
Test-driving RISC-V Vector hardware for HPC

Joseph K. L. Lee1[0000−0002−1648−2740], Maurice Jamieson1[0000−0003−1626−4871],
Nick Brown1[0000−0003−2925−7275], and Ricardo Jesus1[0000−0002−9651−4756]

EPCC, University of Edinburgh, Bayes Centre, 47 Potterrow, Edinburgh, United
Kingdom

{j.lee,m.jamieson,n.brown}@epcc.ed.ac.uk, rjj@ed.ac.uk

Abstract. Whilst the RISC-V Vector extension (RVV) has been rat-
ified, at the time of writing both hardware implementations and open
source software support are still limited for vectorisation on RISC-V.
This is important because vectorisation is crucial to obtaining good per-
formance for High Performance Computing (HPC) workloads and, as of
April 2023, the Allwinner D1 SoC, containing the XuanTie C906 pro-
cessor, is the only mass-produced and commercially available hardware
supporting RVV. This paper surveys the current state of RISC-V vec-
torisation as of 2023, reporting the landscape of both the hardware and
software ecosystem. Driving our discussion from experiences in setting
up the Allwinner D1 as part of the EPCC RISC-V testbed, we report
the results of benchmarking the Allwinner D1 using the RAJA Perfor-
mance Suite, which demonstrated reasonable vectorisation speedup using
vendor-provided compiler, as well as favourable performance compared
to the StarFive VisionFive V2 with SiFive’s U74 processor.

1 Introduction

Vector instructions bring many benefits to an Instruction Set Architecture (ISA),
for instance they enable applications to exploit data parallelism, reduce code
size, increase instruction bandwidth and improve energy efficiency. Many mod-
ern applications including machine learning, graphics, digital signal processing,
and cryptography are built around algorithms that are designed to heavily take
advantage of vector instructions. Indeed vectorisation was a traditional way in
which HPC was undertaken on the likes of the Cray-1 and Thinking Machines’
CM series before distributed memory parallelism became widespread. Modern
day variants of these ideas, such as AVX-512, the NEC SX-Aurora Vector Engine
and the flexibility provided by Arm SVE in the A64FX, are highly successful.

Over the past years RISC-V has become a well-established open ISA stan-
dard, where RISC-V is the fifth major RISC ISA design from the Univerity
of California Berkeley, preceded by RISC-I, RISC-II, SOAR, and SPUR. The
most powerful feature of RISC-V in comparison to other RISC designs, such
as the SPARC, PowerPC, MIPS and Arm, is its modular design. In practice
this means that a small base integer ISA is specified and then ISA extensions,
such as floating-point and vector support, can be chosen and added to the CPU

ar
X

iv
:2

30
4.

10
31

9v
1 

 [
cs

.D
C

] 
 2

0 
A

pr
 2

02
3



2 J. K. L. Lee et al.

implementation. Vector support has been a key extension for RISC-V since its
inception, We also pun on the use of the Roman numeral “V” to signify “vari-
ations” and “vectors”, as support for a range of architecture research, including
various data-parallel accelerators, is an explicit goal of the ISA design. [23]

Version 1.0 [13] of the RISC-V vector extension (RVV) was ratified in late
2021. Similarly to Arm SVE, it is inherently vector length agnostic (VLA) and
the same code can be executed on implementations with different vector lengths,
and the element size and vector length can also be reconfigured at run time.
Whereas the x86 AVX and Arm NEON use the vector length specific (VLS)
approach of packed SIMD and the code will need to be re-optimised and re-
compiled for each vector processor, VLA code remains portable across different
vector processor design and generations.

RVV has already been used in production for physical RISC-V hardware, for
example T-Head’s XuanTie C906 core provides RVV v0.7.1 and has made a sub-
mission for MLPerf Tiny Inference[16], a benchmark designed to measure trained
neural network performance for low power devices. However, as an emerging
standard it is not entirely straightforward to utilise and test the RISC-V vector
extension. This paper aims to evaluate the current landscape when it comes to
RISC-V vectorisation and assess the potential gain from utilising RISC-V vec-
tors for HPC applications. Ultimately our objective is to provide guidance for
users interested in testing or adopting available vector hardware using experi-
ences we have gained from setting up the EPCC RISC-V testbed[4]. The key
contributions of this paper are:

1. We review the state of play of the RISC-V vector extension and available
processor implementations

2. We evaluate the availability of open source software such as compiler toolchains
and Linux kernels to support running vectorised code on available hardware

3. We perform benchmarks and evaluate vectorisation efficiency using a cur-
rently available compiler and commercially available RISC-V vector proces-
sor

2 Background and related work

2.1 V Extension

The RISC-V ‘V’ standard extension introduces 32 new vector registers, and
requires a minimum vector register length (VLEN) of 128 bits up to a maximum
65,536 bits.1 This can be compared to SVE, which also has a minimum vector
length of 128 bits, but only a maximum of 2048 bits. Another feature of the
vector instruction set is that multiple vector registers can be grouped together
as a single combined vector and this is known as LMUL. Whilst previously one
could only group 2, 4 or 8 registers, in RVV v1.0 fractional groupings of 1

2 ,

1 The Zvl32b and Zvl64b extensions allow for a smaller minimum VLEN of 32 and 64
bits respectively



Test-driving RISC-V Vector hardware for HPC 3

1
4 and 1

8 are also allowed where part of a single vector register will be used.
These features of the instruction set provide great flexibility because, within
a single code, the vector length can be varied by different groupings of vector
registers dynamically, and this is therefore particularly useful when operating
on mixed-width values. Combined with the fact that the same compiled code
can run on hardware implementations with significantly different vector width
and automatically exploit the widest vector lengths, RVV encourages portable
code with greater utilisation of vector register resources without the need for
platform-specific optimisation.

