
PrivSketch: A Private Sketch-based Frequency
Estimation Protocol for Data Streams

Ying Li1,2, Xiaodong Lee1,2(�), Botao Peng1(�), Themis Palpanas3, and
Jingan Xue4

1 Institute of Computing Technology, Chinese Academy of Sciences
2 University of Chinese Academy of Sciences
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Abstract. Local differential privacy (LDP) has recently become a pop-
ular privacy-preserving data collection technique protecting users’ pri-
vacy.The main problem of data stream collection under LDP is the poor
utility due to multi-item collection from a very large domain. This pa-
per proposes PrivSketch, a high-utility frequency estimation protocol
taking advantage of sketches, suitable for private data stream collec-
tion. Combining the proposed background information and a decode-first
collection-side workflow, PrivSketch improves the utility by reducing the
errors introduced by the sketching algorithm and the privacy budget uti-
lization when collecting multiple items. We analytically prove the supe-
rior accuracy and privacy characteristics of PrivSketch, and also evaluate
them experimentally. Our evaluation, with several diverse synthetic and
real datasets, demonstrates that PrivSketch is 1-3 orders of magnitude
better than the competitors in terms of utility in both frequency estima-
tion and frequent item estimation, while being up to ∼100x faster. This
paper was published in DEXA 2023.

1 Introduction

Motivation. Collecting user data, often in the form of a data stream, in order
to analyze them and provide some services has become a common practice.
However, data collection may expose user information,which is a major concern.
Local Differential Privacy (LDP) is popular to protect individual privacy during
data collection and has been widely used in technology companies (such as Apple,
Google, Microsoft). It perturbs data locally before sending them to the collector
and enables the collector to obtain approximate statistics on the perturbed data,
to avoid the risk of disclosing user privacy. A parameter ϵ is used to quantify the
amount of perturbation, which determines the degree of privacy protection and
the utility of the privacy-preserving algorithm.
Utility Problem. Although several studies have focused on the frequency es-
timation problem under LDP, they do not perform well when used in a data
stream context, due to following reasons. First, existing solutions consider a
unified size for the data items generated by different users (i.e., data length)
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that is based on unrealistic assumptions (assume only one item in a collection
interval) [10,25], or a predefined/estimated unified size L for each collection
(padding and sampling) [19,22,23], in both cases hurting utility. Second, the
large domains of several data streams (e.g., URLs, and IP) lead to excessive
computation and communication costs, as well as significant perturbation errors
(some of the existing literature on frequency estimation [22,23] is only applica-
ble to small cardinality domains). Sketching is widely used in streaming data
processing for compressing sparse data from a large domain (e.g., when a tiny
percentage of webpages are accessed by any individual user). The uniform size of
sketches makes it possible to unify the data length of different users without extra
padding and sampling [19], and leads to efficient storage. The sketching has been
combined with LDP in the Private Count-Mean Sketch (PCMS) algorithm [20]
proposed by Apple. However, it operates at the granularity of single items, which
hurts performance. When considering extending it to multi-item collections, the
following problems emerge. (i) The error introduced by sketching algorithms is
not considered. Aggregating sketches from users directly is equivalent to encod-
ing all data into one sketch, leading to increasing errors of collisions, i.e., data
hashed in the same position. (ii) To maintain user-level privacy, allocating the
privacy budget for each counter in the sketch is required, resulting in substantial
inaccuracies and poor utility.

Our solution. We propose PrivSketch, a high-utility privacy-preserving sketch-
based frequency estimation protocol that leads to lower errors when compared to
existing solutions. PrivSketch proposes an innovative LDP collector-side work-
flow that decodes the perturbed sketch before aggregating and calibrating it,
which avoids the error introduced by the collisions when aggregating all per-
turbed sketches in the traditional decode-after workflow. In addition, PrivSketch
utilizes the ordering matrix extracted from the original sketch, which enables the
collector to obtain the minimum index information, while ensuring the privacy
of each user’s sketch (cf. proof in Section 3.4). This effectively reduces the mini-
mum calculation error caused by disturbance and is the first attempt to improve
utility using background information. Furthermore, PrivSketch uses the sam-
pling technique to improve the utilization of the information encoded by the
sketch, transmitting relatively accurate information with a limited privacy bud-
get. Thus, it reduces the error caused by the uniform allocation of the privacy
budget when encoding multiple items.

Contributions. Our contributions are summarized below.

•We propose a novel LDP protocol, PrivSketch, that is suitable for frequency
estimation in data streams where multi-item encoding is needed. It is the first
sketch-based privacy-preserving protocol that considers the errors introduced by
the sketches with a novel decode-first workflow. It employs background informa-
tion to reduce the minimum value calculation errors of sketches and utilizes a
sampling technique to improve the privacy budget utilization.

