
Backporting RISC-V Vector assembly

Joseph K. L. Lee1[0000−0002−1648−2740], Maurice Jamieson1[0000−0003−1626−4871],
and Nick Brown1[0000−0003−2925−7275]

EPCC, University of Edinburgh, Bayes Centre, 47 Potterrow, Edinburgh, United
Kingdom

{j.lee,m.jamieson,n.brown}@epcc.ed.ac.uk

Abstract. Leveraging vectorisation, the ability for a CPU to apply op-
erations to multiple elements of data concurrently, is critical for high
performance workloads. However, at the time of writing, commercially
available physical RISC-V hardware that provides the RISC-V vector
extension (RVV) only supports version 0.7.1, which is incompatible with
the latest ratified version 1.0. The challenge is that upstream compiler
toolchains, such as Clang, only target the ratified v1.0 and do not sup-
port the older v0.7.1. Because v1.0 is not compatible with v0.7.1, the
only way to program vectorised code is to use a vendor-provided, older
compiler. In this paper we introduce the rvv-rollback tool which trans-
lates assembly code generated by the compiler using vector extension
v1.0 instructions to v0.7.1. We utilise this tool to compare vectorisation
performance of the vendor-provided GNU 8.4 compiler (supports v0.7.1)
against LLVM 15.0 (supports only v1.0), where we found that the LLVM
compiler is capable of auto-vectorising more computational kernels, and
delivers greater performance than GNU in most, but not all, cases. We
also tested LLVM vectorisation with vector length agnostic and specific
settings, and observed cases with significant difference in performance.

Keywords: RISC-V vector extension · HPC · Clang · RVV Rollback.

1 Introduction

Whilst the first proposal of the RISC-V vector extension (RVV) was introduced
in June 2015, this was only ratified in late 2021. The goal of the vector extension
is to be efficient and scalable, and the result is a Cray-style, variable sized vector
model. RVV can reconfigure element size and vector length at run time, and is
flexible so that it works on different data types such as integer, fixed-point and
floating-point, and microarchitectures such as in-order, out-of-order and decou-
pled. When combined with the base ISA the total instruction count is around
300 instructions which is far fewer than typical packed-SIMD alternative, and
fits into a standard fixed 32-bit encoded space [9]. RVV also forms the foundation
for other vector extensions, such as the vector cryptographic extension.

Prior to ratification at version 1.0, a draft version 0.7.1 was released in 2019.
According to this release: version 0.7 is intended to be stable enough to be-
gin developing toolchains, functional simulators, and initial implementations,

ar
X

iv
:2

30
4.

10
32

4v
1 

 [
cs

.D
C

] 
 2

0 
A

pr
 2

02
3



2 J. K. L. Lee et al.

though will continue to evolve with minor changes and updates [4]. With the
warning that backwards-incompatible changes will be made prior to ratification,
toolchains, simulators, and hardware implementations were developed.

The first, and currently only, mass-produced hardware implementation of the
vector extension v0.7.1 is the T-Head XuanTie C906 [3], which contains 128-bit
wide vector registers and supports up to 32-bit vector elements. This is used
in the low-cost, widely available Allwinner D1 SoC, which reuses their existing
Arm SoC peripheral IP. As of yet, no commercially available hardware cores
implementing v1.0 have been announced, only IP cores are available for soft-
core designs. Since v0.7.1 was not ratified, upstream compilers and software do
not, and will not, target this RVV version.

The aim of this paper is to address the gap between v1.0, the target for
current and future tool development, and v0.7.1, the version supported by avail-
able hardware. This paper is structured as follows, in Section 2 we describe the
background to this work by exploring the differences between v1.0 and v0.7.1
of RVV before surveying support in different toolchains and highlighting related
work. Our rvv-rollback tool is then presented in Section 3 where we describe both
the design and how this is to be leveraged within the compiler flow. Section 4
then undertakes benchmarking comparisons between different compilers using
our tool to better understand the performance properties of common toolchains
and setting, before drawing conclusions and discussing further work in Section
5.