Prior to the ratification of v1.0 of the V extension, the beta version of RVV,
v0.7.1, was adopted in production for example by the XuanTie C906 processor
and BSC’s Vitruvius+[27] which is part of the European Processor Initiative
(EPI) project. Even though the difference between the v1.0 and v0.7.1 is fairly
minimal, the two versions are incompatible in terms of source code or binary.
One major difference is the lack of support for fractional LMUL in version 0.7.1.

2.2 Intrinsics

At the time of writing, the official RISC-V task group is converging towards
v1.0 of the C intrinsics API [20], which is expected to be released later in 2023.
Currently, LLVM supports v0.10 of the intrinsics specification and mainline GCC
provides no support at all. It is in the roadmap of both compilers to support
v1.0 in the future once it is ratified. However the XuanTie 900 series toolchain,
which is a modified version of the GCC 8.4 compiler targeting the C906 and
C910 supports a custom set of intrinsics for v0.7.1 and v1.0. As does the LLVM
compiler from BSC for the EPI project’s RISC-V Toolchain [15] providing their
set of v0.7.1 and v1.0 intrinsics. These bespoke compiler versions can be useful
when developing for vectorisation due to limitations in the mainline compilers.

2.3 P Extension

It should also be noted that there is packed a SIMD ‘P’ extension to the base
ISA which uses the floating point registers and is aimed at embedded cores and
low-power digital signal processing (DSP) applications, such as audio and video
encoding/decoding, image interpretation and computer vision. The extension
has not yet been ratified, the latest version is v0.9.11 [8], and provides a large
number of SIMD and partial-SIMD instructions, such as 8/16-bit minimum and
maximum instructions (including SMIN8, UMIN8, SMAX16 and UMAX16), and 16/32-
bit multiply with 64-bit add/subtract instructions (including SMAL, SMALBB and
SMAR64).

2.4 Related work

Even though RVV has been ratified relatively recently, studies focusing on other
(scalable) vector ISAs can be applicable when wishing to improve vector per-
formance for RISC-V. For example, there has been studies comparing the per-
formance of Arm SVE against NEON [31] and AVX [35], and evaluating the



4 J. K. L. Lee et al.

vectorisation efficiency and usage on mini-apps for available SVE compilers [30].
Another parameter which has significant impact on performance with the VLA
programming model is the implementation vector length, where [28] and [32]
study the performance of a variety of vectorised applications with different vec-
tor lengths using the gem5 simulator for Arm SVE and RVV respectively.

There is currently a rapid development of research-based RVV enabled hard-
ware underway, for example ETH Zurich have introduced Ara [22] and its up-
grade [29], and BSC introduced Vitruvius+ [27]. Whilst none are yet mass-
produced or widely available, these RISC-V vector accelerator designs have been
taped-out and their performance compared in [27].

3 RVV CPU Implementations

There is a broad selection of IP cores which have implemented RVV and this
is summarised in Table 1. RISC-V cores on this list target a wide range of ap-
plications, including edge artificial intelligence/machine learning (SiFive X280),
general high-performance application (SiFive P series), and decoupled vector
accelerator (Ara/Vitruvius+). The decoupled accelerator approach is especially
interesting because this allows vector instructions to be offloaded from the scalar
pipeline, and paired with support for long vectors, for instance 256 double preci-
sion elements per vector register are supported by the Vitruvius+, these present
high performance RISC-V vector accelerators for HPC workloads. In taped-out
implementations the New Ara core reports achieving 37.1 GFLOPS per Watt
[29] and Vitruvius+ reports 47.3 GFLOPS per Watt [27] on matrix multiplica-
tion benchmarks.

Table 1. List of available RVV processors. The last three entries are open source.

Processor Vector Length RVV version

SiFive P270/P470/P670 [10] 256-bit/128-bit/dual 128-bit 1.0
SiFive X280 [9] 512-bit 1.0

Andes NX27V [7] Configurable from 128 to 512-bit 1.0
Andes AX45MPV [6] Configurable from 128 to 1024-bit 1.0

Vitruvius+ [27] 16384-bit 0.7.1 (update to 1.0 in future)
Hwacha [34] (V4 [33]) 512-bit custom

New Ara [29] Configurable e.g. 4096-bit 1.0
Tenstorrent BOOM-ocelot [17] Configurable from 128-bit 1.0

T-Head XuanTie C906 [18] 128-bit 0.7.1

These energy efficiency numbers delivered by the New Ara and Vitruvius+
cores are impressive, especially considering that they are still research prototypes
rather than production parts. For comparison, whilst the Green 500 reports
whole systems rather than the individual machine components, based on the
November 2022 list those HPC machines that are able to achieve greater than
50 GFLOPS per Watt are based around either the AMD Instinct or Nvidia Grace



Test-driving RISC-V Vector hardware for HPC 5

Hopper GPUs. These represent mature technologies with a rich lineage, whereas
by comparison the New Ara and Vitruvius+ are the first generation of RISC-V
vector accelerators and therefore as time progresses are likely to significantly
increase their performance and energy efficiency.