• We prove (cf. Section 3.4) that the ordering matrix as background infor-
mation does not expose the original value of each counter in the sketch, which
meets the privacy needs of users. We introduce a new definition of the indistin-
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guishable input set, where the collector cannot distinguish any two values.We
observe that the utility of LDP algorithms can be improved with appropriate
additional background information , but does not harm the users’ privacy.

• We evaluate our approach on both synthetic and real datasets. We compare
it with extensions and variants of existing algorithms, including the multi-item
encoding extension and its min-variant algorithm. The utility of the protocol
proposed in this paper is 1-3 orders of magnitude more accurate than existing
algorithms, and up to ∼100x faster.

2 Background and preliminaries

Local Differential Privacy (LDP). Differential privacy (DP) [13] is a technol-
ogy with quantified privacy protection, but relies on a trustworthy third-party
collector. To remove the trust in the collector, LDP [11] was proposed where
original data are only accessible by users, and the collector only receives the
perturbed data. A mechanism M satisfying LDP can be defined as follows.

Definition 1 (ϵ-Local Differential Privacy [11]). A randomized algorithm
M satisfies ϵ-local differential privacy (ϵ > 0), if and only if for any two input

tuples x, x′ ∈ D and output y, then Pr[M(x)=y]
Pr[M(x′)=y] ≤ eϵ.

Thus, a smaller ϵmeans large perturbation and more indistinguishable, but lower
utility. There is an important property of LDP:

Theorem 1 (Sequential Composition Mechanism [17]). Assume a ran-
domized algorithm M consists of a sequence of randomized algorithms Mi(1 ≤
i ≤ t). When for each i,Mi satisfies ϵi-LDP, M satisfies

∑t
i=1 ϵi-LDP.

Randomized Response Mechanism (RR) [28,15]. This fundamental LDP
mechanism achieves plausible deniability by allowing users not to give the orig-
inal value. Specifically, for binary values, users answer the original value with
probability p, and the opposite value with probability q = 1− p. To achieve

ϵ-LDP, the worst case is maxPr[M(x)=y]
minPr[M(x′)=y] = p

1−p = eϵ, therefore p = eϵ

1+eϵ . De-

note Pr[x= 1] the percentage of x= 1. For the collector, Pr[y = 1] = pPr[x=
1] + (1 − p)(1 − Pr[x=1]) and Pr[y=0] = p(1 − Pr[x=1]) + (1 − p) Pr[x=1].
Pr[y = 1] and Pr[y = 0] represent the probability of the output y taking the
value of 1 and 0, respectively, which can used to obtain the unbiased estimation
of Pr[x = 1] and Pr[x = 0].
Count-Min Sketch (CMS). A common approach to compress data from
a large domain is the sketching algorithm. The Count-Min Sketch [9] is one
of the most popular sketching algorithms due to its efficiency. The sketching
uses a matrix X consisting of K × M counters, bound to K hash functions
H1, H2, . . . ,HK : {1, . . . , d} 7→ {1, . . . ,M}. It consists of two phases: (i) update,
where K hash functions are used to hash the updated item x, and then the
corresponding counters are updated, i.e. Xk,Hk(x) = Xk,Hk(x) + 1,∀1 ≤ k ≤ K;
(ii) query, where item x’s count c(x) is estimated, denoted by c̃(x), based on the
corresponding counters in the sketch, i.e. min1≤k≤K Xk,Hk(x) [9].



4 Ying Li et al.

Private Count-Mean Sketch (PCMS-Mean) [20]. PCMS-Mean estimates
frequency under LDP, where the user perturbs data before sending them to the
collector. Specifically, for item x, each user chooses a hash function Hk and
updates Xk,Hk(x) = 1 (other positions keep as −1), then, perturbs Xk using RR

and sends the perturbed result X̂k to the collector. The collector constructs a
matrix of sizeK×M where each row is the sum of the perturbed rows indexed by
k, and estimates the frequency by averaging the sum of k counters corresponding
to K hash functions. The algorithm assumes that each user generates only one
item. Thus, for any two rows from different users Xk and X ′

k′ , at most two
positions can be different. To protect these two positions under privacy budget

ϵ, the parameter p in RR is set to eϵ/2

1+eϵ/2
(cf. Theorem 1).

When extending PCMS-Mean to encode multiple items, the number of dif-
ferent positions in any two rows from different users is up to M due to unlimited
items of each user. Thus, to protect the privacy of each position, the parameter

p is set to eϵ/M

1+eϵ/M
. This naive solution works poorly when M is large. The irra-

tional allocation of ϵ is one of the reasons. In addition, the error introduced by
the sketching algorithm is also non-negligible. The estimation error of different
sketching algorithms varies. The error of the Count-Min Sketch is smaller than
that of the Count-Mean Sketch [8]; hence, we use the Count-Min Sketch.
Problem Definition This paper studies the frequency estimation problem un-
der LDP for data streams, where data are generated from a very large do-
main. There is an untrusted collector and a set of n users represented by U =
{U1, U2, . . . , Un}. Each user, Ui, has a set of items of length L(i)(L(i) ≥ 0), which

is denoted by S(i) = {S(i)
1 , S

(i)
2 , . . .}, |S(i)| = L(i). Each item S

(i)
ℓ (0 ≤ ℓ ≤ L(i)) is

discrete value and drawn from a large domain D of size |D| = d, that is, S
(i)
ℓ ∈ D.

