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Abstract. Can machine learning discover Kepler’s first law from data?
We emulate Johannes Kepler’s discovery of the equations of the orbit of
Mars with the Rudolphine tables using AI Feynman, a physics-inspired
tool for symbolic regression.

1 Introduction

In 2020, Silviu-Marian Udrescu and Max Tegmark introduced AI Feynman [16],
a symbolic regression algorithm that could rediscover from data one hundred
equations from the Feynman Lectures on Physics [3]. Although the authors mo-
tivated their work with the example of Johannes Kepler’s successful discovery of
the orbital equations of Mars, to our knowledge, they did not report an attempt
to rediscover it with their algorithm. We show that AI Feynman can emulate
Kepler’s discovery of the orbital equation of Mars from the Rudolphine tables.

The discovery of Kepler’s laws of planetary motion illustrates of the process
of science, encapsulating the principles of parsimony and physical considerations.
Prior to Kepler, early astrologers such as Nicolaus Copernicus and Tycho Brahe
hypothesized various models to explain the movement of celestial bodies. Armed
with the Prutenic tables, Copernicus modelled the orbit of Mars as heliocentric,
with a deferent having two epicycles [12]. However, Kepler, assistant to Tycho
Brahe, had access to the best available data collected in Europe. In 1627, Kepler
compiled Brahe’s sightings of Mars into a set of 180 heliocentric data of the
position of Mars in the Rudolphine tables. The translation of sightings to the
Rudolphine tables only embeds assumptions of heliocentrism and planarity of
the orbit. Kepler could have described the motions of Mars as an oval or added
additional epicycles to the Copernician model, but instead described it as ellip-
tical in Astronomia nova in 1609 [8]. We use AI Feynman to emulate Kepler’s
discovery of the elliptical orbital equation of Mars, from the Rudolphine tables.

The Rudolphine tables already embed assumptions regarding planarity and
heliocentricity of Mars’ orbit. To make further inferences using AI Feynman, we
can add biases to the data regarding its physical units. We have four experi-
ments. In the first experiment, AI Feynman is oblivious to biases. In the second
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and third experiments, AI Feynman is biased through transforming data which
are angles and limiting the search space for orbital equations respectively. The
fourth experiment combines the biases of the second and third. AI Feynman ben-
efits from these biases, and produces the best result in the fourth experiment.
Information regarding the physical units of the data likely also guided Kepler in
his discovery of the elliptical orbit of Mars, and in this way, AI Feynman emu-
lates Kepler’s discovery from data in the Rudolphine tables. In this paper, we
present the design, results and discussion of our experiments with AI Feynman.

2 Related Work

Finding an equation describing the orbit of Mars is a combinatorial challenge.
The task is NP-hard in principle due to its exponentially large search space of
equations [16]. To circumvent this, one may use universal function approxima-
tors such as multilayer perceptron neural networks [5]. Alternatively, symbolic
regressions search for a parsimonious and elegant form of the unknown equation.

There are three main classes of symbolic regression methods [10]: regression-
based, expression tree-based and physics- or mathematics-inspired. We use AI
Feynman, a machine learning and physics-inspired algorithm [16].

Regression-based symbolic regression methods [10], given solutions to the un-
known equation, find the coefficients of a fixed basis that minimise the prediction
error. As the basis grows, the fit improves, but the functional form of the un-
known equation becomes less sparse or parsimonious. Sparse regressions promote
sparsity through regularisation, as proposed by Robert Tibshirani [15] who used
the l1 norm, thus inventing the Lasso regression. A state-of-the-art sparse sym-
bolic regression approach is the Sparse Identification of Nonlinear Dynamics by
Steven Brunton et al. in [1]. It leverages regularisation and identifies equations
of motion of a system using a sparse regression over a chosen basis.

Committing to a basis limits the applicability of regression-based methods.
Expression tree-based symbolic regression methods based on genetic program-
ming [10] can instead discover the form and coefficients of the unknown equation.

Seminal work by John Koza et al. [9] represented each approximation of an
unknown equation as a genetic programme with a tree-like data structure, with
traits (or nodes in the tree) representing functions or operations, and variables
representing real numbers. The fitness of each genetic programme is its prediction
error. Fitter genetic programmes undergo a set of transition rules comprising
selection, crossover and mutation to iteratively find the optimal equation form.