Physical cores At the time of writing, the only mass-produced and commer-
cially available physical RISC-V vector core is the XuanTie C906 from T-Head,
which is the chip division of Alibaba. This contains 128-bit wide vector registers,
and supports vector element sizes of 8, 16, and 32 bits. Noticeable by its absence
however is support for elements of size 64 bits, meaning that the XuanTie C906
does not support 64 bit double precision floating point. This is a major disadvan-
tage for HPC, where the vast majority of our workloads are in double precision.
Nevertheless it is still interesting to benchmark with single precision workloads
as understanding the performance and software ecosystem can provide insights
around RVV, albeit at single precision. The XuanTie C906 core is available as
part of the Allwinner D1 SoC, part of the EPCC RISC-V testbed and the main
system on which we perform our vector benchmarks in Section 5.

4 Toolchain and software support

In this section we review the current status of the RISC-V open source soft-
ware ecosystem which supports compiling and running vectorised code on RVV
processors.

4.1 Compiler toolchain

GNU At the time of writing, the upstream GNU compiler toolchain does not
support the vector extension. There is a branch, rvv-next [24], which provides
limited support for RVV v1.0 and an older deleted branch rvv-0.7.1 which tar-
geted RVV v0.7.1. T-head provides a modified GNU toolchain which targets
their C906 CPU [11], and contains optimised vectorisation for v0.7.1. This is the
compiler used in this paper to benchmark the C906 CPU. Since the compiler is
optimised for the C906, it generates code specifically for 128-bit vector width.

However, it should be noted that in recent weeks the T-Head GNU com-
piler has been removed from their download page and-so is no longer available.
Because the compiler is under the GNU licence, it has been mirrored at [4].

LLVM LLVM 15 and 16 support RVV v1.0, and several of the auto-vectorisation
characteristics have been studied in [21]. LLVM supports compiling vector length
agnostic RVV code via the scalable-vectorization=on flag, as well as vector length
specific via the riscv-v-vector-bits-min=N flag (where N is the fixed vector width
in bits). LLVM also supports standard extensions with minimum vector length
Zvl* and its counterpart for embedded processors Zve*. Since LLVM only targets
RVV v1.0 and cannot run natively on the physical hardware available, it is



6 J. K. L. Lee et al.

not tested in this paper. A rollback tool that translates generated RVV v1.0 to
v0.7.1 has been developed and is reported, along with a performance comparison
against GCC, in [26] for both VLS and VLA modes.

4.2 Linux kernel

Whilst there is now general availability of common Linux distributions for RISC-
V boards, including Debian, Ubuntu and Fedora [2], many are early developer
variants [3] or unsupported releases [1]. The Sipeed Linux image for the Allwinner
D1, is easy to deploy using the proprietary tools and supports vectorisation out
of the box. However, due to the proprietary, protected format of the bootloader,
Linux images must be built using cross-compilation tools on another host and
vendor-specific patches must be applied to buildroot. Furthermore, the T-Head
specific GCC compiler version must also be used for this to ensure that the
resulting image is RVV compatible.

This requirement to rebuild the bootloader and apply vendor patches is not
only time consuming but also requires considerable knowledge and expertise to
achieve. This is definitely an area in which the vendors of these boards could
improve upon to open up their systems further and lower the barrier to entry.

4.3 Performance analysis tooling and instrumentation

The RISC-V hardware ecosystem is moving very quickly and the HiFive Un-
matched, released in late May 2021, and Allwinner Nezha D1, released in April
2021, are an example of where the software support sometimes struggles to keep
up, especially when board and/or CPU specific support is required by tooling.
Profiling tools are an example of this problem, where support for tools such as
perf has lagged the hardware.

For instance, with the HiFive Unmatched, the Linux kernel version 5.18 only
supports instruction and cycle count hardware events for perf, and in order to
obtain further events then one must patch the kernel and OpenSBI [5]. With the
Allwinner D1, containing the XuanTie C906 core, official support for perf was
only released in the Linux kernel version 6.2 on February 19th, 2023, almost two
years after the hardware was made available.

This lack of performance analysis tooling is a major drawback for HPC
workloads, where it is imperative that programmers can gain insights around
performance bottlenecks in codes and use this feedback to then optimise their
applications.

4.4 Emulation

Given the limited physical hardware currently available that supports RVV,
and none that supports v1.0, an obvious alternative is to run RVV-based codes
under emulation. There are two main emulators for RISC-V, QEMU and Spike.
Current upstream QEMU supports RVV v1.0 along with the zve32f and zve64f



Test-driving RISC-V Vector hardware for HPC 7

standards which provide 32-bit and 64-bit vectorisation floating point support
for embedded RISC-V CPUs respectively. Versions of QEMU prior to December
20th, 2021 supported RVV v0.7.1 only.

Likewise, Spike also supports RVV v1.0 and releases prior to November 12th,
2019 support v0.7.1. However, whilst emulation might appear to be a good choice
for those wishing to experiment with RISC-V vectorisation in their applications,
in absolute terms the application will run far slower than on physical hardware.
Even for exploratory purposes this could be an issue as it will potentially limit
the scale of testcases that can be executed.