In this paper, we focus on estimating the frequency of each item from D, that
represents the proportion of users who possess the item. Formally, the frequency

for each value x ∈ D is defined as: f(x) =
|{i|∃ℓ,0≤ℓ≤L(i),S

(i)
ℓ =x}|

n .

3 PrivSketch Solution

PrivSketch is a LDP protocol based on CMS to solve the frequency estimation
problem in data stream collection. PrivSketch uses a novel collector-side work-
flow (cf. Section 3.2) and the ordering matrix (cf. Section 3.2) to reduce errors
introduced by sketches. PrivSketch also uses a sampling technique to increase
the information utilization in sketches under a limited privacy budget.

Fig. 1 provides a high-level overview of PrivSketch workflow. At the user end,
the encoder encodes items using CMS and the perturber perturbs a sampled one

counter in the sketch using RR. Then, the perturbed counter X̂
(i)
k,m is sent to the

collector with an ordering matrix O(i) which reflects the order of all counters

in the original sketch X(i). At the collector end, the decoder restores X̂
(i)
k,m to

the original domain D by calculating each item’s minimum index based on O(i)

and updating counts of items x whose minimum index equal to the sampled k
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Fig. 1. Overview of PrivSketch.

Algorithm 1: PrivSketch

Input: {S(1), S(2), . . . , S(n)}, ϵ,K,M,D ⊂ D
1 select a set of hash functions H = {H1, H2, . . . , HK};
2 for each i ∈ [1, n] do

3 X̂(i), O(i) ← PrivSketch-User (S(i), ϵ, n,K,M,H);
4 send X̂(i), O(i) to the collector;

5 for each x ∈ D do

6 set X̂ ← {X̂(1), X̂(2), . . . , X̂(n)};
7 set O ← {O(1), O(2), . . . , O(n)};
8 f̂(x)← PrivSketch-Collector (x, ϵ, n,M,H, X̂ ,O);
9 return {f̂(x)|x ∈ D}

and Hk(x) = m. Then, the calibrator estimates items’ frequency by aggregating
restored counts from users and calibrating the perturbation error. The protocol
is shown in Algorithm 1. We elaborate on its novel designs and details next.

3.1 Decoding-First Collector-Side Workflow

An important characteristic of PrivSketch is the decoding-first feature on the
collector side, which is designed to reduce the collisions in the private sketching
algorithm. The naive protocol, PCMS-Min as traditional LDP protocols, consists
of three steps: Encode, Perturb, and Aggregate [24]. Collisions can occur in the
Encode and Aggregate procedure. During encoding, the collision is caused by
that different items are hashed into the same positions, which can be reduced by
a good choice of the sketching parameters. During aggregation, sketches from n
users are integrated into one sketch, equivalent to encoding data from n users
using the same sketch. This leads to a high probability of collisions due to the
large number of users under LDP. We find that decoding the perturbed data
before aggregation can avoid this collision, where the Decode procedure has
been implemented by the collector after the Aggregate procedure but ignored
by LDP protocol designers. If the collector decodes the perturbed data before
aggregation, only the perturbed counts instead of the sketches are aggregated,
thus, no collisions. We present theoretical proof for how the decode-first workflow
reduces collision errors following. Note in our design, we use Calibration instead
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of Aggregate to describe the procedure where aggregating and calibrating errors
caused by the perturbation.

Theorem 2. For estimating the frequency of a value x ∈ D using Count-Min

Sketch, mink
∑n

i=1 X
(i)
k,Hk(x)

represents the results of aggregating sketches before

decoding,
∑n

i=1 mink X
(i)
k,Hk(x)

represents the results of decoding sketches before

aggregating, the following formula holds:

min
k

n∑
i=1

X
(i)
k,Hk(x)

≥
n∑

i=1

min
k

X
(i)
k,Hk(x)

≥ nf(x) (1)

where f(x) represents the true frequency of x.

Proof. For each user Ui and any 1 ≤ k ≤ K, X
(i)
k,Hk(x)

reflects the occurrence of

both x and x′(x′ ̸= x), which are hashed into the same position with x.

X
(i)
k,Hk(x)

= 1{x ∈ S(i)} ∨ 1{x′ ∈ S(i), Hk(x) = Hk(x
′)}.

For the minimum index k where X
(i)
k,Hk(x)

is minimal, the equation above holds.

