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Abstract. Inrecent years, language models (LMs), such as GPT-4, have
been widely used in multiple domains, including natural language pro-
cessing, visualization, and so on. However, applying them for analyz-
ing and optimizing high-performance computing (HPC) software is still
challenging due to the lack of HPC-specific support. In this paper, we
design the LM4HPC framework to facilitate the research and develop-
ment of HPC software analyses and optimizations using LMs. Tailored
for supporting HPC datasets, Al models, and pipelines, our framework
is built on top of a range of components from different levels of the ma-
chine learning software stack, with Hugging Face-compatible APIs. Using
three representative tasks, we evaluated the prototype of our framework.
The results show that LM4HPC can help users quickly evaluate a set of
state-of-the-art models and generate insightful leaderboards.

Keywords: Language model - Programming language processing - High-
performance computing

1 Introduction

Language models (LMs) are models designed to understand and generate hu-
man language. In recent years, large language models (LLMs) trained on large
amounts of text data have demonstrated stunning capabilities in various natural
language processing and visualization tasks. They have also been widely used
to process programming languages due to the similarities between natural lan-
guages and programming languages. For example, GPT-4 [5] shows early signs
of artificial general intelligence. Based on a large language model trained on
code [10], GitHub provides an AT assistant for developing software.

Given the rise of LLMs, it is natural for researchers and developers in the
high-performance computing community to start exploiting LMs for addressing
various challenges in HPC, including code analysis, code generation, performance
optimization, question answering, and so on. However, mainstream frameworks
of LMs were originally designed to serve natural language processing. It is dif-
ficult for newcomers in HPC to quickly access HPC-specific datasets, models,
and pipelines. For example, the current popular Hugging Face platform does not
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include dedicated pipelines for software analyses and optimizations. Another
challenge is the entire field is evolving quickly, with new techniques emerging
almost weekly, making it challenging for HPC users to keep up with the latest
techniques and find relevant ones. Last but not least, there is a lack of stan-
dard, reproducible evaluation processes for LMs focusing on HPC-specific tasks.
Therefore, it is difficult to have a fair comparison among different models for a
given HPC task.

In this paper, we propose a framework (named LM4HPC) designed to serve
HPC users as first-class citizens by including internal components and external
APIs relevant to HPC-specific tasks. LM4HPC’s components include models,
datasets, pipelines, and so on, while the APIs allow users to interact with these
components to finish given HPC tasks. We highlight the contributions of our
work as follows:

— We design an extensible framework for including and exposing relevant ma-
chine learning components to facilitate the adoption of large language models
for HPC-specific tasks.

— The framework provides a set of APIs to facilitate essential operations, in-
cluding code preprocessing, tokenization, integration with new data, and
evaluation.

— A set of pipelines have been developed to support common HPC tasks, in-
cluding code similarity analysis, parallelism detection, question answering,
and so on.

— We provide HPC-specific datasets such as DRB-ML, OMP4Par, and OM-
PQA to support various HPC pipelines.

— Our work introduces standardized workflows and metrics to enable fair and
reproducible evaluation of LLMs for HPC-specific tasks.

— Using three representative tasks, we demonstrated how the framework can
be used to test a set of language models and generate leaderboards.

2 Background

Language models (LMs) are machine learning models designed to comprehend
and generate human language. They can be used to facilitate natural and in-
tuitive interactions between humans and machines. Early generations of LMs,
using recurrent neural networks (RNNs), showed inspiring results for various
natural language processing (NLP) tasks. A transformative evolution by the
Transformer [24] reveals remarkable potentials of LMs. Introduced by Vaswani
et al., transformer models utilize the attention mechanism to capture the de-
pendencies between all words in an input sentence, irrespective of their posi-
tions. Compared to RNNs, transformers process data in parallel rather than
sequentially and significantly improve the efficiency of model training and in-
ference. Transformers further enables the inauguration of the large language
models (LLMs). Compared to LMs, LLMs are trained on a vast amount of data
and possess parameter counts on the order of billions or more, allowing them
to generate more detailed and nuanced responses. Examples of LLMs include
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OpenAl’'s GPT-3, GPT-4 and Google’s BARD. Nowadays, LLMs have shown
remarkable capabilities in NLP tasks like translation, question answering, and
text generation.

