
ar
X

iv
:2

30
8.

06
68

3v
1

 [
cs

.F
L

]
 1

3
A

ug
 2

02
3

Sweep Complexity Revisited⋆

Szilárd Zsolt Fazekas1[0001−5319−0395] and Robert Mercaş2[0001−6034−433X]

1 Akita University, Department of Mathematical Science and
Electrical-Electronic-Computer Engineering

szilard.fazekas@ie.akita-u.ac.jp
2 Loughborough University, Department of Computer Science

R.G.Mercas@lboro.ac.uk

Abstract. We study the sweep complexity of DFA in one-way jump-
ing mode answering several questions posed earlier. This measure is the
number of times in the worst case that such machines have to return to
the beginning of their input after having skipped some of the symbols.
The class of languages accepted by these machines strictly includes the
regular class and constant sweep complexity allows exactly the accep-
tance of regular languages. However, we show that there exist machines
with higher than constant complexity still only accepting regular lan-
guages and that in general the sweep complexity of an automaton does
not distinguish between accepting regular and non-regular languages. We
establish separation results for asymptotic classes defined by this com-
plexity measure and give a surprising exponential/logarithmic relation
between factors of certain inputs which can be verified by such machines.

Keywords: automata · deterministic · one-way jumping · sweep com-
plexity.

1 Introduction

In roughly the last three decades, several non-classical models of automata have
been introduced to study the effect of processing inputs with simple machines
in a non-sequential way. Such models include restarting automata [10], jump-
ing automata [12], input revolving automata [4] and automata with translucent
letters [13]. However, these models are either strictly more powerful or accept a
class incomparable with the regular one.

One-way jumping finite automata (OWJFA) were introduced [5] to study the
power of deterministic finite automata (DFA) performing non-sequential process-
ing without completely discarding structural information about the inputs à la
jumping automata. The resulting model is, in a sense, a minimal extension of
finite automata. Machines are specified in exactly the same way as DFA allow-
ing partial transition functions. The only change is the behaviour of the machine
when encountering a letter for which the current state has no outgoing transition
defined. In the classical case such inputs are rejected, but in one-way jumping

⋆ This work was supported by JSPS KAKENHI Grant Number JP23K10976.

http://arxiv.org/abs/2308.06683v1

2 S.Z. Fazekas and R. Mercaş

mode the letters are skipped temporarily to be processed later. The relative or-
der of the skipped symbols is maintained, and the automaton moves back to the
beginning after each pass (called sweep here), seeing only the symbols previously
skipped. Therefore one can also view this model as a DFA with an input tape
which works as a restricted queue, or one that reads and erases symbols from a
circular tape always jumping clockwise to the nearest letter for which it has a
defined transition from the current state. When the transition function is com-
plete, no symbols are skipped, so the machine behaves as ordinary DFA, which
means that the class of languages accepted by DFA in one-way jumping mode
trivially includes all regular languages.

Various properties of the accepted language class [1] and the status of fun-
damental decidability questions have been settled [2]. More powerful machines
with this new processing mode have also been investigated, such as nondeter-
ministic finite automata [3,6], two-way finite automata [7], pushdown automata
and linear bounded automata [6]. While the language classes defined by the
models have no nontrivial closure properties under usual language operations,
the accepting power and decidability issues raised some intriguing problems.

Except for linear bounded automata, the machine models mentioned above
become more powerful when they are allowed to jump to the nearest symbol
readable in the current state, which is not surprising. However, it has proven
challenging to get a clear picture of just how powerful the new processing mode
is, even in the simplest case when one starts from DFA. Such automata can
accept all regular languages and the language class defined by them is incompa-
rable with the context-free class, but included in the context-sensitive class and
in DTIME(n2) [1]. The separation results make use of combinations of a handful
of regular languages together with a very simple type of non-regular languages
which contain words having letter counts in a certain ratio, e.g., the frequently
used Lab = {w ∈ {a, b}∗ | w contains as many a’s as b’s} accepted by the ma-
chine A in Fig 1 (with states 1, or 2 final). While this was enough to establish
virtually all separations of interest, it left a significant gap in our understanding
of the model: can such machines accept any (‘interesting’) non-regular languages
apart from the ones which establish linear relationships among letter counts?