The key contributions of this paper are:

1. We review the main differences between the ratified RVV v1.0 and imple-
mented v0.7.1 by currently available hardware

2. We present our rvv-rollback tool designed for translating RVV v1.0 assembly
code into v0.7.1

3. We utilise our rvv-rollback tool to test the auto-vectorisation of available
compilers using the RAJA Performance Suite [6] and explore the impact
that settings and compilers have on the overarching performance obtained.

2 Background and related work

2.1 RVV version 1.0 vs version 0.7.1

The RISC-V vector extension (RVV) adds 32 vector registers which are speci-
fied by two implementation-defined parameters, the maximum size in bits of a
vector element, ELEN ≥ 8, and the number of bits in a single vector register,
V LEN ≤ 216. RVV v0.7.1 adds five unprivileged Control and Status Registers
(CSRs) vstart, vxsat, vxrm, vl and vtype, whereas v1.0 extends this list with two
additional registers, vcsr (a vector control and status register) and vlenb (vector
register length in bytes). Among other information, these CSRs contain settings
about the selected element width SEW, vector register group multiplier LMUL
(the number of vector registers grouped together), and operational vector length
vl (the number of elements to be updated from a vector instruction).

Other important differences between RVV v1.0 and v0.7.1 include:



Backporting RISC-V Vector assembly 3

– Configuration-setting instructions: To update the vector type settings,
configuration-setting instructions vsetvl and vsetvli have to be used, where
the application specifies the element type and total number of elements to
be processed. The hardware then configures the vl and vtype CSRs to match
what is required by the application. RVV v1.0 introduced an extra instruc-
tion vsetivli, where the application can provide an immediate value directly
as the application vector length, enabling more compact code to be generated
by the compiler.

– Fractional LMUL: RVV allows multiple vector registers to be grouped
together so that a single vector instruction can operate on multiple vector
registers concurrently. This allows double-width, or larger, elements to be
operated on with the same vector length as single-width elements. It is also
possible for instructions to accept source and destination vector operands
with differing element widths but the same number of elements, thus in-
creasing flexibility. Vector register grouping can also improve the execution
efficiency for longer application vectors because the hardware is then flexible
enough to enable these to run concurrently.

The grouping is defined by the vector length multiplier LMUL which rep-
resents the default number of vector registers that are combined together
to form a vector register group. Implementations must support LMUL of
integer values 1, 2, 4, and 8. For v1.0, LMUL can also accept the fractional
values 1

2 , 1
4 and 1

8 , which reduces the number of bits used in a single vector
register. This is particularly useful when operating on mixed-width values,
enabling the compiler to effectively increase the number of usable vector
register groups.

– Tail/mask agnostic policy: Tail elements are those which lie past the
current vector length, vl, setting. By contrast, inactive elements are those
within the current vector length but are disabled by the current mask be-
cause they do not receive new results during a vector operation. For v0.7.1,
all regular vector instructions place zeros in the tail elements of the destina-
tion vector register group, and inactive elements are undisturbed. For v1.0,
these elements can be independently marked either undisturbed or agnostic.
The agnostic setting allows for the corresponding destination elements to
either retain their values or be overwritten with 1s, the pattern of which is
not required to be deterministic when the instruction is executed with the
same inputs. The agnostic policy was added in RVV v1.0 to increase effi-
ciency when the inactive or tail values are not required for subsequent cal-
culations. For v1.0 all configuration-setting instructions, vsetvl, vsetvli and
vsetivli must include the flags for whether it is following the tail and mask
agnostic (ta and ma) or undisturbed policies (tu and mu).

– Other changes: RVV v1.0 simplifies the mask register layout by mapping
the mask bit for element i to bit i of the mask register. Furthermore, v1.0
also introduces several new instructions, such as vl1r which is a whole reg-
ister load instruction, and also renames some instructions for example the
vfredsum.vs has become vfredusum.vs. It should also be noted that because



4 J. K. L. Lee et al.

instruction encodings are different between v1.0 and v0.7.1 they are not
binary compatible.

