essentially be linked to the data centric
AI approach where we train our model for smaller datasets with the same class-
distribution as the original dataset and get good results. We further explored
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the impact of subsample size and compared their performance on separate 70-30
training data and testing data on moderately sized adult and diabetes datasets.
Our results from Fig. 7 shows that the f1 score for both training and testing
data is non-decreasing but it is neither increasing significantly with respect to
the increase in subsample size. Our results are in line with [19] which highlights
that one can generate arbitrarily similar model of finite floating point weights
from two (or more) non-overlapping dataset. The paper [19] also suggest that
we can get good results on smaller datasets as well, which aligns with the results
in Fig. 7.

(a) (b)

Fig. 7: f1 score of various subsample sizes on (a) Adult (b) Diabetes datasets

For our proposed methodology, we must chose subsamples size (N) very care-
fully. The choice for N must be large enough to generate the model with good
utility at the same time it should be able to generate sufficient number of disjoint
subsamples. Probably approximately correct (PAC) [20] can suggest an estimate
for the choice of the parameter N . A model G is said to be PAC learnable with
respect to loss l if and only if the difference between the loss for the learned model
G and true (best possible) model Ḡ is at most ϵ with probability at least 1− δ
i.e. P [Gl − Ḡl ≤ ϵ] ≥ 1− δ. With this the minimum number of samples required
for a PAC learnable model is bounded by O([V C(G) + ln(1/δ)]/ϵ2) [21] where
V C(G) is the Vapnik–Chervonenkis dimension of the model G. Quantifying the
VC-dimension for complex models like deep neural network is still an open prob-
lem [22]. Therefore, in the literature scientists follow the rule-of-thumbs: (1) The
VC dimension of DNNs is considered equal to the number of weights in DNNs
[23] and then (2) the minimum number of samples required to learn the DNN is
established as 10 times the VC dimension [24]. Considering this, i.e., a sample
size of 10-times the VC-dimension (number of weights) should provide a PAC
learnable model. For datasets ai4i, and Churn_Modeling the number of weights
are 172 and 197, respectively, and hence the minimum subsample size is esti-
mated as 1720 and 1970 for PAC learnability. This results in very few disjoint
subsamples (5 for both datasets) which may not be enough to find integrally
private models. This suggests a trade-off between model complexity (number of
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weights) and its learning ability for integral privacy. Further study in this area
is required to investigate the impact of this trade-off for integral privacy.

4.2 Limitations:

Based on a critical analysis of our approach and the results obtained, we can
underline the following limitations of our approach:

1. Our methodolgy may not be suitable in the presence of outliers as the outliers
disturbs the distribution of the dataset.

2. Selection of private models on very small datasets with our proposed method-
ology is not feasible.

3. High model complexity may result in less number of models in ϵ-range.

5 Conclusion and Future work

In this paper, we have first extended the model comparison attack to deep neural
networks. We have also introduced the concept of ϵ-integral privacy which is
then used to recommend integrally private models for deep neural networks.
Our results show that we are able to achieve ϵ-integrally private models without
any significant utility loss (improvement of utility in some cases). Our results
also highlights that small data of good quality can result in a well trained model.

For our proposed methodology, we have arbitrarily chosen the size of the sub-
samples; the privacy parameter ϵ and the DNNs architecture. Tuning of these
areas may yield interesting results. Another interesting direction is to use a
data-enhancement approach to remove outliers as done in [15]. Federated Learn-
ing takes advantage of data distributed across multiple users, where learning
takes place locally. Our methodology can be seen as independent and identically
distributed (IID) ϵ-integral private model selection in federated learning for a
single pass. Our work can further be extended into non-IID settings of federated
learning.
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