Genetic programmes may greedily mimic nuances of the unknown equa-
tion [14], limiting generalisability. David Goldberg [4] used Pareto optimisation
to balance the objectives of fit and parsimony in symbolic regression. In each it-
eration, the fittest genetic programmes lie on the non-dominated Pareto-frontier.
State-of-the-art symbolic regression using genetic programming include Eureqa

by Michael Schmidt and Hod Lipson [13] and PySR by Miles Cranmer [2].
Expression tree-based methods do not guarantee that more accurate approxi-

mations of an equation are symbolically closer to the truth. If an expression tree-
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based method finds a reasonably accurate equation with wrong functional form,
it risks getting stuck near a local optimum [16]. Functions of practical interest
in physics exhibit simplifying properties such as symmetry or separability [16].
Physics-inspired symbolic regression methods leverage these simplifying proper-
ties to guarantee taking a step in the right direction. Udrescu and Tegmark [16]
use a neural network to test data describing the unknown equation for simplify-
ing properties and recursively break the unknown equation into simpler unknown
equations with fewer variables to solve [16]. Each simpler unknown equation can
be solved by regression with a basis set of non-linear functions. AI Feynman then
outputs a sequence of increasingly complex equations that provide progressively
better accuracy, along a Pareto front, based on work by Goldberg [4] and Guido
Smits [14]. We use AI Feynman to rediscover the orbital equation of Mars.

3 Methodology

In publishing the Rudolphine tables, Kepler had already assumed planarity
and heliocentricity of the orbit of Mars. We experiment if AI Feynman performs
better with biases, based on our knowledge of the physical units of the data.

Informing a learning algorithm of physics amounts to introducing appro-
priate biases that can steer the learning process towards identifying physically
consistent solutions according to George Karnadiakis [6]. Karniadakis identifies
three types of bias: observational, inductive and learning biases. Observational
biases are introduced directly through data that embody the underlying physics
or carefully crafted data augmentation procedures. Training a machine learning
model on such data allows it to learn an output that reflects the physical struc-
ture of the data. Inductive biases correspond to prior assumptions incorporated
by tailored interventions to a machine learning model architecture, so predic-
tions are guaranteed to satisfy a set of given physical laws. Learning biases can
be introduced by appropriate choice of loss functions, constraints and inference
algorithms that can modulate the training phase of an machine learning model
to explicitly favour convergence towards solutions that adhere to the underlying
physics. We consider the introduction of observational and inductive biases.

With knowledge that data is known to be an angle, only trigonometric func-
tions can transform it. We introduce an observational bias by applying the sine
and cosine functions to inputs of the unknown equation that are known to be
angles. The resulting numerical values, hence embodying the underlying period-
icity of the data, are input to AI Feynman. The observational bias guides AI
Feynman in finding an equation that reflects the periodic nature of Mars’ orbit.

With knowledge that data are physical quantities, they cannot be trans-
formed by exponential and logarithmic functions, as these only transform di-
mensionless quantities. We introduce an inductive bias by eliminating candidate
functions. For each simpler recursive unknown equation AI Feynman has to solve,
it transforms equations in the current Pareto front by one of several non-linear
functions. These non-linear functions include exponential, logarithmic, trigono-
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metric, polynomial and radical functions. The inductive bias limits the search
space to trigonometric, polynomial and radical functions.

We conduct four experiments corresponding to four possible combinations of
observational and inductive biases with the AI-Feynman algorithm. Experiment
1 does not use any bias. Experiment 2 and 3 only use observational and inductive
bias respectively. Experiment 4 uses both observational and inductive bias.

While AI Feynman explores the Pareto front, Kepler may have instead made
use of thought experiments to hypothesize an elliptical orbit. Fitting data from
the Rudolphine tables to the equation of an ellipse using non-linear least squares
returns the coefficients representing the eccentricity and semi-major axis. These
are 0.0926 and 1.5235 respectively. For reference, the National Aeronautics and
Space Administration suggest an 0.0934 and 1.5237 respectively [11].

4 Performance Evaluation

In the Rudolphine tables [7], the table titled Tabula Aequationum MARTIS, or
Table of Corrections for Mars, contains four columns of data: Anomalia eccentri,
Intercolumnium, Anomalia coaequata, and Intervallu. These columns represent
the eccentric anomaly, an interpolating factor, the coequated or true anomaly,
and the distance between the Sun and Mars respectively. The full Rudolphine
tables (snippet found in Figure 1) was digitised for this experiment.

Fig. 1: The four columns of data provided in the Rudolphine Tables.

We apply AI Feynman to the data of Intervallu and Anomalia coaequata to
recover the equation of orbit for Mars. Anomalia coaequata is an angle in degrees
minutes seconds, which we convert to decimal degrees. Intervallu is the distance
between the Sun and Mars, which we scale from a magnitude of E+05 to E+00.
The code for AI Feynman, with minor modifications to embed observational and
inductive biases, is at https://github.com/zykhoo/AI-Feynman.