2.2 Toolchain support

The current upstream RISC-V GNU compiler toolchain does not provide support
for any version of the vector extension. Whilst the GNU repository does contain
an rvv-next branch [8] which aims to support v1.0, at the time of writing this
is not actively maintained. There is also a previous, and now deleted, rvv-0.7.1
branch which targeted v0.7.1. Because of this lack of GCC support, T-Head,
who are the chip division of Alibaba, provides their own modified GNU compiler
toolchain (XuanTie GCC) which has been optimised for their C906 processor.
This bespoke compiler supports both RVV v0.7.1 and also their own custom
extensions. Several versions of this compiler have been provided, and through
experimentation we found that GCC8.4 as found in their 20210618 release (a
mirror is available at the EPCC RISC-V testbed website [1]) provides the best
auto-vectorisation capability and-so is used for benchmark comparisons in Sec-
tion 4 because this version generates code specifically targeting 128-bit vector
lengths.

By comparison, Clang 15, provided as part of LLVM supports RVV v1.0.
Furthermore, programmers are able to target RVV assembly which is vector
length agnostic via the flag scalable-vectorization=on or vector length specific
via the flag riscv-v-vector-bits-min=N (where N is the fixed vector width in
bits). Therefore it can be stated that, at the time of writing, Clang provides
greater support for RVV than vanilla GCC.

In this paper, we use the RAJA Performance Suite [6] to test the auto-
vectorisation performance across compilers for a range of loop-based computa-
tional kernels. We observed that T-Head’s XuanTie GCC 8.4 is capable of vec-
torising fewer kernels than Clang 15 with either vector length agnostic (VLA)
or vector length specific (VLS) settings. This can be seen in Table 3, which lists
the kernels which are able to be auto-vectorised by the different compilers at
different settings. This demonstrates the benefit of being able to leverage Clang
on existing RISC-V hardware, and furthermore as further developments to main
branch versions of these compilers will only support RVV v1.0, in future vectori-
sation will only be usable on existing vector hardware if the code are translated
to RVV v0.7.1. This is the aim of the rvv-rollback tool we have developed and
describe in this paper.

2.3 Related work

This paper aims to bridge the gap between compilers that are targeting RVV v1.0
and mass-produced physical hardware available for consumer purchase which
only supports v0.7.1. [11] presents an upgrade of Ara, a vector co-processor
design, and reviewed the differences between RVV v0.5 and v1.0 to study the
design changes required for updating to v1.0. [7] studied the auto-vectorisation
capability of Clang 15 for RVV via dynamic instruction counting, and identified



Backporting RISC-V Vector assembly 5

areas of improvements including the requirement to undertake improved shuffle
pattern analysis and outer-loop vectorisation.

The RISC-V vector landscape and software ecosystem was surveyed in [10],
exploring results from benchmarks running on T-Head’s C906 using the XuanTie
GCC 8.4 compiler. However, the authors were unable to include Clang in their
benchmarking because of the RVV version issues that we are looking to address
in this paper.

Vehave [5] developed by BSC is a runtime library that enables the execution
of vector instructions conforming to RVV v0.7.1 on RISC-V CPUs which do
not support the vector extension, effectively trapping the unknown instructions
and emulating them in software. Whilst this approach provides the ability to
simulate vector instructions, the trapping and execution in software is far slower
than execution over hardware. By contrast, in our approach we directly modify
the assembly code generated by the compiler to roll back the vectorisation to
the v0.7.1 standard, thus enabling the code to run on the hardware directly and
not requiring any runtime support.

3 The RVV rollback tool

We have developed rvv-rollback, a Python based tool that backports RVV v1.0
assembly code to v0.7.1 assembly, and this is available at [2]. Whilst this tool
is capable of translating most v1.0 instructions into version v0.7.1, some lesser
used features of v1.0 such as fractional LMUL are not yet supported.