Vehave Developed by Barcelona Supercomputing Center (BSC), Vehave [14] is
a functional emulator based on QEMU which is able to dynamically handle and
emulate vector instructions when running vectorised binaries on hardware that
does not support the vector extension. There are separate versions supporting
RVV v1.0 and v0.7. Whilst this provides a convenient way of supporting RVV
on hardware that is not equipped with this RISC-V extension, it is far slower
than the performance that would be provided by a physical CPU.

4.5 Softcores

Whilst the C906 is the only RVV hard CPU core readily available, there are a
number of RVV softcores, such as the Andes NX27V [7], Andes AX45MPV [6]
and Tenstorrent BOOM-ocelot [17] that can be included in field-programmable
gate array (FPGA) designs to test RISC-V vectorisation codes. However, cre-
ating soft-core FPGA designs requires comprehensive knowledge of the FPGA
tooling and logic circuit design, such as negative slack [12].

4.6 Libraries

Most HPC libraries can be cross-compiled for RISC-V, but there tend to be lim-
ited vectorisation optimisation applied within these. One library which already
includes vector optmisation is OpenBLAS, which has been optimised for RVV
v0.7.1 (specifically for XuanTie C906/C910)[36]. At the time of writing there are
numerous efforts on-going across the community to optimise HPC libraries for
RVV, and within the next year we will likely see significantly increased support
in this regard.

5 Benchmarks

5.1 System

The main RISC-V system that we benchmark in this paper is the Allwinner D1,
which contains a C906 processor and supports RVV v0.7.1 with 128-bit vector
registers. For comparison against a scalar-only RISC-V CPU, we use the StarFive
VisionFive V2 board (VF2), which contains a StarFive JH7110 processor (quad



8 J. K. L. Lee et al.

core SiFive U74). In order to provide some context with similar vector designs
already in use for HPC, we also performed runs on a Fujitsu A64FX system
(Armv8), which supports fixed length SIMD (NEON), as well as vector length
agnostic (SVE), instruction sets.

Because the C906 only contains a single core, all benchmarks are run on
a single core to enable direct comparison across CPUs, and only NEON with
128-bit vector width is used on A64FX for an objective evaluation (the XuanTie
GCC compiler only generates fixed 128-bit vector instructions). These systems
are summarised in Table 2. It should be noted that we recognise the A64FX
processor is designed for HPC applications and completely different in nature to
the RISC-V cores, which are designed for embedded and single-board computers
(SBC). However, a comparison against the A64FX is still valuable as it can
highlight important differences and potential design improvements for an HPC-
class RISC-V processor in the future.

Table 2. Compute system specifications

Allwinner D1
StarFive JH7110

(VF2)
A64FX

Processor XuanTie C906 SiFive U74 Fujitsu A64FX
Clock speed 1.0GHz 1.5GHz 1.8GHz

Cores 1 4 48

Cache
32 KB I-cache + 32 KB

D-cache
32 KB I-cache + 32 KB

D-cache + 2MB L2

64 KB I-cache + 64KB
D-cache, 8 MB shared L2
cache per 12 cores (core

memory group)
Memory 512MB DDR3 8GB DDR4 32GB HBM2

ISA RV64GC+V0.7 RV64GC ARMv8.2 with SVE

Vector width 128bit N/A
dual 128-bit (NEON) /

dual 512-bit (SVE)

5.2 Methodology

To evaluate the vectorisation performance we use the RAJA Performance Suite
(RAJAPerf) [19], which comprises the following sets of benchmarks: ALGO-
RITHM, APPS, BASIC, LCALS (Livermore Compiler Analysis Loop Suite),
POLYBENCH, and STREAM (Babel Stream). Since the C906 only supports
vector element sizes up to 32-bit, we configure the benchmark to use the single-
precision floating point data type. The compilers and respective compiler flags
for RISC-V and Arm systems are specified in Table 3. The benchmark timings
are averaged over three runs.

5.3 Results

Table 4 summarises the list of kernels which are vectorised by the XuanTie GCC
8.4 compiler. It can be seen that 30 of the 64 kernels are successfully vectorised



Test-driving RISC-V Vector hardware for HPC 9

Table 3. Compiler specifications

Name Compiler Vector width Compiler flags

RV-GCC8.4-scalar XuanTie GCC 8.4 N/A -O3 -march=rv64gc -ffast-math

RV-GCC8.4-vector XuanTie GCC 8.4 128-bit -O3 -march=rv64gcv0p7 -ffast-math

ARM-GCC11.2-scalar GCC 11.2 N/A -O3 -ffast-math -mcpu=a64fx

-march=armv8.2-a+nosimd+nosve

ARM-GCC11.2-vector GCC 11.2 128-bit -O3 -ffast-math -mcpu=a64fx

-march=armv8.2-a+simd+nosve

by the compiler, but for 7 of these only the scalar code and no vector instructions
were executed at runtime. This is due to the compiler’s oversensitivity to loop
ranges, and the scalar branch is preferred and executed even when a vectorised
branch is available. Clang 15.0, which generates RVV v1.0 assembly, is capable
of vectorising more kernels than GCC 8.4; for a full comparison, see [26].

Figure 1 reports runtimes for the RAJAPerf kernel normalised against the
kernel’s scalar runtime. For the A64FX, normalisation is against running in scalar
mode on the A64FX, whereas for the Allwinner D1 and StarFive JH7110 it is
normalised against running scalar on the D1. The orange and purple bars show
the vectorisation performance difference on the A64FX and D1 respectively, and
the green bars show a comparison of the scalar performance between the JH7110
(VF2) and the D1.