As a result,
∑n

i=1 mink X
(i)
k,Hk(x)

= nf(x)+
∑n

i=1 1{x′ ∈ S(i), x /∈ S(i), Hmink
(x) =

Hmink
(x′)} ≥ nf(x). Moreover,

∑n
i=1 X

(i)
k,Hk(x)

≥
∑n

i=1 mink X
(i)
k,Hk(x)

, 1 ≤ k ≤
K. Considering mink is one of the case that belongs to [1,K], we can conclude

that mink
∑n

i=1 X
(i)
k,Hk(x)

≥
∑n

i=1 mink X
(i)
k,Hk(x)

.

Thus, when an unbiased estimation of the query result of the original Count-
Min Sketch is achieved, the decode-first collector-side workflow brings fewer er-
rors. Next, we introduce how to ensure an unbiased estimation in PrivSketch.

3.2 Ordering Matrix Generation

In PrivSketch, the minimum index of the perturbed count can be changed by
the randomized response mechanism which hinders an unbiased estimation.
As shown in Fig. 1, the collector queries the perturbed sketch X̂(i) and es-
timates based on it. Assume the calibration for estimation of the frequency
f(x) in D, is based on sketches X̂(i) with a linear function h(x), i.e. f̂(x) =

h(
∑n

i=1 mink X̂
(i)
k,Hk(x)

). PrivSketch needs to satisfy the expectation of the vari-

able after perturbation is an unbiased estimation of the result from querying the

original sketch f̃(x) = 1
n

∑n
i=1 mink X

(i)
k,Hk(x)

. That is,

E[f̂(x)] = E[h(
n∑

i=1

min
k

X̂
(i)
k,Hk(x)

)] = f̃(x) =
1

n

n∑
i=1

min
k

X
(i)
k,Hk(x)

.

Assuming that the row indices of the minimum count for x in the perturbed
and original sketches are k′ and k, if k ̸= k′,

E[X̂(i)
k′,H′

k(x)
] = pX

(i)
k′,H′

k(x)
− qX

(i)
k′,H′

k(x)
= (p− q)X

(i)
k′,H′

k(x)
≥ (p− q)min

k
X

(i)
k,Hk(x)

,



PrivSketch: A Private Sketch-based Frequency Estimation Protocol 7

0 1 1

1 1 0

0 1 0

𝑋0,0
(𝑖)

𝑋1,2
(𝑖)

𝑋2,0
(𝑖)

𝑋2,2
(𝑖)𝑋 𝑖

1 6 4

5 8 3

2 7 0

𝑂 𝑖

𝐺0
(𝑖): the set of 

counters equal to 0

𝐺1
(𝑖): the set of 

counters equal to 1

𝑋0,1
(𝑖)

𝑋0,2
(𝑖)

𝑋1,0
(𝑖)

𝑋1,1
(𝑖)

𝑋2,1
(𝑖)

𝑅0
(𝑖): the order 

range for 𝐺0
(𝑖)

Randomly distribute 

orders in 𝑅0
(𝑖) for 𝐺0

(𝑖)

0  1 2 3

4  5 6 7 8

𝑅1
(𝑖): the order 

range for 𝐺1
(𝑖) Randomly distribute 

orders in 𝑅1
(𝑖) for 𝐺1

(𝑖)

Update corresponding 
positions in 𝑂 𝑖 with 

the order

0  1 2 3

𝑋0,0
(𝑖)

𝑋1,2
(𝑖)

𝑋2,0
(𝑖)

𝑋2,2
(𝑖)

𝑋0,1
(𝑖)

𝑋0,2
(𝑖)

𝑋1,0
(𝑖)

𝑋1,1
(𝑖)

𝑋2,1
(𝑖)

4  5 6 7 8

Fig. 2. The process of generating the ordering matrix.

where p and q represent the probability of keeping the original value and flipping
to the opposite value, respectively. Due to the randomization, the minimum
count in the perturbed sketch is not always in the same position as in the original
sketch, i.e., k ̸= k′. However, because the gap between different counts in sketches
is diverse and related to the count of specific items, it is difficult to turn the above
inequality into an equation by constructing a h(x). To solve this problem, we
propose the ordering matrix.

The ordering matrix O(i) is the background information provided by users,
to assist the collector in getting the same row index of the minimum value
as the original matrix, which takes advantage of the insensitivity of LDP to
any background information to keep the privacy. The ordering matrix O(i) is
a K × M matrix, where each position represents the serial number of the cor-
responding position in the original sketch X(i) ordered by count. Firstly, each

counter X
(i)
k,m is distributed into different groups G

(i)
v according to its count v.

As a result, G
(i)
v includes a set of counters {(k,m)|X(i)

k,m = v} and its length is

denoted by |G(i)
v | = gv. Secondly, each group Gv is bound with its order range

R
(i)
v = [

∑
v′≤v gv′ ,

∑
v′≤v gv′ + gv]. Thirdly, we randomly sample an order with-

out replacement from R
(i)
v for each counter in G

(i)
v where the order selected for

each counter X
(i)
k,m is denoted as r

(i)
k,m. Finally, we update the ordering matrix

O
(i)
k,m = r

(i)
k,m. Thus, the collector can get the same minimum index by comparing

the order of counters in O(i): this has the same result as calculating the minimum
index on the original sketch X(i). An example is shown in Fig. 2.