Table 1. Language models, associated training data and tasks

Model Training data Token Avail
Name Released Size |Type Size Limit )
BERT 2018/10 340M | Text 3.5B words 512 | Weights

2.1M(bimodal)

CodeBERT 2020/11 125M  |Mixed 6.4M (unimodal)

512 | Weights

Megatron 2021/04 1T Text 174 GB 512 | Weights
GraphCodeBERT| 2021/05 110M | Code | 2.3M functions | 512 | Weights
CodeT5 2021/11 770M | Code | 8.35M instances | 512 | Weights
GPT-3 2022/03/15| 175B |Mixed| 500B tokens 4096 | Weights
LLaMA 2023/02/24| 7~65B |Mixed| 1.4T tokens 4096 |Weights*
GPT-4 2023/03/14 1T Mixed| undisclosed |8k/32k| API*
BARD 2023/03/21| 1.6B |Mixed| 1.56T words 1000 API
Cerebras-GPT |2023/03/28(0.11~13B| Text 800 GB 2048 | Weights

Dolly 2.0 2023/04/12 3~12B | Text | 15k instr./resp. | 2048 | Weights
StarCoder 2023/05/4 15B Code 1T tokens 8192 | Weights
StarChat-Alpha | 2023/05/4 16B Code | 31k instr./resp. | 8192 | Weights

Table 1 shows some example language models and their release dates, sizes,
training data, input token length limits, and availability. LLaMA [23]’s weights
can be obtained after filling out some form. GPT-4 has a waiting list to use its
API. At the time of writing this paper, we have not yet obtained its access.

LMs are trained mainly by text data with a focus on NLP. The sources of
the training data mainly come from books, web content, newspapers, scientific
articles, and other text data in various natural languages. Latest LLMs have
demonstrated rich skill sets in NLP including text prediction, common sense
reasoning, reading comprehension, translation and question answering.

There has been a keen interest in deploying NLP techniques to program-
ming language processing (PLP) tasks, such as code summarization, code gen-
eration, and code similarity analysis [8,14]. Previous studies have demonstrated
successful applications of traditional language models to PLP tasks, showing the
feasibility of this approach [12]. CodeBERT [13], for example, is a transformer-
based model trained with a diverse range of programming languages and can
be used for a variety of programming-related tasks. Similarly, CodeT5 [26] is a
variant of Google’s T5 language model, trained specifically on code datasets to
perform advanced programming tasks like code completion, bug detection, and
code summarization. Lately, StarCoder [18], a 15B parameter model trained with
1 trillion tokens sourced from a large collection of permissively licensed GitHub
repositories, is developed to be a Large Language Model mainly for code gener-
ation or completion. StarChat-Alpha is a GPT-like chat model fine-tuned from
StarCoder to act as a helpful coding assistant.
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2.1 LMs for HPC

With the recent breakthroughs in Generative Pretrained Transformer (GPT)
large language models [4], it has become increasingly intriguing to explore the
application of large language models (LLMs) for HPC tasks. However, their
deployment in the HPC domain is still relatively unexplored. This venture comes
with various challenges, including;:

1. Pipelines: Traditional language model frameworks like Hugging Face were
designed to support natural language processing or compute vision problems.
Expanding LMs to any new domain, including HPC, requires the addition
of new pipelines designed to finish domain-specific tasks.

2. Datasets: The HPC domain encompasses an extensive amount of code span-
ning various fields, including biology and climate modeling. However, prepar-
ing this data for machine learning training, such as labeling parallelizable
loops in HPC programs for parallelism detection, presents significant chal-
lenges. The scarcity of ready-to-use, pre-labeled HPC datasets poses a partic-
ular obstacle for training language models, especially large ones, highlighting
the need for more shared resources in the community.

3. Pre-processing: Pre-processing in the context of LMs for HPC typically in-
volves the conversion of source files into a sequence of tokens. However, the
direct application of NLP tokenizers to code can be sub-optimal. For in-
stance, an NLP tokenizer might split a variable name into two tokens, a
scenario that is not desirable for PLP analysis. Also, models designed for
processing source code may use graph representations, such as abstract syn-
tax trees, to have better performance.

