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Abstract. In the race towards quantum computing, the potential ben-
efits of quantum neural networks (QNNs) have become increasingly ap-
parent. However, Noisy Intermediate-Scale Quantum (NISQ) processors
are prone to errors, which poses a significant challenge for the execu-
tion of complex algorithms or quantum machine learning. To ensure the
quality and security of QNNs, it is crucial to explore the impact of noise
on their performance. This paper provides a comprehensive analysis of
the impact of noise on QNNs, examining the Mottonen state prepara-
tion algorithm under various noise models and studying the degradation
of quantum states as they pass through multiple layers of QNNs. Ad-
ditionally, the paper evaluates the effect of noise on the performance
of pre-trained QNNs and highlights the challenges posed by noise mod-
els in quantum computing. The findings of this study have significant
implications for the development of quantum software, emphasizing the
importance of prioritizing stability and noise-correction measures when
developing QNNs to ensure reliable and trustworthy results. This paper
contributes to the growing body of literature on quantum computing
and quantum machine learning, providing new insights into the impact
of noise on QNNs and paving the way towards the development of more
robust and efficient quantum algorithms.

Keywords: Quantum Computing · Quantum Neural Networks · Quan-
tum Machine Learning · Noisy Intermediate-Scale Quantum.

1 Introduction

In recent years, quantum computing has made remarkable progress, and its po-
tential advantages over classical computing have become increasingly apparent.
Quantum neural networks (QNNs) are a promising approach to quantum ar-
tificial intelligence that leverage the unique properties of quantum systems to
achieve exponential memory capacity, scalability, and faster learning. Several
researchers have proposed QNNs as a possible alternative to classical neural
networks, highlighting their potential benefits [1–3].
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Noisy Intermediate-Scale Quantum (NISQ) processors have made quantum sys-
tems with hundreds of qubits available, which is a significant milestone for quan-
tum computing. However, the results generated by these systems are still noisy
and prone to errors, which poses a challenge for the execution of complex algo-
rithms or quantum machine learning. The combination of the inherent instability
of neural networks with the inconsistency and error-proneness of quantum com-
puting creates a challenging landscape for researchers to navigate. Nevertheless,
these challenges present a unique opportunity for researchers to explore new
methods and techniques to address the limitations of both quantum computing
and neural networks.

Ensuring the quality and security of quantum neural networks is a crucial step in
guaranteeing that production-ready industry models perform as intended, requir-
ing high accuracy and robustness against noisy data. Potential quantum errors
could be exploited by malicious agents to manipulate the output of the network,
leading to inaccurate predictions or faulty decisions. To safeguard against such
attacks, quantum software development must adopt a rigorous approach with
strict quality criteria and error-free execution [4].

Our work provides a comprehensive analysis of the impact of noise on quantum
neural networks. We examine the Mottonen state preparation algorithm [5] under
various noise models and study the degradation of quantum states as they pass
through multiple layers of quantum neural networks. Additionally, we evaluate
the effect of noise on the performance of quantum neural networks and highlight
the challenges posed by noise models in quantum computing.

The structure of this paper is organized as follows. In Section 2, we review the
existing literature and highlight the key contributions of prior research in this
area. In Section 3, we describe our experimental approach and methodology
for analyzing the effects of noise on quantum neural networks. In Section 4,
we present the empirical findings of our analysis. In Section 5, we discuss the
implications of our findings and their significance. Finally, in Section 6, we draw
conclusions and suggest future research directions in this field.

1.1 Quantum Neural Networks

Quantum computing leverage qubits, which grants it with unique properties
such as superposition and entanglement. In order to operate, quantum comput-
ers make use of quantum gates (e.g. rotation Rx, and CNOT/Cx). Even if these
properties make Quantum computing powerful, the current state of the art in
quantum computers are NISQ (Noisy Intermediate-Scale Quantum) which suf-
fer from various types of noise and errors that make them less reliable if not
correctly used. To mitigate this, researchers are working on different physical
improvements or algorithms, such as Quantum error correction algorithms.

Quantum neural networks are a special type of neural network which leverage
the power of these quantum properties to learn complex data models and solve
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problems. To implement such networks, Variational Quantum Circuits (VQC)
are constructed by a series of gates with trainable parameters which can be
tuned.