In this work we answer the question above, building on the investigation of
sweep complexity of DFA in one-way jumping mode. Sweep count can be viewed
as a measure of non-regular resources used by a machine posing the natural
question of how much of this resource is needed to be able to accept non-regular
languages? It has been shown that constant sweep complexity does not increase
the accepting power of the machines [9] and that superconstant sweep complexity
requires cycles containing ‘complementary deficient’ states [8]. In the latter paper
it was conjectured that, in fact, any automaton with higher than constant sweep
complexity accepts a non-regular language. In Section 3 we refute that conjecture
by exhibiting a small DFA accepting a regular language while processing some
inputs of length n in Ω(log n) sweeps. We also show that there is no non-trivial
upper bound on the sweep complexity of regular languages, that is, there are
machines with linear complexity accepting regular languages.

Sweep Complexity Revisited 3

A natural question regarding the new complexity measure is whether there
exists a meaningful hierarchy which does not collapse to the extremes of O(1)
and O(n). The aforementioned example shows that automata with logarithmic
complexity exist, which answers another question posed earlier. Furthermore,
following the line of computational complexity theory, we set out to explore
whether the language classes defined through asymptotic complexity form a
true hierarchy, that is whether there are languages which can be accepted by a
machine with O(f(n)) complexity but not by any with o(f(n)) complexity, for
various functions f(n). In Section 4 we demonstrate that such a hierarchy exists
by presenting languages with Θ(log n) and Θ(n) sweep complexity, respectively.

Finally we mention that sweep complexity as an idea has been studied in
other contexts, too: an interesting and thorough investigation of a similar flavor
established infinite hierarchies in terms of sweep count for iterated uniform finite
transducers [11], although that model is significantly more powerful than ours,
so the techniques used there do not translate here as far as we can tell.

2 Preliminaries

We consider words over a finite alphabet, e.g., Σ = {a, b}. The set of all words
over Σ is Σ∗, which includes the empty word ε.

A DFA is a quintuple M = (Q,Σ,R, s, F), where Q is the finite set of states,
Σ is the finite input alphabet, Σ ∩ Q = ∅, R : Q × Σ → Q is the transition
function, s ∈ Q is the start state, and F ⊆ Q is the set of final states. Elements
of R are referred to as (transition) rules of M and we write py → q ∈ R instead
of R(p, y) = q. A configuration of M is a string in Q ×Σ∗.

A DFA transitions from a configuration pw to a configuration qw′ if w = aw′

and pa → q ∈ R, with p,q ∈ Q, w,w′ ∈ Σ∗ and a ∈ Σ. By extending the
meaning of → we denote this by pw → qw′ and the reflexive and transitive
closure of → by →∗. A word w is accepted by a DFA M if there exists f ∈ F ,
such that sw →∗ f. The language accepted byM is {w ∈ Σ∗ | ∃f ∈ F : sw →∗ f}.
One-way jumping automata
The one-way jumping relation (denoted by �) between configurations from QΣ∗,
was originally defined in [5]. Here we follow the slightly different definition of [8]
which does not change the accepting power of the model, but is more convenient.

1 2

a

b

Fig. 1: The only two-state ROWJFA
satisfying Lemma 1

position : 0 1 2 3 4 5 6

input a d c b c b a

after sweep 1 ε d c b c b ε

after sweep 2 ε d c ε c ε ε

after sweep 3 ε d ε ε ε ε ε

after sweep 4 ε ε ε ε ε ε ε

Fig. 2: The computation table for adcbcba
by the machine in Example 1.

4 S.Z. Fazekas and R. Mercaş

A tupleM = (Q,Σ,R, s, F) representing a deterministic right one-way jump-
ing automaton (ROWJFA) is defined the same way as a DFA, where the config-
urations are also elements of the set Q × Σ∗. Let Σp = {b ∈ Σ | ∃q ∈ Q such
that pb → q ∈ R} be the set of all of the letters from Σ for which we have a
transition defined from state p. A jumping transition (or jump, for short), de-
noted �, is defined between configurations pax and pxa if state p cannot read
the letter a, formally:

pax � pxa, if a ∈ Σ \Σp.