4. Input size limit: Language models often have limited input token lengths
(such as 512 to a few thousand of tokens). HPC tasks often involve processing
large-scale software packages with millions of lines of source code.

5. Evaluation: There is a pressing need for standardized and reproducible eval-
uation of different models in the context of various HPC tasks, using metrics
suitable for domain-specific requirements.

3 Approach

To address the challenges discussed in Section 2, we introduce LM4HPC, a com-
prehensive framework that encapsulates a suite of machine learning components
within user-friendly APIs. This framework is tailored for HPC users, simplifying
the implementation process and making the robust capabilities of language mod-
els more accessible and user-friendly within the HPC community. The primary
goal of LM4HPC is to reduce the complexities inherent in employing language
models, thus enabling HPC users to leverage their powerful capabilities more
effectively and efficiently.

3.1 LM4HPC design overview

Figure 1 provides the overview of the LM4HPC framework. It is built on top of
multiple internal machine learning components with Hugging Face-compatible
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APIs. Higher-level components provide concepts and interfaces to users, while
middle or lower-level components provide implementation support. Table 2 shows
the example classes and functions in LM4HPC API, including those supporting
HPC-specific language models, tokenizers for programming languages, datasets,
inference pipelines, and evaluation. We elaborate on some essential components
in the following subsections.

Evaluation Harness Code Processing Tools m

High-Level Code Similarity Analysis Parallelism Detection OMP Q&A
Components
&API
T
Runtime
Library
Hugging Face LangChain _
ML PyTorch Tensorflow onnx
Framework

Fig. 1. Overview of the LMAHPC framework

3.2 HPC Tasks and Inference Pipelines

HPC users are interested in a wide range of tasks related to programming lan-
guage processing. Table 3 outlines one way to categorize HPC-specific tasks. The
purpose here is not to provide a comprehensive taxonomy of all tasks but a start-
ing point for common tasks we are interested in supporting in our framework.
Most tasks are self-explanatory by names and each may have further sub-tasks.
For example, clone detection can be viewed as a specialized sub-task under code
similarity analysis.

In the context of machine learning, a pipeline represents a sequence of data
processing stages to complete a task. Our LM4HPC framework extends the
pipeline function provided by Hugging Face, adapting it for HPC tasks. We have
developed three inference pipelines: code similarity analysis, parallelism detec-
tion, and OpenMP question answering. Code similarity analysis determines the
similarity between a pair of code snippets. Parallel detection is defined to check
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Table 2. LM4HPC API: example classes and functions. Each class can be imported

using “from lm4hpc import *” in Python.
LM4HPC |Description Example API functions
classes
Fine-tune text-based hpcmodel. from_pretrained(model name_or_path:
hpemodel (HF, OpenAl) and Optional([str], *model_args, **kwargs)
'graph—‘based mod(?ls, hpcmodel.save_pretrained(model name_or_path: str,
including local private *model_args, **kwargs)
ones, for HPC tasks -
hpcmodel . finetune ()
APIs to represent code Epz?oke;ltz:ri from,};ritrained(m;delma)me,or,path:
. . * " **
hpctokenizer |in either tokenized text, | b ioro-LStr], *mode’-args, wargs
trees, or graphs hpctokenizer.addtokens (contentsingle_word=False,
strip=False, normalized=True)
hpctokenizer.encoding()
hpcdatasets.load(path: str, data_files: Union[str,
i i *%
Load and process HPC List, Dict, None], kwargs)
hpcdatasets datasets hpcdatasets.split(dataset: hpcdatasets, partition:
[float, float, float], **kwargs)
hpcdatasets.shuffle(dataset: hpcdatasets, **kwargs)
hpcdatasets.sort(dataset: hpcdatasets, **kwargs)
hpcpipeline |Pre-built pipelines for|hpcpipeline(task: str, model name_or_path: str,
common PLP tasks *model_args, **xkwargs)
Evaluate the results of hpceval.compute (task: str, models_name_or_path:
hpceval various models [[str]], data_files: Union[str, List, Dict, Nome],
*model_args, **kwargs)
hpceval.plot(shape: str)

Table 3. HPC Tasks for Programming Language Processing: Categories and Examples

Code Analysis

Code Generation

Others

Compiler Analysis
Algorithm Classification
Code Similarity Analysis
Documentation Generation
Parallelism Detection
Defect Detection

Code Completion

Natural Language-to-Code
Code Translation

Code Repair

Code Migration
Compilation

Test Case Generation
Code Search

Question Answering
Code Review
Decompilation
IR-to-Source Translation

if an input code snippet can be parallelized or not using OpenMP. The OpenMP
question answering pipeline is designed to use models to generate answers to
OpenMP-related questions.