It can be observed from these plots that for most linear algebra kernels, the
vectorised code on the RISC-V D1 is faster compared to its scalar counterpart,
at around 84% faster for AXPY, 53% for GEMM, 45% for GEMVER, 40% for
ATAX, and 46% for MVT. Vectorised code also sustain much higher bandwidth
for streaming kernels such as Stream ADD, COPY, DOT, MUL, and TRIAD. In
only one case, the FIR kernel, is the vectorised code slower than its scalar coun-
terpart. Whilst in most cases the speedup from RVV on the D1 is not as signifi-
cant as from NEON on A64FX, there are some exceptions; for example, matrix
multiplication kernels on the A64FX compiled with ARM-GCC11.2-vector did
not execute the vector instructions. Therefore, the runtime performance was the
same as the scalar executable. Furthermore, the vectorised A64FX PRESSURE
kernel was almost three times slower than the scalar version.

When comparing the RISC-V processors AllWinner D1 and StarFive JH7110,
it can be observed that for high arithmetic intensity kernels the JH7110 (VF2),
which has a higher clock frequency, significantly outperforms the D1. For exam-
ple, GEMM is six times faster on the VF2 compared to running scalar on D1, and
four times faster than the vectorised version of this benchmark on the D1. How-
ever, even though the theoretic memory bandwidth for the VF2 is higher than
the D1, these benchmarking results demonstrate that with vectorisation the D1
executes the streaming kernels faster than the VF2. For example, Stream ADD
is 82% faster and COPY is 77% faster on the D1. This is the reason why we
observe that the D1 can perform low arithmetic intensity operations faster than
VF2, for example AXPY on D1 with vectorisation enabled is 71% faster than
the VF2 which is running in scalar mode.



10 J. K. L. Lee et al.

Table 4. RAJA Performance Suite Kernels vectorised by RV-GCC8.4-vector

Kernels

Vectorised and executed Total: 23

Algorithm: MEMCPY, MEMSET, REDUCE SUM
Apps: ENERGY, FIR, PRESSURE
Basic: AXPY, AXPY ATOMIC, REDUCE3 INT
Lcals: GEN LIN RECUR
Polybench: 2MM, 3MM, ATAX, FDTD 2D, GEMM, GEMVER,

GESUMMV, MVT
Stream: ADD, COPY, DOT, MUL, TRIAD

Vectorised Total: 7

Lcals: FIRST SUM, FIRST DIFF, HYDRO 1D, HYDRO 2D,
TRIDIAG ELIM

Polybench: JACOBI 1D, JACOBI 2D

Scalar Total: 34

Algorithm: SCAN, SORT, SORTPAIRS
Apps: CONVECTION3DPA, DEL DOT VEC 2D,

DIFFUSION3DPA, HALOEXCHANGE,
HALOEXCHANGE FUSED, LTIMES,
LTIMES NOVIEW, MASS3DPA,
NODAL ACCUMULATION 3D, VOL3D

Basic: IF QUAD, INDEXLIST, INDEXLIST 3LOOP,
INIT VIEW1D, INIT VIEW1D OFFSET, INIT3,
MAT MAT SHARED, MULADDSUB, NESTED INIT,
PI ATOMIC, PI REDUCE, REDUCE STRUCT,
TRAP INT

Lcals: DIFF PREDICT, EOS, FIRST MIN, INT PREDICT,
PLANCKIAN

Polybench: ADI, FLOYD WARSHALL, HEAT 3D



Test-driving RISC-V Vector hardware for HPC 11

Fig. 1. Normalised runtime for RAJA Performance Suite kernels. ARM-GCC11.2-
vector result (orange bars) are normalised against ARM-GCC11.2-scalar on A64FX,
and both D1-RV-GCC8.4-vector (purple bars) and VF2-RV-GCC8.4-scalar (green bars)
are normalised against D1-RV-GCC8.4-scalar.