In the following, we prove the estimation is unbiased in PrivSketch (Sec-
tion 3.3), and analyze the impact of the ordering matrix on privacy (Section 3.4).

3.3 Utility Proof and Improvements

We present the protocol details on the user- and collector-side. We prove that
the estimations are unbiased, and analyze the variances of errors, then employ
sampling to achieve high utility.
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Algorithm 2: PrivSketch-User

Input: S(i), ϵ, n,K,M,H
1 initialize a sketch X(i) ← {0}K×M ;

2 for each ℓ ∈ [1, L(i)],each k ∈ [1,K] do

3 X
(i)

k,Hk(s
(i)
ℓ

)
= 1;

4 generate the ordering matrix O(i);
5 for each k ∈ [1,K], each m ∈ [1,M ] do
6 sample r from [0, 1] uniformly;
7 if r < 1

eϵ/KM+1
then

8 X̂
(i)

k,Hk(s
(i)
ℓ

)
= −2X(i)

k,Hk(s
(i)
ℓ

)
+ 1;

9 else

10 X̂
(i)

k,Hk(s
(i)
ℓ

)
= 2X

(i)

k,Hk(s
(i)
ℓ

)
− 1;

11 return X̂(i), O(i)

Algorithm 3: PrivSketch-Collector

Input: x, ϵ, n,M,H, X̂ ,O
1 select a set of hash functions H = {H1, H2, . . . , HK};
2 C(x)← 0;
3 for each i ∈ [1, n] do

4 kmin ← argmin
k

O
(i)

k,Hk(x)
;

5 C(x)← C(x) + X̂
(i)

kmin,Hkmin
(x);

6 f̂(x)← 1
2
( eϵ/KM+1

eϵ/KM−1

C(x)
n

+ 1);

7 return f̂(x)

User-side protocol (Algorithm 2). It consists of an encoder (lines 1-4) and
a perturber (lines 5-10). In the encoder, each user records locally whether x
appears, because our objective is to obtain the frequency of any value x in
D (instead of counts). Consequently, an update in the encoder is a boolean
disjunction, not an integer addition. Each position Xk,m is initialized as False
(i.e., 0). When x is hashed to Xk,m, the update is Xk,m = Xk,m ∨ True =
True (line 3). After encoding, the ordering matrix is computed by the encoder.
The perturber uses the randomized response mechanism (as in PCMS-Mean) to
perturb each value to the opposite value with a probability of 1

eϵ/KM+1
due to

at most K ×M different positions.

Collector-side Protocol (Algorithm 3). First, the decoder estimates the
perturbed frequency of the value x using the perturbed minimum in X̂ . The
position of the minimum is provided by the background information O (line 4).
Next, the calibrator removes the perturbation error to obtain the final estimation
(line 6). The utility proof of the protocols follows.
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Theorem 3. Let C(x) denote the perturbed counters for each value in D. f̂(x) =
1
2 (

eϵ/KM+1
eϵ/KM−1

C(x)
n + 1) is an unbiased estimation of f̃(x) = 1

n

∑n
i=1 mink X

(i)
k,Hk(x)

which is the frequency inferred from the original count-min sketch. Furthermore,

the variance of f̂(x) is eϵ/KM

n(eϵ/KM−1)2
.

Proof. For each user Ui, the counters for the item x in row k of perturbed sketch

X̂ is denoted by X̂
(i)
k,Hk(x)

, which value is determined byX
(i)
k,Hk(x)

(lines 6-10 in Al-

gorithm 2). C(x), which represents the result by aggregating the perturbed coun-

ters at the minimum position mink X̂
(i)
k,Hk(x)

(x), equal to
∑n

i=1 mink X̂
(i)
k,Hk(x)

(x),

satisfies: E[C(x)] = 2(p−q)nf̃(x)+(2q−1)n, Var[C(x)] = 4n{(p+q−1)(p−q)f̃(x)+

q(1−q)}, where nf̃(x) is the estimated number of users with x in their sequences

using the set of original sketch X . In our protocol, p = eϵ/KM

eϵ/KM+1
, q = 1

eϵ/KM+1
.