We compare equations along the AI Feynman Pareto frontier with the or-
bital equation of Mars in Equation 0. r is the Intervallu and θ is the Anomalia
coaequata. ϵ is the eccentricity of the ellipse, and a is the semi-major axis.

r =
a

1 + ϵ× cosθ
(0)

https://github.com/zykhoo/AI-Feynman
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We also present the mean description length loss[16,17] (DL) computed between
each predicted and true Intervallu. It minimises the geometric mean instead of
the arithmetic mean, which encourages improving already well-fit points [17].

For Experiments 1 and 3, the inputs to AI Feynman are θ and r. For Experi-
ments 2 and 4, the inputs to AI Feynman are cos(θ), sin(θ) and r. We traverse the
equations along the Pareto frontier returned by AI Feynman in increasing good-
ness of fit and increasing complexity (or equivalently decreasing parsimony) and
present them. The results of Experiments 1, 2, 3 and 4 are presented in Tables 1,
2, 3 and 4 respectively. We omit results independent of θ.

Eqn No. Equation DL

(1a) r =
4

3
− 0.09 × θ

2
24.976

(1b) r = (2.78 − 0.26 × θ
2
)
0
.5 24.926

(1c) r = arccos (−0.02 × θ
3

+ 0.09 × θ
2 − 0.1) 23.577

(1d) r =
1

−0.01 × θ3 + 0.04 × θ2 + 0.6
22.515

(1e) r = (0.01 × θ
3 − 0.04 × θ

2
+ 1.29)

2
22.273

(1f) r = arccos (−0.02 × θ
3

+ 0.09 × θ
2

+ 0.01 × θ − 0.1) 21.356

(1g) r = log

(
0.09 × θ

3 − 0.38 × θ
2 −

1

9
× θ + 5.3

)
20.841

(1h) r = 0.02 × θ
3 − 0.09 × θ

2 − 0.01 × θ + 1.67 20.238

Table 1: Results of Experiment 1, which took 748 seconds.

Eqn No. Equation MSE

(2a) r = log cos θ + 5 26.006

(2b) r =
1

7
× cos θ + 1.5 24.053

(2c) r = 1.5 × exp{0.1 × cos θ} 23.512

(2d) r =
1

2
3

− 0.0556244812357114 × cos θ
22.857

(2e) r = 1.5119670200057298 × exp{(0.1 × cos θ)} 22.457

(2f) r = 1.510965630582 + (cos θ/(sin θ + 6)) 21.070

(2g) r = 1.51366746425629 × exp(0.0931480601429939 × cos θ) 20.762

(2h) r =
1

0.662428796291351 − 0.0612906403839588 × cos θ
19.781

(2i) r = (0.662428796291351 − 0.0612906403839588 × cos θ)
−1.00133872032166

12.211

Table 2: Results of Experiment 2, which took 1451 seconds.

Experiment 1 does not use any bias. The search space is big and AI Feynman
does not find an equation form that matches the orbital equation of Mars along
its Pareto frontier. In Experiment 2, AI Feynman makes use of an observational
bias. As the input data to AI Feynman embodies the underlying periodicity
of the data, AI Feynman can use this information to guide its search for an
equation that reflects the periodic structure of Mars’ orbit. Therefore, three out
of nine equations along the Pareto front have an equation form that matches
the true orbit of Mars. These are Equations 2d, 2h and 2i. In Experiment 3,
AI Feynman makes use of an inductive bias. While the search space for AI
Feynman is smaller, an inductive bias does not guide its search for an equation



6 Khoo et al.

Eqn No. Equation MSE

(3a) r =
4

3
− 0.09 × θ

2
24.976

(3b) r = (2.78 − 0.25 × θ
2
)
0
.5 24.842

(3c) r = arccos (−0.02 × θ
3

+ 0.09 × θ
2 − 0.1) 23.577

(3d) r =
1

−0.01 × θ3 + 0.04 × θ2 + 0.6
22.515

(3e) r = (0.01 × θ
3 − 0.04 × θ

2
+ 1.29)

2
22.273

(3f) r = arccos (−0.02 × θ
3

+ 0.09 × θ
2

+ 0.01 × θ − 0.1) 21.356

(3g) r = 0.02 × θ
3 − 0.09 × θ

2 − 0.01 × θ + 1.67 20.238

Table 3: Results of Experiment 3, which took 621 seconds.