A ROWJFA can transition from configuration pax to configuration qy, which
we denote by pax ⊢ qy, if

(i) pax → qy, where x = y and pa → q ∈ R, as defined earlier, or

(ii) pax � pxa, when a ∈ Σ \Σp,p = q and xa = y.

A word w is accepted by M if sw ⊢∗ f. The language accepted by M is
defined by L(M) = {x ∈ Σ∗ | ∃f ∈ F : sx ⊢∗ f}.

While some texts define DFA having complete transition functions, our DFA
allow partially defined ones. Indeed, the pairs (p, a) ∈ Q×Σ for which no tran-
sition is defined enable the ROWJFA to perform a jump as opposed to rejecting
the input as a DFA would. Hence, a ROWJFA with a complete transition func-
tion is just a DFA.

Sweeps are contiguous sequences of transitions on a given input, consisting
of the steps from reading or jumping over the leftmost remaining input letter to
reading or jumping over the rightmost one. If a position is jumped over, then
the input symbol in that position is processed in a later sweep. The number of
sweeps needed to process the whole input is the number of times the automaton
reaches the last position of the original input word or, equivalently, one more
than the maximum number of times any position is jumped over.

For an intuitive picture of sweeps, consider the computation of a ROWJFA
M on input w as a table with rows representing the k sweeps needed to process
w and columns representing positions in the input word. Cell i, j in the table
contains either a letter or a symbol representing that the letter has been read,
e.g., ε. Once a letter has been marked read and erased it stays that way, so each
column is a word of the form aℓεk−ℓ (= aℓ) for some a ∈ Σ and 1 ≤ ℓ ≤ k.

Example 1. Consider the automaton M1 in Fig. 3 and the input adcbcba, pro-
cessed in the order aabbccd. The ROWJFA jumps over the letter d three times
before processing it, hence the number of sweeps is four. Moreover, its compu-
tation table is described in Fig. 2.

1 2 3 4 5 6 7 8
a a b b c c d

d

Fig. 3: ROWJFA M1 accepting all w with |w|a = |w|b = |w|c = 2 and |w|d ≥ 1.

Sweep Complexity Revisited 5

In order to be able to analyze the boundary between regular and non-regular
languages accepted by the one-way jumping model, as well as to quantify the
use of resources beyond the capabilities of classical DFA, when it is the case,
the following complexity measure was proposed [8], which gives us the number
of sweeps performed by a machine in the ‘worst case’ for an input of length n.

Let M be a ROWJFA and w ∈ L(M), and let

p0w ⊢ p1w1 ⊢ p2w2 ⊢ · · · ⊢ pm, where p0 = s and pm ∈ F,

be the computation of M on the input w. Sweep 1 consists of p0w ⊢∗ p|w|w|w|,
and we say that sweep 1 ends in configuration p|w|w|w|. Then, for all i ≥ 1,
if sweep i ends in configuration psiwsi , then sweep i + 1 is the sequence of
configurations psiwsi ⊢

∗ psi+|wsi
|wsi+|wsi

|. The last sweep ends in configuration
pm, that is, when all input symbols have been read. We define

E(M,w) = {the number of sweeps performed by M on w}.

When w /∈ L(M), then we set E(M,w) = 0. The sweep complexity of a
machine M is a function scM : N → N, with scM (n) being the maximum number
of sweeps M makes on processing inputs w ∈ L(M) of length n, formally:

scM (n) = max{E(M,w) | w ∈ Σn}.

In a sense the “most non-regular” word (using the largest amount of non-classical
resources) of each length is considered. With this in mind, we can define com-
plexity classes in the usual manner: the class SWEEP(f(n)) consists of languages
accepted by some one-way jumping machine with sweep complexity O(f(n)).

Observe that the sweep complexity of a machine can be defined to also take
into account the sweep count of rejected words. However, this allows to ‘artifi-
cially’ increase the sweep complexity of machines with complexity o(n) without
affecting regularity. Let A be a machine accepting a regular language and B a
non-regular language with sweep complexities f(n) and g(n), respectively, such
that f(n) ∈ o(g(n)). Then we can construct a ROWJFA accepting aL(A) with
sweep complexity g(n) by adding a new initial state from which reading a takes
us to the initial state of A while reading b takes us to the initial state of B. We
set all states of B non-final and this way we get that on inputs starting with b
the machine performs B’s computations but never accepts anything. Moreover,
aL(A) is regular if and only if L(A) was (see Fig. 4).