0

0.5

1

1.5

2

M
EM

C
PY

M
EM

SE
T

R
ED

U
C
E-
SU
M

A
D
D

C
O
PY

D
O
T

M
U
L

T
R
IA
D

R
u
n
ti
m
e
re
la
ti
v
e
to

D
1
R
V
-G

C
C
8
.4
-s
ca
la
r

Kernels

A64FX ARM-GCC11.2-vector
D1 RV-GCC8.4-vector
VF2 RV-GCC8.4-scalar

(a) Algorithm (left) and Stream (right) Kernels

0

0.5

1

1.5

2

2.5

3

A
X
PY

A
X
PY

-A
T
O
M
IC

R
ED

U
C
E3
-IN

T
FI
R

PR
ES
SU
R
E

G
EN

-L
IN
-R
EC
U
R

R
u
n
ti
m
e
re
la
ti
v
e
to

D
1
R
V
-G

C
C
8.
4-
sc
al
ar

Kernels

A64FX ARM-GCC11.2-vector
D1 RV-GCC8.4-vector
VF2 RV-GCC8.4-scalar

(b) Basic (left), Apps (centre), and Lcals (right) Kernels

0

0.5

1

1.5

2

2M
M

3M
M

AT
A
X

FD
T
D
-2
D

G
EM

M

G
EM

V
ER

G
ES
U
M
M
V

M
V
T

R
u
n
ti
m
e
re
la
ti
v
e
to

D
1
R
V
-G

C
C
8.
4-
sc
al
ar

Kernels

A64FX ARM-GCC11.2-vector
D1 RV-GCC8.4-vector
VF2 RV-GCC8.4-scalar

(c) Polybench Kernels



12 J. K. L. Lee et al.

6 Conclusions and recommendations

At the time of writing, generating and testing RVV codes on the currently avail-
able physical CPUs is problematic due to the mismatch between the available
tooling, such as GCC and Clang, and the RVV version (v0.7.1) implemented
in hardware. However, as demonstrated in Section 5.3, compiling for RVV on
the D1 can result in codes being up to 80% faster than the scalar alternative
(RAJAPerf AXPY and Stream ADD). The standardisation of tooling with v1.0
RVV and intrinsics will greatly simplify the development of vectorised codes in
the future, running on RVV v1.0 compliant CPUs. Therefore our view is that,
whilst at the time of writing there are challenges around developing and running
vectorised code on RISC-V due to the immaturity of tooling and hardware, in the
medium term these challenges will be solved and RVV provides a strong foun-
dation for leveraging RISC-V for high performance workloads. Furthermore, the
improved auto-vectorisation of LLVM, coupled with increased VLEN in future
CPUs, is expected to increase kernel runtime performance even further.

Although the later versions of the T-Head GCC toolchain supports both RVV
v0.7 and v1.0, neither the mainstream GCC or LLVM toolchains support v0.7.
Whilst it is understandable that the toolchain development teams only want to
support the ratified version of RVV, the currently available RVV hard CPU cores
only support v0.7 and the runtime performance benefits of leveraging RVV on the
C906-based devices are tangible, as shown in Section 5.3. Furthermore, T-Head
have proven that it is possible to provide RVV v0.7 and RVV v1.0 support within
the GCC toolchain, providing the -march=rv64gcv0p7 and -march=rv64gcv1p0

compiler options. With the large volume of RVV v0.7 devices in circulation we
would like to see support for both v0.7 and v1.0 RVV in mainstream GCC and
Clang / LLVM toolchains.

6.1 Recommendations

In order to leverage the runtime performance benefits of vectorisation on cur-
rent RISC-V hardware and to minimise the impact of the code incompatibilities
between RVV v0.7 and v1.0 [25], we recommend the use of the T-Head GCC 8.4
auto-vectorisation and not using the T-Head RVV v0.7 intrinsic API. This will
ensure that codes can simply be recompiled, without modification, to target RVV
v1.0 compatible hardware. Another option, is to generate code for RVV v1.0 us-
ing GCC or Clang / LLVM auto-vectorisation or the v1.0 intrinsics API, and
utilise a conversion tool such as [26] to create binaries for RVV v0.7 hardware.

We would also recommend building RVV-enabled Linux images with a patched
mainstream buildroot using the T-Head GCC 8.4 compiler, as support for the
Allwinner D1 has recently been added.

7 Acknowledgement

The authors would like to thank the ExCALIBUR H&ES RISC-V testbed for
access to compute resource used in this work.



Test-driving RISC-V Vector hardware for HPC 13

References

1. Architectures/RISC-v/allwinner - fedora project wiki, https://fedoraproject.

org/wiki/Architectures/RISC-V/Allwinner

2. Architectures/RISC-v/installing - fedora project wiki, https://fedoraproject.

org/wiki/Architectures/RISC-V/Installing

3. Download ubuntu for RISC-v platforms, https://ubuntu.com/download/risc-v
4. ExCALIBUR H&ES RISC-V testbed, http://riscv.epcc.ed.ac.uk/
5. How to setup additional ‘perf’ events on the HiFive unmatched, https://arch.

cs.ucdavis.edu/blog/2022-09-15-perf-hifive

6. RISC-V: AX45MPV, https://www.andestech.com/en/products-solutions/

andescore-processors/riscv-ax45mpv/

7. RISC-V:NX27V, https://www.andestech.com/en/products-solutions/

andescore-processors/riscv-nx27v/

8. riscv-p-spec/P-ext-proposal.pdf at master Â· riscv/riscv-p-spec Â· GitHub, https:
//github.com/riscv/riscv-p-spec/blob/master/P-ext-proposal.pdf

9. SiFive Intelligence X280, https://www.sifive.com/cores/intelligence-x280
10. SiFive Performance, https://www.sifive.com/cores/performance
11. T-Head Open Chip Community Download, https://occ.t-head.cn/community/

download

12. Timing analyzer clock analysis, https://www.intel.com/content/www/us/

en/programmable/support/support-resources/design-examples/design-

software/timinganalyzer/clocking/tq-clock.html

13. RISC-V ”V” Vector Extension 1.0 (2021), https://github.com/riscv/riscv-v-
spec/releases/tag/v1.0

14. Vehave User Guide · Wiki · EPI-public / RISC-V Vector Environment
· GitLab (Nov 2021), https://repo.hca.bsc.es/gitlab/epi-public/risc-v-

vector-simulation-environment/-/wikis/Vehave-User-Guide

15. BSC RISC-V Vector Toolchain · Wiki · EPI-public / RISC-V Vector Environment
· GitLab (Feb 2022), https://repo.hca.bsc.es/gitlab/epi-public/risc-

v-vector-simulation-environment/-/wikis/BSC-RISC%E2%80%90V-Vector-

Toolchain

16. MLCommons MLPerf Inference Tiny v0.7 Results (Apr 2022), https://

mlcommons.org/

17. Ocelot: The Berkeley Out-of-Order RISC-V Processor with Vector Support (Mar
2023), https://github.com/tenstorrent/riscv-ocelot