These circuits approximate classical learning by emulating the internal structure
of classical neural networks using a construction of CNOT and Rotation Gates.
This layer structure, known as a strongly entangled layer, is similar to a classical
layer. CNOT connections represent synapse connections, while rotations on the
layer represent weighted sum transformations. [6]

While more complex network structures, such as quantum activation functions
or quantum recurrent networks, have been proposed, their high implementation
complexity makes them impractical for this work. Therefore, we will rely on
standard rotation/entangled layered networks [7–9].

1.2 The Challenges on Measuring Error on Quantum Neural
Networks

The challenges surrounding quantum neural networks are multifaceted, stem-
ming from both the early state of quantum computing and the complexity of
neural networks. One key challenge is the inherent error proneness of quantum
hardware, which limits the viability of deep QNNs. Due to the current noise in
quantum computers, the circuits on the hardware can only have limited depth,
restricting the size and complexity of QNNs that can be developed. Developing
deeper QNNs demands multiple layers of quantum gates, which increases the
impact of errors.

Another significant challenge is the lack of a clear theoretical framework for
QNNs. This makes it difficult to understand and quantify the errors in these
systems and develop effective error correction techniques. Furthermore, the de-
velopment of such techniques is also challenging due to the complex interplay
between the quantum hardware and the neural network algorithms. Therefore,
addressing these challenges is necessary to enable the development of robust
QNNs that can effectively solve complex problems.

2 Related Work

Quantum Variational Circuits are a type of parametrized quantum circuit that
use a hybrid learning methodology for training quantum neural networks [10].
Quantum data is processed by the circuit, while the output and the training
is done by classical training optimization techniques, such as backpropagation.
This approach makes them a powerful tool for solving a wide range of problems
in fields such as supervised classification [7, 11, 12] and reinforcement learning
[13,14].
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Two primary techniques are commonly utilized for initializing data into the
circuit, namely Angle Embedding and Amplitude Embedding. Whilte angle-
based states make use of fewer gates, their information storage capacity scales
linearly with the number of qubits, which makes them unsuitable for handling
high-dimensional data. On the other hand, amplitude embedding techniques,
such as Mottonen state preparation algorithm, enable exponentially greater data
dimensionality at the expense of an exponentially larger number of required
gates [5].

Despite the potential benefits of quantum neural networks, the presence of
noise in NISQ computers can reduce their learning capacity by causing barren
plateaus, which result in a vanishing gradient and limit the learning capabilities
of these systems [15]. Although several Quantum Error Correction techniques
exist, they do not guarantee error-free execution of quantum circuits [16]. How-
ever, recent research suggests that the presence of some low level of noise may
help avoid saddle points and ensure the model’s convergence [17]. In order to
achieve quantum advantage, it is essential to ensure that quantum computers
are robust against environmental noise and gate errors [18].

3 Methodology

The present study aims to tackle three fundamental challenges in QNNs: (1)
how environmental noise and gate error affects the state of a quantum system as
it passes through a quantum neural network, (2) how resilient amplitude state
preparation algorithms are to noise, and (3) how noise impacts the performance
of pre-trained quantum neural networks.

To evaluate the impact of noise on the quantum state under increasing layers,
we will prepare uniformly initialized quantum neural networks and run several
executions with random weights to evaluate the degradation of the state. We
will analyze the rate of degradation with respect to two baselines: the resultant
state of a noise-free evaluation on the same circuit and the expected convergence
state of the system under high noise.

Regarding the second problem, we will evaluate the resilience of amplitude state
preparation algorithms to noise by analyzing the effect of different noise models
on the prepared state. We will provide visual information of the resultant state
and a later comparison of the effect under quantum neural networks.

For the third problem, we will first train multiple quantum neural networks
in a noise-free environment and then evaluate their performance under various
noisy models provided by IBM Quantum. We will use the MNIST dataset as a
benchmark and measure the degradation in performance caused by the noise.
To better understand the impact of noise on classification performance, we will
conduct experiments with different class splits and analyze how the space of the
classification is affected by the noise perturbation.
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To avoid any bias in the results, we will use multiple noise models with different
specifications to evaluate the impact of noise on QNNs. This will allow us to
examine how different noise models affect QNNs in unique ways, ensuring that
the results are not influenced by a single noise model.

Overall, our approach involves training and testing quantum neural networks
under different noisy conditions, using appropriate metrics to evaluate perfor-
mance, and comparing the results to identify the impact of noise on the quantum
neural network.