Each machine considered up to the point when the above measures were intro-
duced [8] had either constant or, the maximal possible, linear sweep complexity,
so it seemed that there is a gap between them. Moreover, the examples with
linear complexity accepted non-regular languages, while as the theorem below
states, the constant complexity languages are exactly the regular languages.

Theorem 1 ([9]). ROWJFA with O(1) sweep complexity accept regular languages.

The sufficient condition above was conjectured to be also necessary for reg-
ularity in general, evidenced by the known examples at that point.

6 S.Z. Fazekas and R. Mercaş

1A Ba b

Fig. 4: Artificially increasing the au-
tomaton’s complexity by adding non-
functional states (all final states in A).

12 3a

a

b

b

Fig. 5: ROWJFA B accepts {w ∈
{a, b}∗ | |w|a and |w|b are even} with
sweep complexity Θ(log n).

Next, we investigate the apparent gap between constant and linear complex-
ities and show that the presumed condition above is not necessary for regularity.
Our search for machines with non-constant sweep complexity is directed by the
following structural lemma, which says that such machines need to have two
‘complementary deficient states’ in a cycle.

Lemma 1 ([8]). If a ROWJFA has sweep complexity ω(1) then its state diagram
has a closed walk with states p and q, such that pau →∗ qbv →∗ p for a, b ∈ Σ,
u, v ∈ Σ∗ and p has no transition defined for b, while q has no transition for a.

3 Regular languages with non-constant sweep complexity

In this section we show that there is no sweep complexity separation between
regular and non-regular languages by exhibiting automata which accept regular
languages while requiring superconstant number of sweeps.

Consider first the automaton B with states {1,2,3} where 1 is initial and
final, and transitions are {1a → 2,2a → 1,1b → 3,3b → 1}, described in Fig. 5.

Proposition 1. L(B) is regular.

Proof. We claim that L(B) = {w ∈ {a, b}∗ | |w|a and |w|b are even}. This is
obviously a regular language (i.e., Fig. 8 where 00 is the final state).

The computation for a word w is rejecting if it finishes in either 2 or 3.
However, the only time that the machine ends up in state 2 is when it reads an
odd number of a’s, and, similarly, it ends in 3 when it reads an odd number of
b’s. Since both of these types of words are rejected, we conclude. ⊓⊔

Theorem 2. The sweep complexity of B is Θ(log n).

Proof. Firstly, observe that in any sweep, while in 1 or 2, the automaton fully
reads any block of a’s, and, similarly, while in 1 or 3, the automaton fully
reads any block of b’s. Thus, the number of sweeps necessary to process a word
w consisting of 2n unary blocks is never higher than that of processing the
word (ab)n. Now, for the inputs (ab)n (and (ba)n), starting with the first b
(respectively, a) every third symbol is jumped over while the rest is read. This
means that from an arbitrary word with k unary blocks, after one sweep at
most ⌊k

3 ⌋+ 1 blocks remain. This immediately gives us that the machine makes

Sweep Complexity Revisited 7

A0

A1

A2

A3

B1

B3

B2

a a

bb

b

b

b

a

a

a

Fig. 6: ROWJFA C accepts {w ∈ {a, b}∗ | |w|a and |w|b are odd} with sweep
complexity Θ(n).

at most logarithmically many sweeps. As for the other side, consider an input

w = (ab)6
k

. Per the previous argument, after i ≤ sweeps the remaining input will

be (ab)
6
k

3i or (ba)
6
k

3i depending on the parity of i, so the number of sweeps is at

least log3
|w|
2 = k. Eventually, the input is accepted according to Proposition 1,

so the sweep complexity of B is also Ω(log n). ⊓⊔

The above results showcase the existence of ROWJFAs that accept regular
languages while performing a logarithmic number of sweeps. Next we construct
of a ROWJFA that accepts a regular language while requiring a linear number
of sweeps in the worst case. Consider the automaton C in Fig. 6 defined as

C = {{A0,A1,A2,A3,B1,B2,B3}, {a, b}, R,A0, {B1}},

where the transitions from R are given by the edges in the figure.