Eqn No. Equation MSE

(4a) r =
1

7
× cos θ + 1.5 24.053

(4b) r = cos θ/(sin θ + 6) + 1.5 23.617

(4c) r = arccos(0.0420224035468255 − 0.142857142857143 × cos θ) 23.392

(4d) r =
1

2
3

− 0.0566732120453772 × cos θ
22.575

(4e) r = 1.511006320056 + (cos θ/(sin θ + 6)) 21.089

(4f) r = tan(0.0425049090340329 × cos θ + 0.986141372332807) 20.057

(4g) r = tan(0.0427569970488548 × cos θ + 0.98658412694931) 20.021

(4h) r =
1

0.662420213222504 − 0.0612917765974998 × cos θ
19.747

(4i) r = (0.662420213222504 − 0.0612917765974998 × cos θ)
−1.00130701065063

12.208

Table 4: Results of Experiment 4, which took 1184 seconds.

that reflects the periodic structure of Mars’ orbit. Therefore AI Feynman does
not find an equation form that matches the orbital equation of Mars along its
Pareto frontier. In Experiment 4, AI Feynman makes use of both an observational
and an inductive bias. AI Feynman makes use of the observational bias to guide
its search for an equation that reflects the periodic structure of Mars’ orbit. It
also makes use of the inductive bias to limit the search space, resulting in fewer
equations along the Pareto front. Therefore, three out of ten equations along the
Pareto front have an equation form that matches the true orbit of Mars. These
are Equations 4d, 4h and 4i.

Experiments 1 and 2 highlight the importance of an observational bias in
guiding AI Feynman. In Experiment 1, none of the equations along the Pareto
front match the orbital equation for Mars, compared to three out of eleven
equations along the Pareto front for Experiment 2. However, as the observational
bias doubles the number of inputs to AI Feynman, it takes approximately twice
as long to run. This is because AI Feynman recurses through each input. The
depth of the recursion is doubled when the number of inputs is doubled.

Experiments 2 and 4 highlight the importance of an inductive bias in lim-
iting the search space for AI Feynman. In Experiment 2, we can observe many
equations have one of two common forms. Three of them utilise an exponential
function applied to cos θ (Equations 2c, 2e and 2g). Another three utilise an
inverse function applied to cos θ (Equations 2d, 2h and 2i), which matches the
true orbit of Mars. However, in Experiment 4, the equation form with an inverse
function applied to cos θ in (Equations 4d, 4h and 4i) matches the true obit of
Mars, and is also the most prevalent. Therefore, AI Feynman, augmented with
both an observational and inductive bias, is best able to rediscover Kepler’s first
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law for the orbit of Mars. The inductive bias also reduces the time taken for AI
Feynman to run. This is because the search space for AI Feynman is limited,
and time is saved from having to search a smaller search space.

We also observe that Equations 2h, 2i, 4h, and 4i, with forms that match the
true orbit of Mars, have the lowest mean description length loss of less than 20.

Lastly, we observe that Equations 2h and 4h suggest a = 1.52 and ϵ = 0.0925
similar to the values suggested in the Rudolphine tables.

5 Conclusion

We have successfully shown that AI Feynman can rediscover from the Rudol-
phine Tables the equation of Kepler’s first law for the planet Mars, given infor-
mation regarding physical quantities of the data in the form of observational and
inductive biases. The discovery of physical laws is a bi-optimisation problem of
parsimony and accuracy, that can be guided by physical units of the data avail-
able. AI Feynman is able to emulate Kepler’s discovery of the orbital equation
of Mars because it implements an optimisation of both parsimony and accuracy,
and can be guided by information regarding the physical units of the data.

As future work, we are looking into how AI Feynman can repeat this dis-
covery process directly from sightings of Mars and the Sun from Earth. We use
a modern reproduction of these sightings from the National Aeronautics and
Space Administration’s Horizons system. This challenges AI Feynman to per-
form a change from the geocentric to heliocentric reference frame, and we are
investigating how this change can be incorporated within its algorithm. Lastly,
we are experimenting with the planet Mercury, which has a precessing orbit.
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Appendix

Eqn No. Eqn MSE

1 asin(−666.000000000000× ((sin(pi) + 1)− 1)) 2.33
2 1.50000000000000 0.0106
3 pi/2 0.0123
4 1.65306122448980 0.0268
5 1.66666666666667− 0.09× x2