Tokenizers are responsible for preprocessing input into an array of numbers
as inputs to a model. They are essential components used by pipelines. Most LM
tokenizers are primarily designed for NLP tasks. For instance, given a function
name my_func, a typical NLP tokenizer like BERT might split it into separate
tokens (such as ‘my’, ‘_’, and ‘func’) while a code-aware tokenizer may treat the
function name as a single entity to ensure a more meaningful representation.

To overcome this, we developed the LM4HPC tokenizer, leveraging the treesit-
ter [2] and programl [1] library. Our tokenizer is specifically designed to handle
the pre-processing of code data required for a language model. It includes tok-
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enizers such as the ast-tokenizer. As a result, LM4HPC can accommodate models
(such as augAST [9]) that require AST as input in the pipeline.

3.3 Datasets

Datasets are crucial for any machine learning application. Within the LM4HPC
framework, we contribute HPC-specific datasets either by converting existing
ones into Hugging Face-compatible formats or by creating new ones from scratch.

We have converted three existing datasets to be compatible with Hugging
Face dataset API: POJ-104 [21], DRB-ML [20], and OMP4Par [9]. POJ-104 is
derived from a pedagogical programming open judge (OJ) system that auto-
matically evaluates the validity of submitted source code for specific problems
by executing the code. This dataset is particularly useful for the code similarity
task. The DRB-ML dataset contains 658 C/C++ OpenMP kernels derived from
DataRaceBench [19]. We extended it to have labels indicating if a kernel is paral-
lelizable or not. The OMP4Par dataset is an open-source benchmark composed
of data from three resources: code crawled from GitHub, OpenMP benchmarks
such as Nas Parallel Benchmarks [17] and Rodinia [7], and synthetic code. This
dataset contains loops with labels indicating whether a loop is parallel and, if
parallelizable, the corresponding OpenMP directive associated with the loop.

Furthermore, we have manually created a new OpenMP question answering
dataset called OMPQA in order to probe the capabilities of language models
in single-turn interactions with users. Similar to other QA datasets, we include
some request-response pairs which are not strictly question-answering pairs. The
categories and examples of questions in the OMPQA dataset can be found in
Table 4.

Category |Count|Example Questions

Basics 40 |What is a worksharing construct in OpenMP?
Examples 20 |Give an example OpenMP C code for computing PI using numerical
integration.

Compilers 24 |In what language is LLVM written?
How is a parallel region represented in Clang?

Benchmarks| 23 |What are the NAS Parallel benchmarks?
Which benchmark assesses data race detection tools?

Table 4. OMPQA: categories and examples of questions

3.4 Integration With New Data

Language models derive knowledge from training datasets and store this knowl-
edge in internal weights within the model’s neural network architecture. How-
ever, incorporating new information into a trained model presents a challenge.
Traditionally, one might fine-tune pre-trained models with their own data for
specific tasks, but this approach requires substantial relevant data and can be
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resource-intensive. An alternative approach involves integrating new data as con-
text information into a user prompt, but this is constrained by the limited input
token lengths of current models.

To address this challenge, LM4AHPC leverages the LangChain framework [6]
to easily integrate new data. LangChain aggregates a wide variety of components
to build applications using LLMs. Particularly, it provides APIs allowing LLM
applications to store large amounts of text in semantic databases called vector
stores. The way to integrate new data can be done in two steps. First, text data
is chunked and embedded with an LLM before being saved into a vector store.
Later, user prompts are matched with relevant chunks in the vector store using
similarity analysis. The top-matched chunks are then injected into the original
prompts to form a new prompt with relevant context information. By employing
this new prompt, language models can generate answers that incorporate new
and relevant user data while still staying within the token length limits.