Proposition 2. The sweep complexity of C is Θ(n).

Proof. To see that the complexity is Ω(n), consider the word a2n+1b2n+1, for
n > 1. In this case, from A0 we go first to A2 where we jump over all the
remaining a’s, then we move back to A0 where we jump over all the remaining
b’s, and we are left with a2n−1b2n−1 to process. After the nth sweep, we are only
left with ab to process, which takes us from A0 to B1, and we accept.

For the O(n) complexity, observe that the above computation is indeed the
longest possible. Once we reach B1 we either accept or reject a word in at most
O(log n) sweeps, same as in Theorem 2. Of course, this part also directly follows
from the fact that all ROWJFA process their inputs in O(n) sweeps. ⊓⊔

Proposition 3. L(C) is regular.

Proof. We show that L(C) = {w ∈ {a, b}∗ | |w|a and |w|b are odd}. This is
obviously a regular language (i.e., Fig. 8 where 11 is the final state).

To show that indeed L(C) is the language containing every binary word that
has odd number of a’s and b’s, first note that the right hand side automaton
consisting only of the B-labelled states, accepts every language that has an even
number of a’s and b’s, as shown by Proposition 1.

8 S.Z. Fazekas and R. Mercaş

To reach B1 we have to read exactly one a and one b starting from either
A0 or A2. Since from the start state A0 we can reach A0 or A2 by processing
an even number of a’s and b’s, possibly with jumps, our conclusion follows. ⊓⊔

As a consequence of Propositions 2 and 3, we know that the class of regular
languages has no upper bound in terms of sweep complexity, since the sweep
complexity of any is in O(n). The left hand cycle in the automata C described in
Fig. 6 also showcases that while the conditions from Lemma 1 are necessary for
non-regularity (as it requires superconstant complexity), they are not sufficient.

4 Separation results for the language classes
SWEEP(logn) and SWEEP(n)

Consider the prolongable morphism ϕ(a) = abab, ϕ(b) = b starting from the
word ab. We get ϕ(ab) = ababb, ϕ2(ab) = ϕ(ababb) = ababbababbb, etc. The
infinite word φ = limn→∞ ϕn(ab) = ababbababbb . . . is a fixed point of φ. It is
easy to see that in φ all a’s stand alone, that is, we never have blocks of a’s
longer than 1, and the lengths of the blocks of b’s are 1, 2, 1, 3, and so on3. When
applying ϕ, each a introduces a new block of b’s of length 1 and extends a block
of b’s by one, while the number of a’s doubles. Thus every other block of b’s gets
longer by one on each application of ϕ, because of the a preceding it. A simple
inductive argument shows that the last block of b’s in ϕn(ab) has length n+ 1,
and is preceded by 2n occurrences of a’s, separated by blocks of b’s.

Lemma 2. Consider the morphism ϕ : {a, b}∗ → {a, b}∗ given by ϕ(a) = abab,
ϕ(b) = b. The following statements hold for any n ≥ 1:

(i) ϕn(ab) ∈ (ababb+)+;
(ii) if ϕn(ab) = abk1 · · · abkm , then ϕn+1(ab) = ababk1+1ababk2+1 · · · ababkm+1;
(iii) ϕn(ab) = abk1 · · · abkm , where m = 2n, km = n + 1 and k2i−1 = 1 for all

i ∈ {1, . . . , 2n−1}.

Proof. When n = 1, then ϕ(ab) = ababb, so for n = 1 all three claims hold.
Suppose they hold for n. By (ii) and (iii) we have that ϕn+1(ab) has the form
ababk1+1ababk2+1 · · ·ababkm+1, satisfying (i) for n+ 1. Then,

ϕn+2(ab) = ϕ(ababk1+1 · · · ababkm+1) = ϕ(ab)ϕ(abk1+1) · · ·ϕ(ab)ϕ(abkm+1)

= (abab1+1)(ababk1+2) · · · (abab1+1)(ababkm+2)

From this we can conclude that (ii) also holds for n+1 ≥ 1. Further, by the
equation above we have ϕn+1(ab) = abℓ1 · · ·abℓm′ with m′ = 2m = 2 ·2n = 2n+1.
Finally, because of (ii) we also get that ℓm′ = km + 1 = n+ 2 and ℓ2i−1 = 1 for
all i ∈ {1, . . . , 2n}. ⊓⊔

In what follows we analyze the language accepted by the automaton D =
({1,2,3}, {a, b}, {1a→ 2,2a → 2,2b → 3,3b → 1},1, {3}), described in Fig. 7.