0 0.048
6 (2.78− 0.26× x2

0)
0.5 0.0767

7 acos(−0.02× x3
0 + 0.09× x2

0 − 0.1) 0.000169
8 1/(−0.01× x3

0 + 0.04× x2
0 + 0.6) 0.000706

9 (0.01× x3
0 − 0.04× x2

0 + 1.29)2 0.000458
10 acos(−0.02× x3

0 + 0.09× x2
0 + 0.01× x0 − 0.1) 4.7e-05

11 log(0.09× x3
0 − 0.38× x2

0 − 0.111111111111111× x0 + 5.3) 1.07e-05
12 0.02× x3

0 − 0.09× x2
0 − 0.01× x0 + 1.67 4.41e-05

Table 5: Experiment 1 Results

https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html
https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html
https://doi.org/10.1086/368473
https://doi.org/10.1086/368473
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Eqn No. Eqn MSE

1 1.50000000000000 0.0106
2 log(x0 + 5) 0.0092
3 0.142857142857143× x0 + 1.5 0.000309
4 1.5× exp(0.1× x0) 0.00021
5 acos(0.0418258837357514− 0.142857142857143× x0) 0.000166
6 1/(0.666666666666667− 0.0571196591636008× x0) 0.000212
7 1.5082674607662332× exp(0.1× x0) 7.44e-05
8 1.510965630582 + (x0/((((((x1 + 1) + 1) + 1) + 1) + 1) + 1)) 0.000179
9 1.51366746425629× exp(0.0931480601429939× x0) 5.39e-06
10 tan(0.0427570976316929× x0 + 0.986583888530731) 1.98e-06
11 tan(0.0428397443727006× x0 + 0.986126406475687) 4.21e-06
12 1/(0.662416338920593− 0.0612923018634319× x0) 7.26e-07

13 (0.662416338920593− 0.0612923018634319× x0)
( − 1.0012925863266) 6.01e-10

Table 6: Experiment 2 Results

Eqn No. Eqn MSE

1 0 2.33
2 1.50000000000000 0.0106
3 pi/2 0.0123
4 1.65306122448980 0.0268
5 1.66666666666667− 0.09× x2

0 0.048
6 (2.78− 0.26× x2

0)
0.5 0.0767

7 acos(−0.02× x3
0 + 0.09× x2

0 − 0.1) 0.000169
8 1/(−0.01× x3

0 + 0.04× x2
0 + 0.6) 0.000706

9 (0.01× x3
0 − 0.04× x2

0 + 1.29)2 0.000458
10 acos(−0.02× x3

0 + 0.09× x2
0 + 0.01× x0 − 0.1) 4.7e-05

11 (0.06× x3
0 − 0.26× x2

0 − 0.05× x0 + 2.78)0.5 5.61e-06
12 0.02× x3

0 − 0.09× x2
0 − 0.01× x0 + 1.67 4.41e-05

Table 7: Experiment 3 Results

Eqn No. Eqn MSE

1 0 2.33
2 1.50000000000000 0.0106
3 1.56250000000000 0.0115
4 0.142857142857143× x0 + 1.5 0.000309
5 x0/(x1 + 6) + 1.5 0.000416
6 1/(0.666666666666667− 0.0557172402393568× x0) 0.000265
7 1.510957104465 + (x0/((((((x1 + 1) + 1) + 1) + 1) + 1) + 1)) 0.000179
8 1/(0.662428081035614− 0.0612907484173775× x0) 7.75e-07
9 0.140863761305809× x0 − 0.0146051803603768× x1 + 1.52623379230499 1.1e-06

10 (0.662428081035614− 0.0612907484173775× x0)
( − 1.001335978508) 6.01e-10

Table 8: Experiment 4 Results



10 Khoo et al.

Fig. 2: A plot of the results of Experiment 1. The equations correspond to those
presented in Table 1. The y-axis represents the Intervallu and x-axis represents
the Anomalia coaequata. The true values for the Intervallu from the Rudolphine
tables are also plotted and labeled ”original”.

Fig. 3: A plot of the results of Experiment 2. The equations correspond to those
presented in Table 2. The y-axis represents the Intervallu and x-axis represents
the Anomalia coaequata. The true values for the Intervallu from the Rudolphine
tables are also plotted and labeled ”original”.
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Fig. 4: A plot of the results of Experiment 3. The equations correspond to those
presented in Table 3. The y-axis represents the Intervallu and x-axis represents
the Anomalia coaequata. The true values for the Intervallu from the Rudolphine
tables are also plotted and labeled ”original”.

Fig. 5: A plot of the results of Experiment 4. The equations correspond to those
presented in Table 4. The y-axis represents the Intervallu and x-axis represents
the Anomalia coaequata. The true values for the Intervallu from the Rudolphine
tables are also plotted and labeled ”original”.
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