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Abstract. There is an ever-present need for shared memory paralleliza-
tion schemes to exploit the full potential of multi-core architectures.
The most common parallelization API addressing this need today is
OpenMP. Nevertheless, writing parallel code manually is complex and
effort-intensive. Thus, many deterministic source-to-source (S2S) compil-
ers have emerged, intending to automate the process of translating serial
to parallel code. However, recent studies have shown that these com-
pilers are impractical in many scenarios. In this work, we combine the
latest advancements in the field of AI and natural language processing
(NLP) with the vast amount of open-source code to address the problem
of automatic parallelization. Specifically, we propose a novel approach,
called OMPify, to detect and predict the OpenMP pragmas and shared-
memory attributes in parallel code, given its serial version. OMPify is
based on a Transformer-based model that leverages a graph-based rep-
resentation of source code that exploits the inherent structure of code.
We evaluated our tool by predicting the parallelization pragmas and at-
tributes of a large corpus of (over 54,000) snippets of serial code written
in C and C++ languages (Open-OMP-Plus). Our results demonstrate
that OMPify outperforms existing approaches — the general-purposed
and popular ChatGPT and targeted PragFormer models — in terms
of F1 score and accuracy. Specifically, OMPify achieves up to 90% accu-
racy on commonly-used OpenMP benchmark tests such as NAS, SPEC,
and PolyBench. Additionally, we performed an ablation study to as-
sess the impact of different model components and present interesting
insights derived from the study. Lastly, we also explored the potential
of using data augmentation and curriculum learning techniques to im-
prove the model’s robustness and generalization capabilities. The dataset
and source code necessary for reproducing our results are available at
https://github.com/Scientific-Computing-Lab-NRCN/OMPify.

Keywords: NLP · Code Completion · OpenMP · Shared Memory Par-
allelism · Transformers· S2S Compilers · Code Representations
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1 Introduction

There is an ever-growing need to develop parallel applications these days. The
ever-growing demand for computing power is leading to various types of complex
architectures, including shared-memory multi-core architectures. A part of the
demand arises from the recent HPCaaS paradigm that has become widespread
and available to a broader community of developers [4]. The services offered
as HPCaaS usually depend on the CPU core count and the duration of com-
pute usage. Furthermore, the number of cores per CPU node has increased over
the years — for example, from dozens of physical cores available in GCP’s C2
family [2] to hundreds of physical cores available in GCP’s future C3 family [9].

Despite the growing need to write parallel programs, introducing shared-
memory parallelization into code remains challenging due to numerous pitfalls.
Besides the fact that parallelizing serial code requires extensive knowledge of the
code structure and semantics, it also requires the programmer to avoid paral-
lelization pitfalls, such as the need to synchronize simultaneous reads and writes
to the same variables (leading to race conditions), as well as making sure that
the workload is distributed evenly across the threads and across the system re-
sources (load balancing). In addition, it also requires a high degree of human
expertise to comprehend fine details and abstract correlations between variables
and different code segments [1]. It is then unsurprising that the number of paral-
lel programming experts is relatively tiny compared to the growing community
of users who can benefit from parallel programs.

The complexity of writing parallel programs is partly addressed by source-
to-source (S2S) compilers [14,15,16], which are compilers that translate code
from one programming language to another while preserving the code seman-
tics. These compilers analyze the code for data dependencies that could prevent
parallelization and automatically insert appropriate parallelization APIs (such
as OpenMP pragmas) into it. Nevertheless, these compilers have several major
drawbacks [23,34,35], such as long execution times and limited robustness to the
input, even when optimized on runtime [28]. More importantly, these compilers
require manual development and maintenance efforts, for instance, to support
a new programming language or a new specification of parallel programming
APIs.