3 The sequence {c(n)}∞
n=1 given by the lengths of b blocks is A001511 in OEIS; its

most relevant characterization for us is that c(n)− 1 is the number of trailing zeros
in the binary expansion of n, since this means that c(n)− 1 is log n for powers of 2

Sweep Complexity Revisited 9

1 2

3

a

bb

a

Fig. 7: ROWJFA D accepts a non-
regular language with Θ(log n) sweeps.

00

10

11

01

a

b

b

a

a

a

b

b

Fig. 8: DFA accepting words with even
(for 00 final state) or odd (for 11 final
state) number of a’s and b’s.

Lemma 3. For any n ≥ 0, the ROWJFA D accepts ϕn(ab) in n+ 1 sweeps.

Proof. We show that the machine accepts ϕn(ab), for any n ≥ 0. From state 1
after reading/jumping through a factor of the form ababb+ the automaton gets
back to state 1. In fact, 1ababkw ⊢∗ 1wabk−1, for any k ≥ 1, so in one sweep
the factor ababk is reduced to abk−1. From Lemma 2 we can see that we can
write ϕn+1(ab) = ababk1+1ababk2+1 · · ·ababkm+1, which means that one sweep
of D acts as the inverse of ϕ on those words when starting from state 1, that is,

1ϕn+1(ab) = 1ababk1+1ababk2+1 · · · ababkm+1 ⊢∗ 1abk1abk2 · · ·abkm = 1ϕn(ab).

This means that in n sweeps the machine reduces ϕn(ab) to ϕ0(ab). Finally, for
n = 0, we have ϕ0(ab) = ab, which is accepted by D in a single sweep. ⊓⊔

Lemma 4. The ROWJFA D accepts a non-regular language.

Proof. By Lemma 3 we know that for any n the machine accepts ϕn(ab), which
means that for arbitrarily long unary factors consisting of b’s, there is some word
in L(D) having such a factor as a suffix. Our strategy is to first establish a non-
linear relation between the length of those unary factors and the length of the
preceding factors in all words accepted by D. Then, by a pumping argument we
show that a classical finite automaton cannot verify such a non-linear relation,
therefore L(D) cannot be regular.
Claim 1. Words of the form wbn are only accepted if |w| ∈ Ω(2

n

2).
Proof of Claim 1: In any sweep, any block of a’s which the automaton starts to
read is read and erased completely through a sequence of transitions 1akbu →∗

2bu. For the automaton to jump over a block of a’s, it needs to arrive to its start
in state 3. Then it jumps over it to the next b, after which it starts and reads
completely the following block of a’s, as described earlier. This means that the
machine can never jump over two consecutive blocks of a’s. From here we get
that if at the beginning of the sweep the number of a blocks was ℓ, then after
the sweep it is at most ⌊ ℓ

2⌋+ 1.
Furthermore, in each sweep, each block of b’s is reduced by at most 2. This

means that the automaton needs at least n
2 sweeps to read a block bn, in each of

10 S.Z. Fazekas and R. Mercaş

which it reduces the number of a blocks by half (or more). Thus we can conclude
that in order to accept a word with a suffix bn, we have to start out with at least
2

n

2 blocks of a’s preceding it. ∇
Claim 2. No finite automaton can accept L(D).
Proof of Claim 2: Suppose the opposite, i.e., that there exists some complete
DFA F having N states such that L(F) = L(D). We know that there are words
in the language with arbitrarily long suffixes of b’s, so there is a wbm ∈ L(F) for
some word w and exponent m > N . By a usual pumping argument, this means
that there exists some ℓ with 0 < ℓ < N such that wbm+i·ℓ ∈ L(F) for any i ≥ 0.
However, for a large enough i this contradicts Claim 1, as the block of b’s can
outgrow any upper bound in terms of the length of |w|. ∇

Our result follows as a result of Claims 1 and 2. ⊓⊔

Lemma 5. The sweep complexity of D is Θ(log n).