3.5 Evaluation

An easily accessible harness for evaluating different language models on HPC
tasks is crucial. Standard and reproducible results from such evaluations can
provide researchers and developers with insightful starting points, helping them
select suitable models for their specific needs and identify research opportunities.

In response to this need, we developed an evaluator API in LM4HPC. One
challenge we encountered is the lack of standardized metrics for code evaluation.
Unlike natural language tasks, where metrics such as BLEU, ROUGE, and ME-
TEOR are commonly used, the domain of code lacks such universally accepted
measures of quality. We are adding various LLM metrics such as CodeBLEU [22]
for code output. Another challenge is that language models may generate dif-
ferent answers for the same input in different inference runs. Evaluation should
consider consistent sampling settings (such as temperatures) and control over
random seeds to improve reproducibility.

Ultimately, many users are interested in seeing leaderboards that showcase
mainstream models competing on common HPC tasks. To satisfy this interest,
we create and release a set of test harnesses scripts to enable standard and
reproducible evaluation for supported HPC tasks.

4 Preliminary Results

In this section, we evaluate the current prototype implementation of LM4HPC
through experiments designed to generate leaderboards for three representative
tasks: Code Similarity Analysis, Parallelism Detection, and OpenMP Question
Answering. LM4HPC utilizes LangChain v0.0.174, Hugging Face’s transformers
v4.29.0 and datasets v2.12.0 as our runtime libraries. Details of the models and
datasets will be discussed in subsequent subsections.

Our experiments were conducted on two machines: 1) a Google Colab VM
with a 6-core Xeon processor operating at 2.20GHz, 83.5 GB main memory,
166GB HDD drive, and an NVIDIA A100 GPU with 40 GB memory. 2) a Dell
workstation equipped with a dual Intel Xeon 6238 CPU operating at 2.10GHz,
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128 GB main memory, 1TB SSD drive, and an NVIDIA Quadro RTX 6000 GPU
with 24GB memory. The majority of our experiments were run on the Google
Colab machine to leverage its superior GPU memory. However, we encountered
difficulties running Cerebras-GPT on the Colab machine and were compelled to
use the Dell workstation with larger CPU memory instead.

4.1 Code Similarity Analysis

The code similarity task is designed to measure the syntactic and/or semantic
similarity between two code snippets. Such analysis information can be beneficial
in various scenarios such as plagiarism detection, code reuse and refactoring, bug
detection and repair, licensing compliance, malware detection, and so on.

Preparing Datasets and Ground Truth. Two datasets introduced in
Section 3.3, POJ-104 and DRB-ML, are loaded through LM4HPC’s datasets
APT for this experiment. For each pair of code snippets in the POJ-104 dataset,
we assign a binary similarity label based on their functional labels. A similarity
label of 1 signifies that the snippet pair shares the same functional label and
we assign a similarity score of 1. Otherwise, the label is 0. We have processed
the DRB-ML dataset using a similar methodology to generate code pairs and
labels. The main difference is that the similarity ground truth for DRB-ML is
derived from its own similarity score table [11], providing a precise and reliable
similarity measurement between code snippets in the dataset.

Inference Experiments and Evaluation. We employ LM4HPC’s code
similarity pipeline to test various models. The default model for this pipeline
is CodeBERT. We additionally select four models from Table 1 for evaluation:
GraphCodeBERT, gpt-3.5-turbo, Dolly 2.0 (12B), and Cerebras-GPT (13B).
We set the maximum token length for the model output to 256. This limits
the verbosity of the model and keeps its responses concise. Additionally, we set
the temperature parameter to 0 when applicable. For models like Dolly 2.0 that
require positive temperature, we set the temperature to be 1 x 1076, This setting
ensures that the model’s responses are consistent and deterministic, minimizing
variability and uncertainty in its output.

Within LM4HPC, the approach of processing input code pairs depends on
the type of the model employed. Models like CodeBert and GraphCodeBert
are specifically devised and trained on a variety of programming languages. We
directly feed a pair of code snippets to generate a similarity prediction. On the
other hand, large language models like gpt-3.5-turbo, Dolly 2.0, and Cerebras-
GPT are evaluated using the following prompt template: “Code 1: {...} Code 2:
{...} Determine whether the two code snippets are similar. If the code snippets
are similar, output 1; otherwise, output 0.”.