We observed that the recent advances and successes of deep-learning-based
Natural Language Processing (NLP) models, such as Transformer architecture
and attention mechanism [38], masked language modeling (MLM) [17], could
help in addressing the limitations of S2S compilers. These models are commonly
called large language models (LLMs) because they capture the characteristics of
languages. There are already examples of applying these LLMs to programming-
related tasks. For example, Codex (based on GPT) [13], a state-of-the-art model
that powers GitHub’s CoPilot [3], has shown an interesting application for gen-
erating code from natural language prompts. Another example is Google’s ML-
enhanced code completion tool [5] that can predict possible completions of in-
complete code fragments. An internal study conducted by Google has shown the
promising potential of these technologies in reducing programming efforts. These
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technologies are commonly deployed in programming editors and integrated de-
velopment environments (IDEs) to provide immediate feedback to developers.

Although AI-based programmer assistance tools already exist, to our knowl-
edge, PragFormer [22] is the only AI-based programmer assistance tool that can
advise programmers in parallel programming. Specifically, PragFormer uses a
Transformer-based architecture to predict if a given serial code could be par-
allelized (using OpenMP pragma) and if private or reduction clause could be
applied to it. Specifically, it formulates this problem as multiple binary classifi-
cation problems, where one problem tackles the need of determining if OpenMP
pragma could be applied, while the other two tackle the need of determining the
need of private and reduction clauses respectively.

While PragFormer has definitely shown interesting perspective towards auto-
mated parallel programming, in our experiments with PragFormer, we identified
several of its limitations. One of its key limitations is the problem formulation;
conceptually, if a serial code cannot be parallelized, then there is no need of
determining private/reduction clause. As such, we found that these three are
not independent problems, and rather formulating the problem as a multi-label
classification problem seems much more intuitive. We address this and a few
other limitations in PragFormer to propose a new model, named OMPify, that
improves upon PragFormer on several fronts. Our experimental evaluation on a
corpus of 54,000 for-loops mined from GitHub revealed that OMPify outper-
forms PragFormer and several state-of-the-art AI models for code in assisting
programmers in parallel programming.

The rest of this article is organized as follows. Section 2 describes related
work and provides the necessary background of our work. Section 3 presents the
research objectives. Section 4 describes OMPify and illustrates our proposed
method. Section 5 evaluates our method against previous methods. Finally, sec-
tion 6 concludes this article and suggests possible extensions of this work.

2 Related Work

Initially, the approaches for translating serial code into parallel heavily relied
on heuristics and rule-based methods, which often had limited capabilities and
robustness (§2.1). However, with the rapid advancement of deep learning tech-
niques in the field of NLP, along with the easy availability of open-source code,
there have been some approaches to apply deep learning techniques to source
code (§2.2). These approaches, however, process source code as text (similar to
NLP) and fail to fully exploit the potential of other code representations (§2.3).
By incorporating multiple code representations that capture different aspects
of source code, multimodal learning techniques can overcome the limitations of
these approaches.

2.1 Rule-based Methods

Several S2S compilers, including Cetus [15] and Par4All [14], have emerged in
the last decade or so to insert OpenMP pragmas into code automatically. These
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tools rely on program analysis-based techniques to analyze and identify potential
constraints (e.g., loop-carried dependencies) that may restrict the code from
being parallelized. The general workflow of S2S compilers can be summarized as
follows:

1. Create an abstract syntax tree (AST) [29], which is a tree representation
of the code’s syntactic structure. ASTs are constructed using source code
parsers, such as ANother Tool for Language Recognition (ANTLR) [32] or
pycparser [12], etc.

2. Apply data dependence algorithms [18] to ASTs.
3. Produce appropriate OpenMP directives based on the data dependence graph.