Thus, the expectation of f̂(x), can be shown to be equal to f̃(x) as follows, which

means the estimation is unbiased. And its variance of f̂(x) is satisfied:

E[f̂(x)] =
1

2
(
eϵ/KM + 1

eϵ/KM − 1

E[C(x)]

n
+ 1) = f̃(x) (2)

Var[f̂(x)] =
1

4n2

(eϵ/KM + 1)2

(eϵ/KM − 1)2
Var[C(x)] =

eϵ/KM

n(eϵ/KM − 1)2
. (3)

Sample the sketches. Following the above design, larger K and M make the
perturbation probability closer to 1

2 as random.And the variance also increases
at the same time. The limited privacy budget ϵ/KM for each counter makes
the collector receive scarcely useful information from the perturbed sketches,
making it difficult to infer the true frequency. To solve the problem, the sam-
pling technique is a common solution, i.e., randomly sampling one from K ·M
counters on the user end. Thus, for each counter chosen, the privacy budget
becomes ϵ. The variance now is Var[f̂(x)] = KMeϵ

n(eϵ−1)2 , which is linearly related

to K ·M due to the sampling error, thus increasing more slowly than the expo-
nential relation in Equation (3). However, it is challenging to obtain the optimal
sketching, because as K and M increase, the collision error introduced by Count-
Min Sketch decreases, which is also related to the data domain size d and its
distribution [9].Though, we experimentally evaluate the effect of K and M on
frequency estimation in Section 4.2. Besides, the utility of sampling in sketches
is also verified by comparing with traditional PSFO [26] in Section 4.1.

3.4 Privacy Analysis

When the user sends only the perturbed counter X̂
(i)
k,m to the collector with the

flipping probability 1
eϵ+1 , ϵ-LDP is satisfied. However in PrivSketch, the user

need also send the ordering matrix O(i) to the collector which may expose useful
messages and indirectly damage the privacy. In the following, we analyze the
influence of O(i) on privacy.
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Fig. 3. Example of the effect of background information on indistinguishable input set.

The ordering matrix O(i) can be utilized to exclude some possible
inputs for the collector, but the collector still cannot distinguish some

inputs. As Fig. 3 shows, if O
(i)
k,m ≤ O

(i)
k′,m′ , X

(i)
k,m = 1 and X

(i)
k′,m′ = 0 will

not hold at the same time. Thus, the cases of the possible sketches of users
are reduced from 4 to 3 in the collector’s view. To quantify the effect of the
background information, we introduce indistinguishable input set to represent
the possible inputs in the collector’s view, denoted by T . According to the LDP
definition, any two inputs are indistinguishable regardless of any background
knowledge from the adversary. Therefore, we can deduce that any two inputs
in the indistinguishable set still satisfy the LDP definition, even though the
indistinguishable set becomes smaller than without the background information.

Theorem 4. Consider a mechanism M that satisfies ϵ-LDP, its indistinguish-
able input set T , and any two inputs x, x′. When the collector receives any output
y, along with the background information I, there exists an indistinguishable set

T ′ ⊆ T satisfying the following inequality: Pr[M(x)=y]
Pr[M(x′)=y] ≤ eϵ, x, x′ ∈ T ′.

Proof. For any I, T can be divided into two parts, T+ and T−. The former rep-
resents the inputs that are consistent with the information I, i.e., the possible
inputs when I is true. The latter includes the inputs that contradict the informa-
tion I, that is, the impossible inputs when I is true. Based on I, the collector can
infer that the original input belongs to T+(⊆ T ). For any two inputs x, x′ ∈ T+,

x, x′ is also in T . Therefore, following the definition of ϵ-LDP, Pr[M(x)=y]
Pr[M(x′)=y] ≤ eϵ

is satisfied and any two input x, x′ ∈ T ′ is distinguishable.

The indistinguishable input set T ′ computed by the ordering matrix
O is enough to protect the privacy of users in our problem. In PrivS-
ketch, what each user needs to protect is its original sketch matrix X(i). Thus,
the collector should not infer the value of any counter in X(i) is 1 or 0. In PrivS-
ketch, counters can be divided into two groups, G1 and G0, and g1 + g0 = KM .
Thus, when the collector receives O(i), the indistinguishable input set T ′ at most
includes KM + 1 possible sketches with different sizes of each group. There are
some constraints for sketches, e.g., it is impossible that g1 = 1, 2, 3, because
when there is an item occurred, for each k ∈ [1,K], ∃(k,m) ∈ G1,m ∈ [1,M ].
Nevertheless, {0}KM , {1}KM ∈ T ′ always holds. Thus, there is no counter with
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Table 1. Datasets characteristics

Dataset n d max min P90 Dataset n d max min P90

Kosarak 990002 41270 2498 1 15 AOL 521693 1632788 61932 1 62
Dataset1 100000 100000 123 1 80 Dataset2 10000 100000 117 1 78
Dataset3 100000 20000 112 1 73 Dataset4 100000 40000 107 1 72
Dataset5 100000 60000 110 1 74 Dataset6 100000 80000 109 1 75

same value in different possible inputs, that is, its value is equal to 1 in some
inputs and equal to 0 in the other inputs. The collector still cannot determine
the value of each counter, which is sufficient to protect the privacy of users.