Proof. As |ϕn(ab)| = 2n+1 + 2n − 1, by Lemma 3 we have that the sweep com-
plexity of D is Ω(logn), so what remains to show is that it is also O(log n).

We first note that within a sweep all blocks of a’s separated by bb are fully
processed (including any prefix of a’s), while for any symbols a that were jumped
over, the entire block that they were part of it was jumped over. Following the
argument in the proof of Claim 1 of Lemma 4, in each sweep the number of
blocks of a’s is reduced by at least half, which means that after O(log n) sweeps
there are no more blocks of a on the tape. Then, the machine either accepts in
one sweep or it rejects the input. This leads to our conclusion. ⊓⊔

The results of Lemmas 4 and 5 mean that we have separation between
SWEEP(1) and SWEEP(logn).

Theorem 3. SWEEP(1) (SWEEP(logn)

Proof. Lemma 5 says L(D) ∈ SWEEP(log n). By Theorem 1 we know that
SWEEP(1) is included in the class of regular languages. Finally, by Lemma 4
we have that L(D) is not regular which means that L(D) /∈ SWEEP(1). ⊓⊔

Lemma 6. Any automaton which accepts Lab = {w ∈ {a, b}∗ | |w|a = |w|b} has
sweep complexity Θ(n).

Proof. We know that every machine has sweep complexity O(n), so it is enough
to show that it is not possible to accept Lab with sublinear sweep complexity.
For that we assume that such an automaton, say F = (Q,Σ,R, s, F) exists, and
derive a contradiction.

If F had linear sweep complexity, then it could have computations on in-
finitely many inputs in which all sweeps process a constant number of symbols.
However, with sublinear complexity we get that for any constant C and for all
long enough inputs w ∈ Lab, during the processing of w at least one sweep reads
more than C symbols. We also know that anbn ∈ Lab for any n ≥ 0. Let C = 2|Q|
where |Q| is the number of states of F and consider an input w = ambm with
m large enough that the machine reads more than C symbols in some sweep

Sweep Complexity Revisited 11

while processing w. The remaining input at the beginning of that sweep is akbℓ

for some k, ℓ such that k + ℓ > C. During the sweep the machine reads ak
′

bℓ
′

where k′ + ℓ′ > C. This means that either k′ > |Q| or ℓ′ > |Q|. Without loss
of generality we can assume k′ > |Q|. This gives us that while reading ak

′

the
automaton must visit some state p at least twice while reading only a’s, so we
get that par →∗ p for some r > 0. But then, by a usual pumping argument the
machine also needs to accept an+rbn /∈ Lab contradicting our assumption that
L(F) = Lab and concluding the proof. ⊓⊔

Theorem 4. For any f : N → N with f(n) ∈ o(n) we have SWEEP(f(n)) (

SWEEP(n).

Proof. By Lemma 6 we know that Lab /∈ SWEEP(f(n)) for any sublinear func-
tion f(n). The two-state automaton A accepts the language with sweep com-
plexity Θ(n). This is easy to see when considering the worst-case inputs of the
form anbn for n ≥ 0. ⊓⊔

5 Concluding remarks

Apart from the complexity considerations listed below we think the proof of
Lemma 4 contains a detail worth emphasizing: the automaton can verify a loga-
rithmic/exponential relation between two factors of suitably chosen inputs! We
found this very surprising since we still basically deal with DFA which cannot
store information and cannot ‘choose’ which symbols to read or jump over4.

We presented automata for all pairings of regular and non-regular languages
with logarithmic and linear worst case sweep complexity. This way we disproved
the conjecture on the constant sweep requirement for regularity [9] and answered
several questions regarding sweep complexity posed in [8]:

1. Is the language of each machine with ω(1) complexity non-regular? NO, by
Section 3.

2. Is there a machine with sweep complexity between constant and linear, that
is, ω(1) and o(n)? YES, by Theorem 2 (and Lemma 5).