There are multiple drawbacks associated with the approach of generating
ASTs and applying data dependence algorithms. Firstly, creating an AST with
a parser can be a challenging task with limited robustness to input due to each
programming language’s unique syntactic structures that have evolved over the
years. Thus, many S2S compilers cannot handle the diverse syntax of program-
ming languages. Moreover, not all parsers are publicly available. As a result,
some S2S compilers may fail to produce an AST and analyze the input code.
Secondly, data-dependence algorithms can be time-consuming, particularly for
large-scale code, since these algorithms are strongly dependent on the size of the
AST, which in turn is influenced by the length of the code. Additionally, studies
by Harel et al. [23] and Prema et al. [34] have shown that S2S compilers may
produce sub-optimal results and even degrade program performance in some
cases.

2.2 Unimodal Machine-Learning Driven Methods

Rule-based methods also suffer from another important limitation – tools rely-
ing on these methods require manual programming efforts to add new rules to
maintain and update them. However, recent AI-based programming assistance
tools have demonstrated that it is possible to reduce manual effort by instead
learning the rules from data. Specifically, with the powerful computing devices
and vast availability of open-source code as data, these AI-based tools can learn
programming rules such as syntax, typing rules [24], etc. Continuing this trend,
in recent years, several Transformer-based models have been proposed for vari-
ous programming-related tasks [20,31]. Typically, these models are pre-trained
on massive code corpora containing multiple programming languages (PLs) and
then applied to various programming problems [30], such as program comple-
tion, code search, bug finding, etc., as downstream tasks. One of the common
pre-training tasks is masked language modeling (MLM) [17].

Previous work by Harel et al. [22] showed the possibility of applying Attention-
based models (Transformer) to determine if code can be parallelized with OpenMP.
In their work, they introduced PragFormer, which is a transformer model
based on DeepSCC [41], which itself is a RoBERTa model fine-tuned on a cor-
pus of 225k code snippets written in 21 programming languages (such as Java,
Python, C, and C++) collected from Stack Overflow.
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In the parlance of AI-based models, PragFormer formulates the parallel pro-
gramming assistance problem as Code Language Processing for Parallelization
(CLPP) task. Specifically, it breaks this task down into three sub-problems: given
a serial code (for-loop), determine (1) if it can be parallelized (using OpenMP
pragma), (2) if private clause would be applicable to OpenMP pragma, and (3)
if reduction class would be applicable to OpenMP pragma. It then approaches
these three sub-problems independently and formulates them as three separate
binary classification problems as below:

1. pragma classification: Classifying the need for OpenMP parallel for pragma.
2. private clause classification: Classifying the need for a private clause (spec-

ifying a variable to be private to each thread in a parallel region).
3. reduction clause classification: Classifying the need for a reduction clause

(specifying an operator and a variable to reduce across all threads in a par-
allel region).

Although PragFormer shows great potential in using Transformer architec-
ture to solve the shared-memory parallelization task, it still suffers from several
deficiencies. Primarily, PragFormer is based on RoBERTa, which is essentially
a model for Natural Language (NL) understanding. Applying an NL model to
a code-related task is sub-optimal compared to models pre-trained directly on
code [30]. Additionally, PragFormer regards source code as a sequence of
tokens, ignoring the inherent structure of the code. Intuitively, structural infor-
mation of code, such as variable dependence information, etc., should provide
crucial code semantic information that could improve the code understanding
process. Furthermore, the approach of separating the classifications is unintuitive
since the tasks of predicting the need for OpenMP pragmas and data-sharing
attribute clauses are highly correlated — there will not be a private or reduction
clause if there is no need for OpenMP pragma at all.

2.3 Multimodal Machine-Learning Driven Methods

While the unimodal ML methods accept source code in only one representa-
tion (most commonly as a sequence of tokens), multimodal ML methods realize
that other code representations may offer richer semantic information that could
improve the accuracy of the models on programming-related tasks. Specifically,
multimodel ML models also accept source code in other representations such
as AST, control-flow graph (CFG), data-flow graph (DFG), etc. Consequently,
many pre-trained machine learning models have been developed, with each model
incorporating different code formats into the training process.