4 Experimental Evaluation

In this section, we evaluate the utility and running time of PrivSketch over
synthetic and real datasets, and analyze how the main parameters affect its
performance. For a comprehensive evaluation, we compare PrivSketch to the
state-of-the-art PCMS-Mean [20], and PSFO [26] based on OLH [24] (denoted
as PS-OLH in our experiments) for frequency estimation, and SVIM [26], a two-
phase heavy hitter discovery protocol for discovery of frequent items.

Environment. We implement all LDP protocols in Python and conduct exper-
iments on a server with 2 Intel Xeon 3206R Processors and 32G RAM running
Centos. We repeat each experiment 10 times and report the average results.

Datasets. We use 6 synthetic datasets and 2 real datasets (see Table1).

• Synthetic Datasets: These datasets follow Zipf distribution that real data
stream often conforms to, with different number of users n and domain size d.

• Kosarak [4]: This dataset contains the clicked items that anonymized users
from a Hungarian online news portal, involving nearly 1M users and 40K items.

• AOL [12]: This dataset contains search queries of users on AOL between
March 1 and May 31, 2016, with corresponding URLs clicked by them. The
dataset includes more than 500K users with 1.6 million distinct URLs.

Parameters. The number of hash functions K is set to 4, and each hash func-
tion’s hash domain size M is set to 128. The default privacy budget ϵ is 3, within
the acceptable range in many works [8,27,19].

Evaluation Measures. We use the following measures, including running time.

• Mean Squared Error (MSE). We evaluate the frequency estimation accu-

racy by MSE: 1
d

∑
x∈D(f̂(x)− f(x))2, where f(x) is x’s true frequency.

• Variance (Var). We measure the error of estimating the top-k frequency

terms using variance: 1
|Ce∩Ct|

∑
x∈Ce∩Ct

(nf̂(x)− nf(x))2.

• Normalized Cumulative Rank (NCR). To evaluate the estimation of fre-
quent items, NCR measures how many top-k items are identified by the protocol
with a quality function q(.). It is calculated as follows:

∑
x∈Ce

q(x)/
∑

x′∈Ct
q(x′),

where Ct and Ce represents the true top-k items and the estimated top-k items
respectively. For x ∈ Ct with a rank i, q(x) = k + 1− i. For x /∈ Ct, q(x) = 0.
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Fig. 4. Experimental results for frequency estimations.
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Fig. 5. VAR and NCR when varying parameter k.

4.1 Comparing to Advanced Protocols

Experiments for Frequency Estimation: We compare our protocol to two
advanced solutions: (i) a sketch-based solution, Multi-PCMS-Mean, which is an
extended version of PCMS-Mean [20] for multi-item collection, and (ii) a non-
sketch-based solution, PS-OLH, which is an advanced PSFO [26]. PSFO [26]
combines the padding and sampling technique with a basic frequency estimation
protocol to transform multiple-item into one-item problems. Because the optimal
local hash (OLH) [26] performs best when d ≥ 3eϵ + 2 (i.e., for large domains),
we choose the PSFO with OLH, i.e., PS-OLH, as our competitor. For a fair
comparison, we assume the distribution of user input length is known and set
the padding length l of PS-OLH to the 90th percentile of the user input [19]
(avoiding to use the privacy budget to estimate l).

We evaluate the MSE of frequency estimation under different privacy bud-
gets, varying from 0.5 to 16, on synthetic and real datasets. As shown in Fig. 4,
PrivSketch performs best, especially for small privacy budgets, which indicates
the high utility of PrivSketch and its strong privacy protection.

Experiments for Frequency Item Estimations: We also evaluate the per-
formance of PrivSketch in frequent item mining (i.e., heavy hitter discovery),
a popular application of frequency estimation. We compare it with the existing
advanced multi-phase protocol, SVIM [26], which is the improved work after
LDPMiner [19] and is also applicable in large domains. As shown in Fig. 5,
PrivSketch performs better than SVIM, especially in frequency estimation for
top-k items. It is expectable because PrivSketch has been designed for accurate
frequency estimation, not frequent item identification.

Evaluation of running time. As shown in Fig. 6, Privsketch maintains a
user-side running time smaller than 0.01s while performing the calculation of the
ordering matrix. Overall, PrivSketch is faster than PS-OLH and SVIM about 100
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Fig. 6. Comparison of running times.

times, but slower than Multi-PCMS-Mean with much larger MSEs (in Fig. 4).
The long running time of PS-OLH, SVIM and PrivSketch is the sacrificed time
of reducing domain cardinality to gain high utility. Thus they need to restore
the estimated items to the original domain for each user on the collector side,
resulting in a complexity of O(nd). In PrivSketch, each user shares the same hash
functions instead of local hash functions used in PS-OLH and SVIM, resulting
in fewer hash function calculations on the collector side. We omit experimental
results for PS-OLH and SVIM over AOL, because they need more than 10 days
to compute, making them cumbersome to use in practice.