3.1 Experimental Setup

To provide accurate results on the quantum simulations, real quantum machine
specifications will be used. Specifically, we will make use of the AER simulator,
which mimics the execution of the quantum circuits on actual devices, providing
reliable and precise results. In order to minimize bias and ensure the quality
of the work, we have selected four distinct quantum systems to extract their
specifications for the simulator: IBM Cairo, IBMQ Guadalupe, IBM Hanoi, and
IBMQ Mumbai. These simulators were chosen based on their compatibility with
our research requirements, ensuring a minimum of 8 qubits and the capability
to sample from a variety of quantum models.

We chose the MNIST dataset to test the impact of noise on trained quantum
machine learning models’ inference capacity. We will test all models for 2 (0-1),
4 (0-3), and 10 (0-9) classes to investigate whether the number of classes affects
the error rate. Given that the input dimension is 784, we will use amplitude
encoding because angle embeddings are not feasible. To reduce redundancy and
address memory restrictions, we will reduce the data to 14x14 (196) dimensions
through max pooling (2x2 kernels) with strides (2x2). We will then project the
196 dimensions to the 256 states of an 8 qubits system, setting the extra states
to zero.

We will use Pennylane as the main quantum machine learning library and Qiskit
as a backend for quantum circuit simulation. The circuits will have 8 qubits,
and the networks will follow a standard structure. We will prepare the initial
state with a Mottonen state preparation circuit followed by a sequential chain
of strongly entangled layers. In total, we will prepare 5 different networks, with
1, 3, 5, 7 and 9 layers respectively. Measurements will be given as the average
state of each qubit at the end of the circuit. To account for a variable number
of classes and since the quantum circuits contain 8 qubits, we will connect the
output of the quantum network to a classical dense classification layer.

To train the quantum neural networks, we will utilize the Pennylane lightning
plugin with Tensorflow as the interface, following a supervised learning approach.
The 5 networks will be trained on the MNIST dataset, split into three categories:
0-1, 0-3, and 0-9, for 1, 2, and 4 epochs, respectively. We will use the Adam op-
timizer with a learning rate of 0.01 and a categorical cross-entropy loss function.
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The adjoint optimization algorithm will be employed as the backpropagation
algorithm, as it is both fast and reliable. The training will use 600 shots on
the quantum circuit and a batch size of 16 to reduce the statistical noise in the
measurement outcomes.

4 Results

The experimental result reveals that noise in IBM quantum systems causes la-
tent states to converge towards a uniform distribution, rendering the system
unable to distinguish between real states and the uniform states. As depicted in
Figure 1, the degradation rate of the system follows an exponential decay. The
rate of degradation of the state strongly varies with the chosen noise model cho-
sen, with IBM Hanoi and IBMQ Mumbai allowing for deeper networks without
impactful degradation, taking up to 50 steps to fully converge towards a uniform
distribution, while IBM Guadalupe takes up to 10 layers and IBM Cairo takes
up to 5 layers.

Fig. 1. χ2 distance with respect to a uni-
form distribution per iteration, up to 60 it-
erations for the 4 specified backends.

Although intrinsic noise perturbs the
state of quantum systems, the overall
distribution of the data appears to re-
main. As shown in Figure 2, for exam-
ple, on IBM Hanoi or IBMQ Mumbai
at layer 15, while a clear uniform floor
has been formed, the highest states of
the distribution still retain their or-
der and relative magnitude with the
original state. However, as the depth
increases, the magnitude of conserva-
tion of the real state decreases until
the distribution is equal to the uni-
form distribution.

It is worth noting that IBM noise models are updated regularly, and their spec-
ifications are updated online daily. During the development of the paper, the
noise models cycled between lower and higher noise models, with some unable
to hold the distribution under even one layer. Therefore, it is essential to en-
sure that the model’s specifications meet certain robustness criteria before using
noisy models in production, especially as no alert is triggered when the noise
models are updated.

Our analysis of Amplitude Embedding algorithms revealed that high noise errors
in gates or readout resulted in a faulty distribution of the state, causing specific
pixels of the image to have sharper values than their neighbors. Figure 3 provides
a clear example of this behavior in IBM Cairo, where a faulty CNOT with an
error rate of 1, acting between qubits 0 and 1, creates a sharp pixel in the
background. This pixel absorbs half of the distribution of the state, maintaining
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Fig. 2. Evolution of the qubit state under the 4 specified noise models in several quan-
tum neural networks with different amount of random weighted layers (1, 3, 6, 10 and
15 layers respectively) .

the shape of the zero in the background but completely altering the distribution
of the data.