Feng et al. presented CodeBERT [19], a bimodal Transformer model trained
on programming languages alongside natural languages. In their experiments,
they used CodeSearchNet [26] dataset, which includes 6.4M code snippets from
6 programming languages (Python, Java, JavaScript, Go, Ruby, and PHP).
They compared CodeBERT trained on samples from natural languages and
programming languages, CodeBERT trained only on natural languages, and
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Fig. 1: Differences between S2S compilers, PragFormer and OMPify.

RoBERTa, and showed the superiority of CodeBERT trained on both natural
languages and programming languages on several programming-related tasks.
Guo et al. created GraphCodeBERT [20], a multimodal Transformer model
trained on CodeSearchNet dataset and input programs as natural language text
alongside programming languages and DFG. They showed that DFG enhances
the code understanding process compared to CodeBERT. Another multimodal
model that exploits the structural aspect of the code is SPT-Code [31] that was
proposed by Niu et al. They presented SPT-Code, which is trained on natural
language, programming language, and AST, from the CodeSearchNet dataset.
While CodeBERT and GraphCodeBERT are models that use Transformer
encoders, SPT-Code is uses Transformer encoder-decoder architecture. Exper-
iments have shown the superiority of SPT-Code in code generation tasks.

Drawing inspiration from some of the design choices of multimodal models,
we have designed the OMPify model also as a multimodal model. Figure 1
summarizes the difference between OMPify and related works.

3 Research Objectives

This paper draws inspiration from PragFormer and approaches the parallel pro-
gramming assistance problem as a Code Language Processing for Parallelization
(CLPP) task. Nevertheless, we improve upon PragFormer by posing the fol-
lowing research questions that are designed to evaluate the limitations of Prag-
Former discussed earlier in Related Work (§2.2).
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RQ1: Which code representations impact the CLPP task?

Given the discussion of different code representations, this question focuses on
assessing the influence of various code modalities on code comprehension, par-
ticularly in CLPP tasks. We will evaluate the effectiveness of the previously
mentioned multimodal models on our dataset.

RQ2: Does the scope of the for-loop from input serial code matter for
performance on CLPP task?

Conceptually, the semantics of a for-loop from serial code heavily relies on its
context. This question assesses the impact of different context lengths on the
performance of various multimodal models on CLPP tasks.

RQ3: Can code augmentation improve model’s performance on CLPP task?

We will investigate the potential of code augmentation techniques, specifically
variable name replacement, to improve the performance of existing models on
CLPP tasks.

RQ4: Will multi-label classification based formulation for solving CLPP
task perform better than PragFormer’s multiple binary-classification based
formulation?

While PragFormer employed three binary classification-based models to pre-
dict the requirement for an OpenMP pragma and whether it should include a
work-sharing construct, we hypothesize that these predictions are interdependent
and potentially benefit each other. We evaluate this hypothesis by formulating
a multi-label classification problem and developing a single generative model
for the CLPP task. We then compare our model against PragFormer and other
state-of-the-art multimodel models.

4 OMPify

This section describes the model architecture, its input, the code representa-
tions, and the fine-tuning process. OMPify predicts the need for both OpenMP
pragma and shared-memory attributes (private and reduction) simultaneously,
allowing the model to learn inter-dependencies between these tasks.

4.1 Model

OMPify (Figure 2) is a Transformer-based, multimodal model that utilizes a
graph-based representation of source code. OMPify is based on GraphCode-
BERT [20], a pre-trained model for programming languages that considers the
inherent structure of the code by accepting source code along with its DFG.
OMPify is composed of GraphCodeBERT and a fully connected layer. This
architecture allows OMPify to perform multi-label classification, where each
task is individually classified.
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Fig. 2: Overview of OMPify training process.

4.2 Model Input

The model’s inputs are two code modalities: the actual source code as a sequence
of tokens and the serialized DFG.