Results. The Code Similarity Analysis leaderboards generated using the
two datasets are shown in Table 5. Notably, gpt-3.5-turbo demonstrates supe-
rior performance. Two other models, StarChat-Alpha and Dolly 2.0, also exhibit
commendable performance. Most large language models outperform traditional
models (GraphCodeBERT and CodeBERT) that were specifically trained for
code analysis. However, Cerebras-GPT struggled to comprehend the code and
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mostly returned arbitrary word tokens, indicating a lack of effective code under-
standing since it is mostly designed for natural language processing.

Table 5. Code Similarity Analysis Leaderboard: POJ-104 (left) and DRB-ML (right)

Model Precision|Recall| F1 Model Precision|Recall| F1
gpt-3.5-turbo 78.4 74.2 76.2| gpt-3.5-turbo 82.4 81.3 [81.8
Dolly 2.0 12B 61.9 61.3 |61.6| StarChat-Alpha 79.6 77.4 |78.5
StarChat-Alpha 59.4 56.2 [57.8| Dolly 2.0 12B 74.3 73.2 |73.7
GraphCodeBERT 52.7 60.3 |56.3| GraphCodeBERT 79.4 779 |78.6
CodeBERT 51.5 59.4 |55.2 CodeBERT 76.9 74.5 |75.7
Cerebras-GPT 13B 0 0 0 |Cerebras-GPT 13B 0 0 0

4.2 Parallelism Detection

The parallelism detection task aims to identify parallelism opportunities within
a given code snippet. We utilized two datasets, OMP4Par and DRB-ML intro-
duced in Section 3.3, for the experiment.

Preparing Datasets and Ground Truth. The OMP4Par dataset is specif-
ically designed for parallelism detection. Its existing labeling scheme allows us to
prepare the data for binary classification models. Similarly, we prepared DRB-
ML dataset with a label indicating whether each code snippet is parallelizable
using OpenMP or not.

It is worth noting that both datasets have undergone source code pre-processing
steps, including comment removal and code snippet extraction. These steps are
common practice [9] to ensure that code snippets are small enough to be fed into
language models with limited input token sequence sizes. However, the resulting
code snippets may lose their context information, such as variable declarations.
This is a serious limitation of language models with limited input sizes when
applied to process large source files.

Inference Experiments and Results. We selected six models to generate
parallelism detection leaderboards. Four of them are introduced in Section 2.
They take the code snippets in a prompt template: “As an OpenMP expert, you
will analyze the given code snippet to determine if it can be parallelized. Code:
{...}. Answer yes or no first:”. The other two are augAST [9] and DeepSCC-
based [15], which are pre-trained models using OMP4Par’s training dataset. We
fed code snippets to these two models to directly obtain predicted labels.

Table 6 presents the resulting leaderboards. The highest F1 score reaches
93.9, indicating that LMs can be very effective for detecting parallelism. How-
ever, the datasets contain small-scale code snippets that are significantly sim-
pler than real HPC codes. Again, gpt-3.5-turbo outperforms all other models
overall, including specially trained models like augAST and DeepSCC. AugAST
performs better than gpt-3.5-turbo in terms of precision, suggesting it’s more
effective in predicting a positive class, which, in this case, is parallelizable code.
Finally, Cerebras-GPT did not perform well in this code analysis task.
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Table 6. Parallelism Detection Leaderboards: OMP4Par (left) and DRB-ML(right)

Model Precision|Recall| F1 Model Precision|Recall| F1
gpt-3.5-turbo 90.6 89.3 |89.9 gpt-3.5-turbo 90.0 98.9 |94.2
augAST 92.1 82.4 |87.0 augAST 91.4 72.3 |80.7
DeepSCC 82.7 81.4 |82.0 DeepSCC 80.4 79.5 |79.9
StarChat-Alpha 85.7 68.2 |75.9 StarChat-Alpha 81.9 20.3 |32.5
Dolly 2.0 12B 64.2 63.7 63.9 Dolly 2.0 12B 40.0 11.2 |2.17
Cerebras-GPT 13B 0 0 0 Cerebras-GPT 13B 0 0 0

4.3 OpenMP Q&A

In this experiment, we utilized LM4HPC to evaluate the capabilities of several
language models in answering questions related to OpenMP. This evaluation was
conducted using the OMPQA dataset, introduced in Section 3.3.