In contrast, IBM Hanoi, IBMQ Guadalupe, and IBMQ Mumbai were able to
prepare the state in a way that was still visible. Although IBMQ Guadalupe
added a higher degree of background noise, the most important pixels were still
present in the image. Among the three, IBMQ Mumbai was the most precise
noise model in preparing quantum states by providing an evenly distribute state
through the expected pixels while keeping a moderate background noise. Yet, as
it can be seen in Figure 1, the background noise in IBMQ Mumbai is stronger
than IBM Hanoi’s, degrading the state of the circuit faster. IBM Hanoi, while
not having the best distribution over the pixels, contains the most robust noise
distribution over the different backends.

As the data is encoded through binary CNOT gates, most of the noise in the
images can be clearly attributed to binary location. This trend is visible in
the results obtained from IBMQ Guadalupe and IBM Hanoi, where a trace of
high intensity pixels can be seen on the even pixels on the right side of the
images. It is important to note that this noise distribution behaves differently
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from classical noise, which is uniformly distributed throughout the image. The
noise in quantum data follows a clear trend to focus on states which are divisible
by different powers of two. This characteristic of quantum noise should be taken
into account when dealing with data preparation or noise correction in future
algorithms.

Fig. 3. Mottonen State Preparation on the specified noise models from different quan-
tum computers: (a) Real image, (b) IBMQ Mumbai noise model effect, (c) IBMQ
Guadalupe noise model effect, (d) IBM Cairo noise model effect, (e) IBM Hanoi noise
model effect.

The results presented in Table 1 clearly demonstrate the impact of noise levels
on model accuracy. In particular, the noise levels in IBM Cairo are significant
enough to severely limit the model’s learning ability, as evidenced by the de-
formed pixel shown in the state preparation process. This shift in the data leads
to a significant decrease in accuracy, as expected.

While IBMQ Guadalupe is a less noisy model compared to IBM Cairo, it still
struggles to maintain accuracy beyond a one-layer neural network and quickly
degrades towards a random model. On the other hand, IBM Hanoi and IBMQ
Mumbai, which are the least noisy models, are able to maintain performance
over different numbers of layers, but still suffer a noticeable accuracy loss.

Our analysis showed that certain noise models had a greater impact on QNNs
trained with different numbers of layers. This can be attributed to the fact that
noise models affect specific gates, readouts, or connections with varying degrees
of strength. As a result, different weight sets trained on the same data may
be impacted differently by the same noise model, resulting in varying levels of
performance degradation.

Additionally, we observed a significant decrease in accuracy when increasing the
number of classes on the network. For instance, IBMQ Mumbai, which was able
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to accurately solve the 2 and 4 classes split, struggled when dealing with 10
classes, failing to reach 50% accuracy in any number of layers. Similarly, IBM
Hanoi, which performed better initially, also suffered significantly, with only one
model achieving 70% accuracy.

Table 1. Accuracy of the pre-trained QNNs for the specified noise models and number
of layers.

Noise Model 1 Layer 3 Layers 5 Layers 7 Layers 9 Layers
Classes 0-1

IBM_Cairo 38.16% 36.53% 38.05% 55.56% 55.63%
IBMQ_Guadalupe 47.79% 50.31% 38.05% 55.71% 61.95%
IBMQ_Mumbai 94.69% 97.34% 99.12% 98.78% 95.58%
IBM_Hanoi 99.10% 99.43% 99.27% 99.12% 99.89%
Base 96.02% 98.73% 99.31% 99.33% 99.29%

Classes 0-3
IBM_Cairo 26.43% 19.10% 26.5% 30.23% 26.49%
IBMQ_Guadalupe 39.13% 24.56% 23.64% 25.45% 28.12%
IBMQ_Mumbai 80.67% 55.47% 89.71% 89.53% 78.29%
IBM_Hanoi 88.95% 89.67% 89.09% 90.18% 90.38%
Base 84.23% 92.79% 93.86% 94.56% 94.74%

All Clases
IBM_Cairo 9.83% 10.22% 10.57% 9.70% 11.62%
IBMQ_Guadalupe 25.74% 17.04% 10.57% 21.08% 13.12 %
IBMQ_Mumbai 44.87% 29.03% 17.02% 37.56% 29.52%
IBM_Hanoi 54.22% 69.51% 70.46% 68.16% 52.47 %
Base 59.46% 70.45% 72.74% 78.22% 79.43%

5 Discussion

In this study, we aimed to investigate the impact of noise on quantum neural
networks in IBM quantum systems. Our findings suggest that the presence of
noise in quantum systems causes latent states to converge towards a uniform
distribution, making it difficult to distinguish between real states and uniform
states. The rate of degradation of the state strongly depends on the chosen noise
model, with IBM Hanoi and IBMQ Mumbai being the least noisy models, while
IBMQ Guadalupe and IBM Cairo experience a more significant loss of accuracy.
However, on initial layers, the distribution of the data appears to retain certain
structure, allowing for classical post-processing of the output. Nevertheless, these
results highlight the need for noise-robust systems to build deep QNNs reliably.