N = 10000;
array = ( int ∗) c a l l o c (N, s izeof ( int ) ) ;

for ( i = 0 ; i < N; i++)
{

array [ i ] = pow( i , 2 ) ;
}

1

Plain Code
1 2

3 4

5 6 7 8 9

10 11 12 13

Variable

Relation

Data Flow Graph

100002 N1 N4 array3

N8

06 i5 i7 i9

i11

i12 213

array10

Lexicalization Serialization

CLS N = 10000 ; array = ... SEP N 10000 array ...

1

Fig. 3: The input format for a C code snippet.

– Code Tokens. As shown in Figure 3, the first part of the input to OMPify
consists of a sequence of code tokens. Feeding source code as a sequence
of strings to Transformer-based models does not work well in practice. A
common approach, in this case, is to train a tokenizer that maps strings
of tokens into unique IDs (numbers), such that strings that are semanti-
cally closer have their IDs closer also. We used the tokenizer provided by
GraphCodeBERT to generate a sequence of token IDs.
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– Serialized DFG. The second part of the input, which is the serialized DFG,
is created by converting the code into an AST using TreeSitter parser 7. We
extract variables and their data dependence relationships from an AST to
generate a DFG. The DFG nodes are serialized in the program ordered and
serve as the model input.

– Attention Mask. Figure 3 provides an overview of the token connections,
showcasing the interconnections between the tokens. Whereas the code to-
kens attend to each other during the self-attention mechanism [39], when
dealing with DFG, we aim to disregard attention between variables that are
not connected. To achieve this, we employed the masked attention approach
described by Guo et al. [20]. During the computation of self-attention, we
utilized an attention mask, denoted as M , which contains zeros in positions
(i, j) where we want the tokens to attend to each other, and contains −inf to
prevent certain relations. The self-attention computation can be represented
as follows: SelfAttention = softmax(QK/d + M)V (1)

4.3 Fine Tuning

Many studies have demonstrated the advantages of implementing data augmen-
tation techniques to enhance the performance of deep learning models [37,40].
Data augmentation techniques are typically applied to the training set to in-
crease the diversity of input. Commonly-used augmentation techniques include
variable renaming, dead store, and constant replacement.

Despite the effectiveness of data augmentations, several studies [25,36] showed
that deep learning models are vulnerable to adversarial examples, i.e., minor
changes to code can result in significant performance degradation. To address
this issue, as many studies have suggested [21,33,40] leveraging a curriculum
learning (CL) technique that involves the gradual introduction of data augmen-
tation techniques. Specifically, we applied variable renaming as a data augmen-
tation technique. We followed a gradual approach, starting with the original data
without any augmentation during the first epoch. In each subsequent epoch, we
augmented the original data by progressively increasing the proportion of re-
named variables. Specifically, during the second epoch, we renamed 10% of the
variables for each sample in the original training set. In the third epoch, we
continued this approach and renamed 20% of the variables per sample. As we
progressed to the fourth epoch, we further increased the update ratio, renam-
ing 30% of the variables per sample. Finally, starting from the fifth epoch and
throughout the remaining epochs, we consistently maintained an update ratio
of 40%, resulting in the renaming of 40% of the variables per sample in each
subsequent epoch.

5 Experimental Results

To evaluate the effectiveness of our proposed model, OMPify, we conducted
several experiments to answer our research questions. All experiments were con-

7 https://github.com/tree-sitter/tree-sitter

https://github.com/tree-sitter/tree-sitter
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ducted on an NVIDIA A100 GPU. Furthermore, for the sake of consistency, we
utilized the original implementations of the models as presented in their respec-
tive papers.

5.1 Dataset & Preprocessing

In our work, we developed a novel dataset, named Open-OMP-Plus, comprising
more than 54,000 code snippets from C and C++ for OpenMP analysis (Table 1).
The dataset was collected from github.com using the github-clone-all8 script,
which enables searching for repositories that satisfy specific criteria. We used
this tool to locate all repositories that include C or C++ files and also feature
the term “OpenMP” in their title, description, or README.