4.2 Experiments with Different Parameters

In this section, we compare PrivSketch with other sketch-based solutions to
present the effect of our design under different parameters. In addition to Multi-
PCMS-Mean, its min-estimation variant (denoted by Multi-PCMS-Min) and a
middle version of PrivSketch without sampling (denoted by PrivSketch-noSmp)
are also compared, to show the better utility of min estimation and the effect of
our decode-first and sampling design.

Utility with small number of users. We evaluate the MSE on Dataset2
with 104 users under a privacy budget range [2, 128]. Note the unrealistic privacy
budget used here is to show the effect of our designs. In Fig. 7, PrivSketch always
performs best especially under a small ϵ. We observe similar results (omitted for
brevity) when n varies in [104,106]. The result verifies that decode-first workflow
with the ordering matrix effectively reduces the collision probability of sketches,
and the min estimation has better accuracy than the mean estimation.

Impact of the size of the domain. We conduct this experiment on a group of
synthetic datasets, which sets K,M and ϵ with default values, fixes n = 105, and
varies the domain size d. As shown in Fig. 8(c), the errors of the four protocols
only slightly increase with the increase of d. Theoretically, in a larger domain,
when the sketch size is fixed, the collision probability increases, leading to an
increase in error. However, since the items held by each user are sparse compared
to the domain space, and the distribution of the number of items held by each
user changes a little, the domain size change has a small impact. This confirms
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Fig. 8. MSE when varying parameters K, M , d.

that sketching is an effective domain reduction and encoding method for data
collection from a large domain.

Impact of the parameters of the sketch. In Fig. 8, we evaluate the effects of
different K and M of the sketching using the datasets with parameters n = 105,
d = 105 under ϵ = 3. In Fig. 8(a), we can see that the utility of the PrivSketch
is far better than the other three protocols under different M while fixing the
hash vector size K = 4. As expected, increasing the size of the hash vector
can reduce the estimation error. However, when M increases to a specific value,
the error does not decrease but increases. This is because M affects two types
of errors in these sketch-based LDP protocols. When M increases, the collision
probability decreases, but the perturbation probability or the sampling errors
increases. Varying the K brings a similar result to M , as shown in Fig. 8(b).
However, the effects of K on Multi-PCMS-Mean protocol is different. Changes
of K do not affect its MSE, because the effect of choosing one of the K hash
functions when encoding is eliminated by the sum of K counters corresponding
to K hash functions during the estimation process.

5 Related Work

Set-valued Data Collection. The diverse set size is a challenge for set-value
data collection under LDP. Padding and Sampling [19] is a common way to unify
the set length, such as in PSFO [26], PrivSet [22]. Although Wang [23] proposes
the wheel mechanism to reduce the computational overhead, these works do
not aim at a large domain, where an efficient data structure is needed. Many
works [19,26,3,27], focus on frequent item mining, also known as heavy-hitters
discovery in a huge domain. They utilize a multi-phase strategy to reduce the
large domain size first, using a small part of the privacy budget to discover fre-
quent candidates, and using the remaining part to obtain an accurate estimation.
Nevertheless, this strategy is not suitable for estimating frequency.

Frequency estimation with Hash-Encoding Technique. Under LDP set-
tings, to reduce the data domain, RAPPOR [15] adopts Bloom filters to encode
data, which requires expensive computations to use LASSO regression for the
estimation. OLH [24] utilizes local hash functions to encode the user data, which
requires a large number of hash calculations. With a simpler estimation solution,
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Count-Mean Sketch [20] was proposed to compute the populated emoji in IOS.
[21,18] improve it by sending multiple sketches for each user, which also brings
extra communication costs. [3] uses Count-Median Sketch with the Hadamard
transform when computing the heavy hitters. [8] analyzes and compares LDP
protocols with different sketching algorithms, including the Count-Min Sketch.
However, these protocols, designed for the one-item collection, do not consider
the error introduced by the sketching algorithm. Recently, [30] utilized hash
functions to compute the frequency and the mean estimation of the k-sparse
vector, with an assumption on the number of items each user generates.
Variants of LDP. Lots of works focus on optimizing the variants of LDP to
improve its utility. Some works introduce extra trust in LDP, such as shuffling
anonymized reports from users [7,14], and combining the centralized DP with the
local version [2]. Some works introduce an extra parameter to relax the privacy
constraint, such as [1,16] that use the distance metric of two inputs to improve
the utility, which is inspired by the geo-indistinguishability concept [5]. Finally,
some studies propose discriminative LDP based on different aspects, such as
personalized privacy demand [6,29]. These works do not utilize the background
information to enhance utility as we do in this paper.

6 Conclusions

This paper studies the frequency estimation problem under local differential
privacy. We propose a privacy-preserving data collection protocol, PrivSketch,
which does not expose the original value of any counter in the sketch. We ex-
perimentally verify the effectiveness of PrivSketch: it outperforms existing LDP
protocols by 1-3 orders of magnitude and executes up to ∼100x faster.
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