RVV v1.0 introduced instructions which are immediate value versions of those
found in v0.7.1. This is where the RVV instruction being issued contains part
of the data being operated upon, such as a constant, rather than loading this
from a register. Examples are the configuration set instruction vsetivli, and the
whole register load/store vl1r and vs1r. By default, our tool will convert these
instructions to first store the current vector configuration in memory, then re-
configure the vector settings, followed by performing the instruction itself, and
finally restoring the setting from memory. However, this process adds some over-
head and furthermore is often unnecessary because a temporary register can be
used instead or the reconfigurations being issued by the compiler are simply re-
dundant. In verbose mode, the tool will print out these instances and recommend
alternative optimised configuration options, with the user then able to manually
determine the appropriate translation.

It should be noted that this tool is aimed primarily to aid benchmarking
applications, and whilst we have tested it extensively we make no guarantee as
to bit reproducibility between the Clang generated RVV v1.0 assembly and our
translated v0.7.1 code.

3.1 RVV rollback compiler workflow

In order to use our tool and generate RVV v0.7 executables using Clang, the
user follows the following steps:



6 J. K. L. Lee et al.

1. Compile with Clang to obtain RVV v1.0 assembly code with the appropriate
vector flags, for instance -march=rv64gcv -O3 -mllvm –riscv-v-vector-bits-
min=128 for VLS or -scalable-vectorization=on for VLA. The -no-integrate-
as flag is also necessary as it directs the compiler to generate assembly which
can be assembled by the GNU assembler in the third step. 1

2. Translate the assembly code to RVV v0.7.1 using our rvv-rollback.py Python
tool

3. Assemble the generated assembly code using T-Head’s XuanTie GCC assem-
bler, provided as part of v2.6.1 of the the Xuantie-900-gcc-linux toolchain
(also available at [1]). This is required because a RVV v0.7.1 conforming
compiler is needed to translate the v0.7.1 assembly into machine code.

It should be highlighted that those RAJA kernels which failed to automat-
ically vectorise with T-Head’s XuanTie GCC compiler detailed in Table 3 are
due to limitations in the front-end of the GCC compiler, where automatic vec-
torisation opportunities are identified and applied, rather than the assembler.
Consequently, whilst we leverage the GNU assembler as our third step it does
not reduce opportunities for automatic vectorisation that have been identified
by Clang higher up in the compilation process.

4 Benchmarking and Comparison

To demonstrate the use of our RVV rollback tool and the compilation work-
flow described in Section 3, we utilise the RAJA Performance Suite compiled
using Clang 15 (generating RVV v1.0 assembly and backported to v0.7.1 using
rvv-rollback) and XuanTie GCC 8.4 which natively generates an RVV v0.7.1
executable. The suite is compiled with single-precision floating point numbers
(some double precision constants found within the code were manually converted
to single precision). The compiler and relevant flags are listed in Table 1.

Table 1. Compiler specifications

Name Compiler RVV Version Compiler flags

GCC8.4-scalar XuanTie GCC 8.4 N/A -O3 -march=rv64gc -ffast-math

GCC8.4-vector XuanTie GCC 8.4 0.7 -O3 -march=rv64gcv0p7 -ffast-math

Clang15-scalar Clang 15.0 N/A --march=rv64gc -O3 -ffast-math

Clang15-vector-vls Clang 15.0 1.0 -march=rv64gcv -O3 -mllvm

--riscv-v-vector-bits-min=128

-ffast-math

Clang15-vector-vla Clang 15.0 1.0 -march=rv64gcv -O3 -mllvm

-scalable-vectorization=on -ffast-math

In this section we compare vectorisation performance of these benchmarks
across the compilers on the Allwinnner D1. For reference, we also include result

1 the -save-temps flag can be useful for saving all intermediate assembly files if this
is desired by the programmer.



Backporting RISC-V Vector assembly 7

from the popular StarFive VisionFive V2 board (VF2), which contains a non-
vectorised StarFive JH7110 processor (quad core SiFive U74). For these results
benchmarks are run on a single core to provide a like-for-like comparison. The
details of the systems we use in our experiments are reported in Table 2.