Description C C++

With OpenMP 14,906 8,241

Without OpenMP 17,193 14,323

Total 32,099 22,564

(a) Number of loops paralleled
with OpenMP for each program-
ming language (C and C++).

Clauses Amount

private 6,758

reduction 3,267

Total 10,025

(b) Number of com-
mon OpenMP shared
memory attributes.

# Lines Amount

< 15 40,745

16-50 10,607

> 50 3,311

(c) Code snippet
length in Open-
OMP-Plus.

Table 1: The distribution of each class for each programming language.

To minimize the noise in our dataset, we employed inclusion and exclusion
criteria inspired by Harel et al. [22]. Specifically, we included only C/C++ files
that contained OpenMP pragmas in their code. This criteria operates on the
assumption that the developers were aware of OpenMP parallelization and that
any non-parallelized loops intentionally have not been parallelized. We excluded
duplicates, empty loops, and loops that used barrier, critical, or atomic pragmas,
which can be bottlenecks on code execution and are not optimal samples.

Once we identified files that contained OpenMP pragmas, we parsed them
using pycparser [12] parser, which converts the code into an AST format. Each
sample in the dataset comprises several fields, such as the plain for-loop code, its
corresponding pragma (if any), the AST of the for-loop, the AST of the functions
called within the for-loop, the declaration of each variable used in the for-loop,
all the assignment instructions from the context of the loop that involves each
of the variables used in the loop, and the DFG of the for-loop and its extended
scope. By analyzing the AST, we can extract code structures such as loops and
identify the relevant functions and variables from its outer scope.

To evaluate the performance of our model, we divided the dataset into three
sets: train, validation, and test, using standard 80-10-10 split. Additionally, we
collected three benchmarks that were known to use OpenMP correctly, namely

8 http://github.com/rhysd/github-clone-all

github.com
http://github.com/rhysd/github-clone-all
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NAS [11], PolyBench [7], and SPEC [8], and used them to further test our model.
To avoid fair evaluation, we removed from the training set any samples that could
be found in the benchmarks.

5.2 Results

We now present the results of our experiments to answer the research questions.

Model Name
Metrics

P R Acc

PragFormer 0.826 0.780 0.830

CodeBERT 0.848 0.813 0.852

SPT-Code 0.812 0.784 0.831

SPT-Code (code only) 0.792 0.786 0.820

GraphCodeBERT 0.836 0.835 0.862

GraphCodeBERT (code only) 0.834 0.833 0.861

Table 2: Effect of different code modali-
ties on the task of pragma classification.
(P=Precision, R=Recall, Acc=Accuracy)

RQ1: Code modalities. To
compare the various code modal-
ities, we utilized three distinct
models. CodeBERT was pre-
trained on natural language
(NL) and programming lan-
guage (PL), SPT-Code was
pre-trained on PL and AST,
and GraphCodeBERT was
pre-trained on PL and DFG. To
apply these models to pragma
classification task, we added a
fully connected layer of size two
and a SoftMax layer at the end of these models and fine-tuned them using our
corpus, Open-OMP-Plus. We also included PragFormer, which was fine-tuned
on our corpus, for comparison with these models.

Based on the results presented in Table 2, it can be inferred that the use
of multimodal models, which combine code representations such as AST or
DFG with the original code, has a positive impact on the performance of the
model in the pragma classification task. However, despite being trained on the
same dataset, i.e., CodeSearchNet, CodeBERT, SPT-Code, and GraphCode-
BERT achieved significantly different performance, with GraphCodeBERT
outperforming others. This indicates that the DFG representation and pretrain-
ing tasks proposed by Guo et al. [20] were more beneficial this task. It is worth
noting that while the use of AST in SPT-Code significantly improves perfor-
mance compared to using only the code, the DFG in GraphCodeBERT has
only a minimal impact on performance. This could be due to the DFG represen-
tation’s inability to effectively capture the relationship between arrays and their
indexing. As shown in Figure 3, there is no direct connection between the array
and the index variable i11. In scientific codes, the relationship between the array
and the index is often critical as it determines the feasibility of parallelization.