3. Is there a language with sweep complexity between constant and linear, that
is, all machines accepting it have superconstant complexity and at least one
has sublinear? YES, by Theorem 3.

4. Is there an upper bound in terms of sweep complexity on machines accepting
regular languages? NO, by Propositions 2 and 3.

5. Are machines less complex in the case of binary alphabets, given that the
complementary deficient pairs of Lemma 1 are predetermined? NO, illus-
trated by the fact that all results have been obtained over a binary alphabet.

These coarser forms of Questions 2 and 3 have been answered here, but for a
complete picture one would want to know whether there exist machines with ar-
bitrary (constructible) sublinear complexity and its equivalent for languages. The

4 Iterated uniform finite transducers can also verify such relationships, albeit their
computing power is much stronger. [11]

12 S.Z. Fazekas and R. Mercaş

most obvious choices for such a study would probably be complexities Θ(logk n)
and Θ(nǫ), for constants k > 1 and ǫ < 1. Another angle related to Question 4 is
to study the lower bound of non-regularity: logarithmic complexity can produce
non-regular languages, but can we do it with less of this ‘non-regular’ resource?
In the case of Question 5, our answer may be refined, as there may by some
sublinear f(n) such that the machines of Θ(f(n)) complexity all accept regular
or all accept non-regular languages, although we have not seen anything that
indicates such perplexing behaviour.

Another interesting direction relates to our original motivation in looking
at the complexity of these automata, deciding regularity. The question more
generally becomes, is it decidable given a machine or language and a function
f(n), whether the machine/language has Θ(f(n)) complexity (or its one-sided
variants with O and Ω)? We suspect that the answer is yes at least in the case of
constant and linear functions but have no idea about the logarithmic and more
complicated cases.

References

1. Beier, S., Holzer, M.: Properties of right one-way jumping finite automata. Theo-
retical Computer Science 798, 78 – 94 (2019)

2. Beier, S., Holzer, M.: Decidability of right one-way jumping finite automata. In-
ternational Journal of Foundations of Computer Science 31(6), 805–825 (2020)

3. Beier, S., Holzer, M.: Nondeterministic right one-way jumping finite automata. In-
formation and Computation 284, 104687 (2022), selected papers from DCFS 2019

4. Bensch, S., Bordihn, H., Holzer, M., Kutrib, M.: On input-revolving determinis-
tic and nondeterministic finite automata. Information and Computation 207(11),
1140–1155 (2009)

5. Chigahara, H., Fazekas, S.Z., Yamamura, A.: One-way jumping finite automata.
International Journal of Foundations of Computer Science 27(3), 391–405 (2016)

6. Fazekas, S.Z., Hoshi, K., Yamamura, A.: The effect of jumping modes on various
automata models. Natural Computing (2021)

7. Fazekas, S.Z., Hoshi, K., Yamamura, A.: Two-way deterministic automata with
jumping mode. Theoretical Computer Science 864, 92–102 (2021)

8. Fazekas, S.Z., Mercaş, R., Wu, O.: Complexities for jumps and sweeps. J. Autom.
Lang. Comb. 27(1-3), 131–149 (2022)

9. Fazekas, S.Z., Yamamura, A.: On regular languages accepted by one-way jump-
ing finite automata. In: 8th Workshop on Non-Classical Models of Automata and
Applications, Short Papers. pp. 7–14 (2016)

10. Jančar, P., Mráz, F., Plátek, M., Vogel, J.: Restarting automata. In: Reichel, H.
(ed.) Fundamentals of Computation Theory. pp. 283–292. Springer Berlin Heidel-
berg, Berlin, Heidelberg (1995)

11. Kutrib, M., Malcher, A., Mereghetti, C., Palano, B.: Descriptional complexity of it-
erated uniform finite-state transducers. Information and Computation 284, 104691
(2022)

12. Meduna, A., Zemek, P.: Jumping finite automata. International Journal of Foun-
dations of Computer Science 23(7), 1555–1578 (2012)

13. Nagy, B., Otto, F.: Finite-state acceptors with translucent letters. In: BILC 2011 -
1st International Workshop on AI Methods for Interdisciplinary Research in Lan-
guage and Biology, ICAART 2011. pp. 3–13 (2011)

	Sweep Complexity Revisited