Experiment Settings.

Each model receives the question in the following prompt template: “You are
an OpenMP expert. Please answer this question. Question: {question}”. Two
metrics are selected to evaluate the quality of answers: the Bilingual Evaluation
Understudy (BLEU) and ROUGE-L metrics. BLEU is a precision-oriented met-
ric measuring the overlap of n-grams between the generated text and a set of
reference texts. ROUGE-L (Recall-Oriented Understudy for Gisting Evaluation
- Longest Common Subsequence) calculates the longest common subsequence
(LCS) that appears in a left-to-right sequence in both the system-generated and
reference summaries, thus providing a measure of the coherence and fluidity of
the generated text.

Results. Table 7 displays the Q&A leaderboard of several selected models.
We additionally include the memory and execution time information. The ex-
periments using gpt-3.5-turbo do not consume any local GPU memory since the
model is invoked remotely through OpenAlI’s API.

Again, gpt-3.5-turbo unsurprisingly outperforms other LLMs, including StarChat-
Alpha, Dolly 2.0, and Cerebras-GPT. However, the highest ROUGE-L F1 score
of 0.259 indicates that all models have room for improvement in answering
OpenMP questions. One reason is that many questions in OMPQA are open-
ended and do not necessarily have a single correct answer. Also, the two metrics
used do not sufficiently consider semantics.

To enhance the capacity of large language models (LLMs) in accurately re-
sponding to OpenMP queries, we integrate the official OpenMP documentation
into our process. We employ LangChain, a mechanism designed to efficiently
store and retrieve language model embeddings, enabling us to accommodate
large volumes of new data. To assess the efficacy of using LangChain to incorpo-
rate additional user data, we leverage its API to create a vector store. This vector
store holds embeddings of text chunks derived from the OpenMP API Specifi-
cation v5.2 (669 pages) and the OpenMP Application Programming Interface
Examples v5.2.1 (575 pages). We then select two LangChain-supported models,
GPT-3.5 and Dolly 2.0, to utilize the vector store as an additional resource for
answering queries, thereby demonstrating the practical utility of our approach.
The results indicate slight improvements in both the BLEU and ROUGE-L F1
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Table 7. Q&A Leaderboard using the OMPQA dataset. The arrow indicates the per-
formance changes when augmenting external knowledge base by LangChain.

CPU GPU . ROUGE
Model Mem. (GB)|Mem. (GB) Time(s) BLEU Recall |Prescision| F1

gpt-3.5-turbo

+ LangChain 4.1 0 21.452 |0.1471)|0.347)| 0.262] |0.2591

gpt-3.5-turbo 4.2 0 12.749 | 0.139 [0.446| 0.231 0.257

StarChat-Alpha 6.8 18.9 29.732 | 0.082 | 0.322 | 0.149 0.172
Dolly 2.0 12B

+ LangChain 27.4 39.8 7.217 |0.0841(0.2287| 0.232) |0.1821

Dolly 2.0 12B 27.1 39.2 8.147 0.06 |0.208| 0.312 | 0.148

Cerebras-GPT 13B| 52.6 11.7 590.763 | 0.071 | 0.319 | 0.089 0.112

scores, increasing from 0.139 to 0.147 and from 0.257 to 0.259, respectively. How-
ever, there are mixed results for recall and precision metrics. gpt-3.5-turbo has
a better recall, 0.446, compared to 0.347 of the Langchain approach.

Further, we examine the effectiveness of the LangChain approach across dif-
ferent question categories. When addressing ‘Basic’ questions, the BLEU scores
rise by 20.7% and 9.8% for gpt-3.5-turbo and Dolly 2.0, respectively. Addi-
tionally, we assess the LangChain performance using the CodeBLEU metric[22]
for the ‘Examples’ category, observing a score increase of 6.1% and 12.2% for
gpt-3.5-turbo and Dolly 2.0, respectively. These observations indicate that aug-
menting LLMs with documentation via LangChain improves performance for
‘Basic’ and ‘Examples’ categories. However, for ‘Compilers’ and ‘Benchmarks’
categories, the performance of gpt-3.5-turbo and Dolly 2.0 diminishes when uti-
lizing LangChain, recording an average BLEU score drop of 8.0% and 7.9%,
respectively. This drop is likely because our documentation does not include
information relevant to compiler and benchmark topics.