RQ2: Extended scope. In this experiment, we aimed to investigate the impact
of extended scope on the performance of OMPify in solving the CLPP task. To
achieve this, we trained OMPify on two distinct corpora: one comprising only
the for-loop structured block, and the other consisting of the extended version
that includes the surrounding scope of the for-loop, incorporating assignments
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to variables used within the loop (Figure 5). The results, as presented in Table 4,
demonstrate the effect of including the outside scope in determining the necessity
of OpenMP pragma. The observed increase in recall indicates that the model
exhibits improved identification of for-loops requiring OpenMP pragma, resulting
in fewer false negatives. This finding suggests that considering the outside scope
provides valuable information for accurately identifying the need for pragma in
for-loops.

Data Type P R Acc

No Scope 0.833 0.831 0.860

With Scope 0.829 0.844 0.863

Fig. 4: Effect of context.
(P=Precision, R=Recall,
Acc=Accuracy)

< 10 11 − 50 50 − 100 > 100
0

1

2

3

·104

#
L

in
es

Extended Scope

No Scope

Fig. 5: Code length comparison.

Model
Augmen- Metrics
tation P R Acc

PragFormer
original 0.793 0.847 0.841

curriculum 0.825 0.815 0.848
replaced 0.727 0.826 0.794

GraphCode-
BERT

original 0.851 0.841 0.870
curriculum 0.849 0.846 0.872

replaced 0.838 0.781 0.843

Table 3: Effect of data augmentation
techniques. (P=Precision, R=Recall,
Acc=Accuracy)

RQ3: Data augmentation.
Through evaluating the im-
pact of data augmentation tech-
niques on performance, we
investigated the effectiveness
of PragFormer and Graph-
CodeBERT in the binary
classification task of OpenMP
pragma classification. The re-
sults of this experiment are pre-
sented in Table 3. We employed
the variable renaming augmen-
tation, where each variable was replaced with var, concatenated with a random
index number. This augmentation is referred as replaced in the table. The re-
sults reveal the vulnerability of these models to adversarial examples created
by fully replacing variable names, leading to degraded performance compared
to the unmodified variables. However, by gradually introducing code augmenta-
tions using the curriculum learning method (referred as curriculum in the table),
we observed improved accuracy.

Model Task
Metrics

P R Acc

PragFormer
pragma 0.793 0.847 0.841
private 0.716 0.663 0.924

reduction 0.632 0.598 0.953

GraphCode-
BERT

(Separated)

pragma 0.850 0.841 0.870
private 0.768 0.684 0.937

reduction 0.690 0.688 0.963

OMPify
pragma 0.849 0.848 0.872
private 0.755 0.689 0.938

reduction 0.690 0.700 0.966

Table 4: Effect of multi-label classifica-
tion problem formulation. (P=Precision,
R=Recall, Acc=Accuracy)

RQ4: Multi-label classifica-
tion. Table 4 shows the results
of PragFormer, GraphCode-
BERT, and OMPify when ap-
plied to all the three tasks of
pragma classification, classifica-
tion of private clause, and re-
duction clause.
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Note that OMPify approaches all three tasks together as a multi-label classi-
fication problem, while PragFormer, GraphCodeBERT approach each task
independently. In the table, we present the result of OMPify for the combined
task but split the results according to labels.

The results convey that OMPify achieves significantly better performance
compared to PragFormer, underscoring the hypothesis that these three tasks
are not independent. In addition, our model slightly outperforms the Graph-
CodeBERT model. The results show a significant improvement in recall for
OMPify for all three tasks, with a major decrease in the number of false nega-
tive predictions. In our context, a false negative prediction means that a sample
is incorrectly classified as not requiring pragma, private, or reduction. Therefore,
the unified prediction strategy of OMPify can better identify samples that
require pragma, private, or reduction. This suggests that the understanding of
each task contributes to the overall prediction. For instance, if OMPify pre-
dicts the need for pragma, it will also influence the prediction of shared-memory
attributes, which may also appear in the pragma.