Table 2. Compute system specifications

Allwinner D1 StarFive JH7110 (VF2)

Processor XuanTie C906 SiFive U74
Processor clock speed 1.0 GHz 1.5GHz

Cores 1 4

Cache
32 KB I-cache +
32 KB D-cache

32KB I-cache +
32 KB D-cache

+ 2MB L2
Memory 512MB DDR3 8GB DDR4

ISA RV64GC+V0.7 RV64GC
Vector width 128bit N/A

4.1 Performance results

Table 3 lists the kernels which are able to be auto-vectorised by the different
compilers at different settings. As mentioned, T-Head’s XuanTie GCC 8.4 is
capable of vectorising fewer kernels than Clang 15 with either vector length
agnostic (VLA) or vector length specific (VLS) settings. Out of the kernels listed
in Table 3, 22 were translated using the compiler workflow described in Section
3. For reporting performance comparisons in Figures 1a, 1b and 1c, we group
kernels into three separate categories:

1. Those kernels not vectorised by T-Head’s XuanTie GCC 8.4 compiler
2. Kernels vectorised by XuanTie GCC 8.4, but the kernel executed scalar code

instead of vectorised code
3. Kernels vectorised by XuanTie GCC 8.4, and the vectorised code was exe-

cuted

Figures 1a, 1b and 1c report the runtime for each kernel compiled using
GCC 8.4 and Clang 15.0 with scalar and vector for the Allwinner D1, and scalar
for VF2. All runtimes are averaged across three runs and normalised against
scalar code compiled with GCC8.4 on the Allwinner D1.

There are a number of noticeable features and behaviours that can be high-
lighted in these figures. Firstly it can be seen that Clang is capable of vectorising
more kernels than GCC, especially for the LCALS routines, and this provides
a significant speedup as seen when comparing Clang and GCC results in Fig-
ures 1a and 1b. However, for some kernels such as INIT3, TRIDIAG ELIM, and
GESUMMV Clang’s vectorised code is slower than its scalar counterpart.



8 J. K. L. Lee et al.

Table 3. List of RAJA Performance Suite kernels auto-vectorised by XuanTie GCC
8.4 and Clang 15.0 compilers. * denotes kernels vectorised by GCC 8.4 but only scalar
code was executed during runtime, and † denotes kernels vectorised by Clang (VLS
and VLA) but only scalar code was executed during runtime.

Kernels
XuanTie

GCC8.4 vector
Clang15

vector VLA
Clang15

vector VLS

Algorithm: MEMCPY, MEMSET,
REDUCE SUM

X X X
Apps: ENERGY, FIR, PRESSURE
Basic: SAXPY, SAXPY ATOMIC,
REDUCE3 INT
Lcals: FIRST DIFF*, FIRST SUM*,
GEN LIN RECUR, HYDRO 1D*, HYDRO 2D*,
TRIDIAG ELIM*

Polybench: 2MM†, 3MM†, ATAX, FDTD 2D,
GEMM†, GEMVER, GESUMMV, JACOBI 1D*,
JACOBI 2D*, MVT
Stream: ADD, COPY, DOT, MUL, TRIAD
Total: 30

Apps: LTIMES, LTIMES NOVIEW, VOL3D

X X
Basic: IF QUAD, INDEXLIST 3LOOP,
INIT INIT VIEW1D, INIT VIEW1D OFFSET,
INIT3, MAT MAT SHARED, MULADDSUB,
NESTED INIT, PI ATOMIC, PI REDUCE,
REDUCE STRUCT, TRAP INT
Lcals: DIFF PREDICT, EOS, INT PREDICT
Polybench: FLOYD WARSHALL, HEAT 3D
Total: 21

Algorithm: SORT

X
Apps CONVECTION3DPA, DEL DOT VEC 2D,
DIFFUSION3DPA, HALOEXCHANGE FUSED,
MASS3DPA, NODAL ACCUMULATION 3D
Lcals: PLANCKIAN
Total: 8

Algorithm: SCAN
Apps: HALOEXCHANGE
Basic: INDEXLIST
Lcals: FIRST MIN
Polybench: ADI
Total: 5