We also manually investigated the answers generated by the models. Overall,
StarChat-Alpha delivers competitive results compared to GPT-3.5. It seems to
be a good choice for people who want to use open-source language models based
on our experiments. Research has indicated that GPT-4 surpasses GPT-3.5 in
a variety of domains. However, as of now, API accessibility for GPT-4 has not
been made publicly available. We plan to assess GPT-4’s performance as soon
as it becomes accessible and incorporate it into our framework if it benefits HPC
tasks.

5 Related Work

PyTorch and TensorFlow are the most popular frameworks, backed by Meta Al
and Google, respectively. Both frameworks are similar in many respects, includ-
ing 1) providing low-level APIs for development, 2) supporting a rich collection
of libraries, and 3) maintaining dedicated hubs - PyTorch Hub and TensorFlow
Hub - for providing pre-trained ML models. Hugging Face is a large open-source
community that builds tools to enable users to build, train, and deploy machine
learning models based on open-source code and technologies. Hugging Face is
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best known for its Transformers library, which exposes a collection of Python
APIs to leverage state-of-the-art deep learning architectures for NLP tasks. With
the goal to simplify end-to-end NLP tasks, Hugging Face Transformers offers a
pipeline that performs all pre- and post-processing steps on the given input text
data. The overall process of the model inference is encapsulated within these
pipelines. With the pipeline, users only need to provide the input texts and the
model for the task. The remaining connections among a model and required pre-
and post-processing steps are hidden within the pipeline implementation.

There were various research works and developments to improve the ML
ecosystem to be Findable, Accessible, Interoperable, and Reproducible (FAIR).
These existing frameworks aim to make the models, datasets, or both FAIR.
Among these frameworks, HPCFAIR [25] focuses on providing support for model
interoperability, search capabilities for datasets and models, and seamless inte-
gration into HPC workflows. The work in [28] extended this work to include
support for interoperability across different framework implementations using
ONNX and provision to retrain a model with transfer learning. However, HPC-
FAIR framework relies on users to handle data pre- and post-processing. In
comparison, LM4HPC is equipped to manage data processing within the pipeline
design and generate leaderboards for supported HPC tasks.

General LLMs are trained with data covering general knowledge and infor-
mation that is usually collected from public domains. Domain-specific datasets
can be collected for the training of a specialized model or for the fine-tuning of
a general-purpose model. MedQA[16] is an example of domain-specific datasets
collecting question-answer pairs and textbooks from professional medical board
exams. ExeBench [3], another domain-specific dataset for tasks in compilation
and software engineering, contains millions of runnable and representative C
functions collected from GitHub. In addition to collecting existing data, ML re-
search has started to automate dataset creation with assistance from the LLMs.
The developers of LaMini-LM [27] develop a large set of 2.58M instruction and
response pairs based on both existing and newly-generated instructions. A hand-
ful of seed examples from the existing LLM prompts and 2.2M categories from
Wikipedia from existing are submitted to the gpt-3.5-turbo to generate rele-
vant instructions. Similarly, the responses for the generated instructions are also
generated by the gpt-3.5-turbo.

6 Conclusion

In this paper, we presented our efforts to facilitate the application of language
models for tasks specific to High-Performance Computing. We have developed
the LMAHPC framework to encompass and expose relevant machine learning
components via corresponding APIs. Our experimental findings suggest that
GPT-3 performs competitively, despite not being specifically designed for HPC
tasks. However, there is significant room for improvement in answering OpenMP
questions. Furthermore, the input size limitation of language models adds com-
plexity to certain tasks, such as parallelism detection. Finally, an obstacle to
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advancing the application of language models for HPC tasks is the absence of
HPC-specific training and evaluation datasets.

Looking ahead, our future work will explore automated approaches to gen-
erating HPC-specific datasets. We intend to enhance LM4HPC’s capabilities to
support the fine-tuning of models for HPC-related tasks, including those related
to the Message Passing Interface (MPI), and to provide performance analysis
and optimization suggestions.
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