The analysis on the effect of Amplitude Embedding in different quantum com-
puting environments showed that high noise errors in gates or readout resulted
in a faulty distribution of the state, causing specific pixels of the image to have
sharper values than their neighbors. This effect can be attributed to the high
dependency of the Mottonen State preparation on CNOT gates, with are one
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of the most error-prone gates. The exponential need of CNOT gates implies a
high probability of degradation on noisy quantum systems. Notably, since CNOT
gates are binary gates, the error trace observed on the image exhibited a clear
binary aspect, where sets of powers of 2 manifested high noise values.

This trend is visible in the results obtained from IBMQ Guadalupe and IBM
Hanoi, where a trace of high-intensity pixels can be seen on the even pixels on
the right side of the images. This characteristic of quantum noise should be taken
into account when dealing with data preparation or noise correction in future
algorithms.

The results presented in this study clearly demonstrate the significant impact
of noise levels on the accuracy of QNNs. Models with cleaner state preparation
achieved better accuracies, and the accuracy of the models was directly related to
their ability to retain the distribution of their data from the uniform distribution.
These findings highlight the importance of having circuit quality measures in
place to assess the stability of QNNs under ongoing noise circumstances. As
seen in the table, circuits trained with similar expected accuracy can yield vastly
different results when subjected to noise.

The impact of increasing the number of classes on the performance of QNNs
is significant. This is due to the nature of QNNs as mathematical functions
that map data spaces. As the number of classes increases, the distance between
different class spaces decreases, making it easier for any perturbation in the
data caused by intrinsic noise to move the latent data from one class to another.
Therefore, if the goal is to develop deeper and more complex QNNs, it is crucial
to reduce noise to a level where perturbations have even lower thresholds of
action. Otherwise, accumulated noise perturbations will inevitably distort the
output, leading to incorrect classifications.

Given the high cost of training quantum neural networks on actual quantum
computers, the training in this study was conducted on simulators. However,
training on a noise-robust quantum computer could reveal valuable insights into
the capacity and limitations of QNNs in real-world environments. Therefore, an
important future direction would be to extend these results to real quantum
computers. Another potential line of research would involve conducting an ab-
lation study on the different noise factors that make up a general noise model in
quantum computing, such as T1, T2, and gate errors. Such an analysis could help
identify which noise factors are most significant and require the most attention
in developing robust QNNs.

6 Conclusion

In this investigation, the effect of noise in IBM quantum systems on deep quan-
tum neural networks has been studied. The results indicate that noise in quan-
tum systems causes qubit states to converge exponentially towards a uniform
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distribution, rendering the system unable to operate with the state. The rate
of degradation of the state depends on the chosen noise model, highlighting the
need for noise-robust systems to develop deep quantum neural networks reliably.
Nonetheless, the fundamental structure of the quantum state remains intact for
several layers, indicating the feasibility of developing noise reduction techniques
on the quantum output.

The study demonstrated the influence of noise on quantum state preparation,
highlighting that noise-tolerant models resulted in improved image representa-
tion in the quantum state. Notably, the observed noise in quantum systems
differed from classical systems, as it exhibited a pattern aligned with multiples
of powers of 2, potentially due to interactions between various CNOT gates and
connectivity structures. This unique characteristic of quantum noise should be
taken into account in future algorithms for noise correction or data preparation.

The current state of quantum hardware limits the depth of circuits that can be
used, making it challenging to build deep QNNs. Different noise models affect
QNNs with varying degrees of strength, which can impact their performance
differently. Furthermore, increasing the number of classes in a dataset leads to
a decrease in accuracy due to the geometrical nature of QNNs as mathematical
functions that map data spaces. These findings underscore the importance of
developing circuit quality measures to assess the stability of QNNs under noise
and the need for future work to explore training on actual quantum hardware.
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