18. OpenC906 (Mar 2023), https://github.com/T-head-Semi/openc906
19. RAJA Performance Suite (Feb 2023), https://github.com/LLNL/RAJAPerf
20. RISC-V Vector Extension Intrinsic Document (Mar 2023), https://github.com/

riscv-non-isa/rvv-intrinsic-doc

21. Adit, N., Sampson, A.: Performance Left on the Table: An Evaluation of
Compiler Autovectorization for RISC-V. IEEE Micro 42(5), 41–48 (Sep 2022).
https://doi.org/10.1109/MM.2022.3184867, conference Name: IEEE Micro

22. Cavalcante, M., Schuiki, F., Zaruba, F., Schaffner, M., Benini, L.: Ara:
A 1-GHz+ Scalable and Energy-Efficient RISC-V Vector Processor With
Multiprecision Floating-Point Support in 22-nm FD-SOI. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 28(2), 530–543 (2020).
https://doi.org/10.1109/TVLSI.2019.2950087

23. Editors Andrew Waterman and Krste Asanovic̀: The RISC-V Instruction Set Man-
ual, Volume I: User-Level ISA, Document Version 20191213. RISC-V FOUNDA-
TION (Dec 2019)

https://fedoraproject.org/wiki/Architectures/RISC-V/Allwinner
https://fedoraproject.org/wiki/Architectures/RISC-V/Allwinner
https://fedoraproject.org/wiki/Architectures/RISC-V/Installing
https://fedoraproject.org/wiki/Architectures/RISC-V/Installing
https://ubuntu.com/download/risc-v
http://riscv.epcc.ed.ac.uk/
https://arch.cs.ucdavis.edu/blog/2022-09-15-perf-hifive
https://arch.cs.ucdavis.edu/blog/2022-09-15-perf-hifive
https://www.andestech.com/en/products-solutions/andescore-processors/riscv-ax45mpv/
https://www.andestech.com/en/products-solutions/andescore-processors/riscv-ax45mpv/
https://www.andestech.com/en/products-solutions/andescore-processors/riscv-nx27v/
https://www.andestech.com/en/products-solutions/andescore-processors/riscv-nx27v/
https://github.com/riscv/riscv-p-spec/blob/master/P-ext-proposal.pdf
https://github.com/riscv/riscv-p-spec/blob/master/P-ext-proposal.pdf
https://www.sifive.com/cores/intelligence-x280
https://www.sifive.com/cores/performance
https://occ.t-head.cn/community/download
https://occ.t-head.cn/community/download
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/design-software/timinganalyzer/clocking/tq-clock.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/design-software/timinganalyzer/clocking/tq-clock.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/design-software/timinganalyzer/clocking/tq-clock.html
https://github.com/riscv/riscv-v-spec/releases/tag/v1.0
https://github.com/riscv/riscv-v-spec/releases/tag/v1.0
https://repo.hca.bsc.es/gitlab/epi-public/risc-v-vector-simulation-environment/-/wikis/Vehave-User-Guide
https://repo.hca.bsc.es/gitlab/epi-public/risc-v-vector-simulation-environment/-/wikis/Vehave-User-Guide
https://repo.hca.bsc.es/gitlab/epi-public/risc-v-vector-simulation-environment/-/wikis/BSC-RISC%E2%80%90V-Vector-Toolchain
https://repo.hca.bsc.es/gitlab/epi-public/risc-v-vector-simulation-environment/-/wikis/BSC-RISC%E2%80%90V-Vector-Toolchain
https://repo.hca.bsc.es/gitlab/epi-public/risc-v-vector-simulation-environment/-/wikis/BSC-RISC%E2%80%90V-Vector-Toolchain
https://mlcommons.org/
https://mlcommons.org/
https://github.com/tenstorrent/riscv-ocelot
https://github.com/T-head-Semi/openc906
https://github.com/LLNL/RAJAPerf
https://github.com/riscv-non-isa/rvv-intrinsic-doc
https://github.com/riscv-non-isa/rvv-intrinsic-doc
https://doi.org/10.1109/MM.2022.3184867
https://doi.org/10.1109/TVLSI.2019.2950087


14 J. K. L. Lee et al.

24. GNU, International, R.V.: Risc-v gnu compiler toolchain (rvv-next branch), https:
//github.com/riscv-collab/riscv-gnu-toolchain/tree/rvv-next

25. Hsiangkai Wang, Zakk Chen, Kito Cheng, Yi-Hsiu, Roger Ferrer Ibanez,
Nick Knight, Mingjie Xing: RISC-V vector extension intrinsic API reference
manual, https://occ-oss-prod.oss-cn-hangzhou.aliyuncs.com/resource/

/1663142187133/Xuantie+900+Series+RVV-0.7.1+Intrinsic+Manual.pdf#

section*.243
26. Lee, J.K.L., Jamieson, M., Brown, N.: Backporting risc-v vector assembly. Pro-

ceedings for the First International workshop on RISC-V for HPC (Mar 2023),
under peer review