Bench-
mark

With
OMP

Without
OMP

priv-
ate

reduc-
tion

NAS 166 146 12 2

PolyBench 63 85 36 0

SPEC 157 1,000 1 0

Table 5: Benchmark statistics

Real-world benchmarks. In
order to test the performance
of OMPify on real-world pro-
grams, we obtained C/C++
programs that were using OpenMP
pragma from three scientific
code benchmarks, namely, NAS,
SPEC, and PolyBench. Table 5
shows the statistics of the collected programs. These benchmarks are manually-
written as parallel programs using OpenMP, so they serve as a good test case
for OMPify. As a comparison, we applied PragFormer to the same test.
Our model exhibited a significant increase in performance when compared to
PragFormer (Table 6).

Bench-
mark

Model
Metrics

P R Acc

SPEC
PragFormer 0.445 0.802 0.837

OMPify 0.572 0.854 0.894

PolyBench
PragFormer 0.703 0.301 0.648

OMPify 0.836 0.810 0.851

NAS
PragFormer 0.635 0.734 0.634

OMPify 0.731 0.886 0.766

2500
examples

ChatGPT 0.401 0.913 0.401
PragFormer 0.815 0.721 0.817

OMPify 0.839 0.818 0.860

Table 6: Comparison on different benchmarks.
(P=Precision, R=Recall, Acc=Accuracy)

Moreover, given the recent
popularity of ChatGPT [10] in
programming-related tasks, we
decided to evaluate it on our
CLPP task. For this evaluation,
we randomly sampled 2500 test
inputs from our test dataset. We
then fed those test programs to
ChatGPT one by one and then
used the prompt “Generate the
optimal OpenMP pragma if pos-
sible” to check if ChatGPT’s
response matches with the ex-
pected label for the test pro-
gram. Although ChatGPT performs well on various NLP tasks, it performed
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poorly in our specific task, often suggesting the use of OpenMP pragma even
when it was not applicable.

6 Conclusions & Future Work

This paper aims to investigate the potential of multimodal models in accurately
predicting the need for shared-memory parallelization in code. Our research dis-
covered that incorporating additional code representations, such as ASTs and
DFGs, significantly improves their performance compared to models that rely
solely on the original code. Building upon this knowledge, we introduced a novel
model called OMPify, based on GraphCodeBERT. OMPify takes advantage
of the inter-dependencies between the task of predicting the need for paralleliza-
tion and the prediction of shared-memory attributes, such as private and re-
duction variables. By leveraging these relationships, OMPify demonstrates en-
hanced accuracy and robustness in determining the need for shared-memory par-
allelization. In addition to developing the OMPify model, we also constructed
a comprehensive database called Open-OMP-Plus. This database includes the
for-loop itself and extends its scope to include assignment statements of variables
found within the for-loop. By incorporating this extended scope, we demonstrate
that OMPify can effectively utilize this additional information to improve its
predictions further.

For future research, we aim to address several areas of improvement. Firstly,
since the multimodal models analyzed in RQ1 were not pre-trained on C/C++
programming languages, there is a potential for enhancing their performance
by pretraining them on datasets that include C/C++ code. This approach can
contribute to better code understanding and comprehension. Additionally, in
RQ4, we observed improvements in multi-label prediction. To further enhance
this aspect, we intend to explore the conversion of the multi-label prediction
problem into pragma generation. By generating pragmas directly, we can achieve
more precise and fine-grained control over parallelization tasks. Furthermore, an
important question arises regarding the correctness of the generated pragmas.
To address this concern, we plan to investigate techniques and approaches for
evaluating the accuracy and correctness of the generated pragmas.
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