27. Minervini, F., Palomar, O., Unsal, O., Reggiani, E., Quiroga, J., Marimon, J., Ro-
jas, C., Figueras, R., Ruiz, A., Gonzalez, A., Mendoza, J., Vargas, I., Hernandez,
C., Cabre, J., Khoirunisya, L., Bouhali, M., Pavon, J., Moll, F., Olivieri, M., Kovac,
M., Kovac, M., Dragic, L., Valero, M., Cristal, A.: Vitruvius+: An Area-Efficient
RISC-V Decoupled Vector Coprocessor for High Performance Computing Appli-
cations. ACM Transactions on Architecture and Code Optimization (Dec 2022).
https://doi.org/10.1145/3575861, just Accepted

28. Odajima, T., Kodama, Y., Sato, M.: Performance and power consumption analysis
of Arm Scalable Vector Extension. The Journal of Supercomputing 77(6), 5757–
5778 (Jun 2021). https://doi.org/10.1007/s11227-020-03495-5

29. Perotti, M., Cavalcante, M., Wistoff, N., Andri, R., Cavigelli, L., Benini, L.: A
“New Ara” for Vector Computing: An Open Source Highly Efficient RISC-V V
1.0 Vector Processor Design. In: 2022 IEEE 33rd International Conference on
Application-specific Systems, Architectures and Processors (ASAP). pp. 43–51 (Jul
2022). https://doi.org/10.1109/ASAP54787.2022.00017, iSSN: 2160-052X

30. Poenaru, A., McIntosh-Smith, S.: Evaluating the Effectiveness of a Vector-Length-
Agnostic Instruction Set. In: Malawski, M., Rzadca, K. (eds.) Euro-Par 2020: Par-
allel Processing. pp. 98–114. Lecture Notes in Computer Science, Springer Inter-
national Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-57675-2 7

31. Pohl, A., Greese, M., Cosenza, B., Juurlink, B.: A Performance Anal-
ysis of Vector Length Agnostic Code. 2019 International Conference on
High Performance Computing & Simulation (HPCS) pp. 159–164 (Jul 2019).
https://doi.org/10.1109/HPCS48598.2019.9188238, conference Name: 2019 Inter-
national Conference on High Performance Computing & Simulation (HPCS) ISBN:
9781728144849 Place: Dublin, Ireland Publisher: IEEE

32. Ramı́rez, C., Hernández, C.A., Palomar, O., Unsal, O., Ramı́rez, M.A., Cristal, A.:
A RISC-V Simulator and Benchmark Suite for Designing and Evaluating Vector
Architectures. ACM Transactions on Architecture and Code Optimization 17(4),
1–30 (Dec 2020). https://doi.org/10.1145/3422667

33. Schmidt, C., Ou, A., Asanović, K.: Hwacha V4: Decoupled Data Parallel
Custom Extension https://riscv.org/wp-content/uploads/2018/12/Hwacha-

A-Data-Parallel-RISC-V-Extension-and-Implementation-Schmidt-Ou-.pdf
34. Schmidt, C., Wright, J., Wang, Z., Chang, E., Ou, A., Bae, W., Huang,

S., Milovanović, V., Flynn, A., Richards, B., Asanović, K., Alon, E.,
Nikolić, B.: An Eight-Core 1.44-GHz RISC-V Vector Processor in 16-nm
FinFET. IEEE Journal of Solid-State Circuits 57(1), 140–152 (Jan 2022).
https://doi.org/10.1109/JSSC.2021.3118046, conference Name: IEEE Journal of
Solid-State Circuits

35. Soria-Pardos, V., Armejach, A., Suárez, D., Moretó, M.: On the use of many-core
Marvell ThunderX2 processor for HPC workloads. The Journal of Supercomputing
77(4), 3315–3338 (Apr 2021). https://doi.org/10.1007/s11227-020-03397-6

https://github.com/riscv-collab/riscv-gnu-toolchain/tree/rvv-next
https://github.com/riscv-collab/riscv-gnu-toolchain/tree/rvv-next
https://occ-oss-prod.oss-cn-hangzhou.aliyuncs.com/resource//1663142187133/Xuantie+900+Series+RVV-0.7.1+Intrinsic+Manual.pdf#section*.243
https://occ-oss-prod.oss-cn-hangzhou.aliyuncs.com/resource//1663142187133/Xuantie+900+Series+RVV-0.7.1+Intrinsic+Manual.pdf#section*.243
https://occ-oss-prod.oss-cn-hangzhou.aliyuncs.com/resource//1663142187133/Xuantie+900+Series+RVV-0.7.1+Intrinsic+Manual.pdf#section*.243
https://doi.org/10.1145/3575861
https://doi.org/10.1007/s11227-020-03495-5
https://doi.org/10.1109/ASAP54787.2022.00017
https://doi.org/10.1007/978-3-030-57675-2_7
https://doi.org/10.1109/HPCS48598.2019.9188238
https://doi.org/10.1145/3422667
https://riscv.org/wp-content/uploads/2018/12/Hwacha-A-Data-Parallel-RISC-V-Extension-and-Implementation-Schmidt-Ou-.pdf
https://riscv.org/wp-content/uploads/2018/12/Hwacha-A-Data-Parallel-RISC-V-Extension-and-Implementation-Schmidt-Ou-.pdf
https://doi.org/10.1109/JSSC.2021.3118046
https://doi.org/10.1007/s11227-020-03397-6


Test-driving RISC-V Vector hardware for HPC 15

36. Xianyi, Z.: OpenBLAS (Mar 2023), https://github.com/xianyi/OpenBLAS

https://github.com/xianyi/OpenBLAS

	Test-driving RISC-V Vector hardware for HPC