Backporting RISC-V Vector assembly 9

Fig. 1. Runtime for RAJA Performance Suite kernels normalised against Allwinner D1
with GCC8.4 scalar

0

0.5

1

1.5

2

A
pp
s
LT
IM
ES

B
as
ic
IF
-Q
U
A
D

B
as
ic
IN
IT
3

B
as
ic
M
U
LA
D
D
SU
B

Lc
al
s
D
IF
F-
PR

ED
IC
T

Lc
al
s
EO

S

Po
ly
be
nc
h
FL
O
Y
D
-W
A
R
SH
A
LL

Po
ly
be
nc
h
H
EA
T
-3
D

R
u
n
ti
m
e
re
la
ti
v
e
to

D
1
G
C
C
8
.4
-s
ca
la
r

Kernels

D1 Clang15-scalar
D1 Clang15-vector-vla
D1 Clang15-vector-vls

D1 GCC8.4-vector
VF2 Clang15-scalar
VF2 GCC8.4-scalar

(a) Kernels not vectorised by GCC8.4-vector

0

0.5

1

1.5

2

Lc
al
s
FI
R
ST
-D
IF
F

Lc
al
s
FI
R
ST
-S
U
M

Lc
al
s
H
Y
D
R
O
-1
D

Lc
al
s
H
Y
D
R
O
-2
D

Lc
al
s
T
R
ID
IA
G
-E
LI
M

Po
ly
be
nc
h
JA
C
O
B
I-1
D

Po
ly
be
nc
h
JA
C
O
B
I-2
D

R
u
n
ti
m
e
re
la
ti
v
e
to

D
1
G
C
C
8
.4
-s
ca
la
r

Kernels

D1 Clang15-scalar
D1 Clang15-vector-vla
D1 Clang15-vector-vls

D1 GCC8.4-vector
VF2 Clang15-scalar
VF2 GCC8.4-scalar

(b) Kernels vectorised by GCC8.4-vector but only scalar code executed



10 J. K. L. Lee et al.

0

0.5

1

1.5

2

2.5

Po
ly
be
nc
h
2M

M

Po
ly
be
nc
h
3M

M

Po
ly
be
nc
h
AT
A
X

Po
ly
be
nc
h
FD

T
D
-2
D

Po
ly
be
nc
h
G
EM

M

Po
ly
be
nc
h
G
EM

V
ER

Po
ly
be
nc
h
G
ES
U
M
M
V

R
u
n
ti
m
e
re
la
ti
v
e
to

D
1
G
C
C
8
.4
-s
ca
la
r

Kernels

D1 Clang15-scalar
D1 Clang15-vector-vla
D1 Clang15-vector-vls

D1 GCC8.4-vector
VF2 Clang15-scalar
VF2 GCC8.4-scalar

(c) Kernels vectorised by GCC8.4-vector and vector code executed

For the 2MM, 3MM and GEMM matrix multiplication kernels whose per-
formance is reported in Figure 1c it can be seen that Clang’s vectorised perfor-
mance exactly matches that of its scalar performance. This is because, whilst
Clang was able to auto-vectorise the routines, the scalar code was executed,
whereas by contrast for these benchmarks GCC executed its vectorised code
and produces significantly faster runtimes. It can be seen therefore that whilst
the auto-vectorisation reported in Table 3 demonstrates that on the whole Clang
is able to vectorise more kernels than GCC, there are some exceptions to this
rule.

Across most of the benchmark kernels Clang VLA (vector length agnostic)
and VLS (vector length specific) settings provide very similar performance, ex-
cept for specific kernels such as ATAX, FDTD 2D and GEMVER. This demon-
strates that it is important to experiment with these different compiler settings
as it can make a difference in some situations to the achieved performance.

When comparing the performance of non-vectorised, scalar, code execution,
it can be seen that for almost all kernels Clang 15 and GCC8.4 provide very simi-
lar performance, often within around 10% of each other. However several kernels
are an exception to this rule, for instance GCC is 52% faster for the EOS kernel,



Backporting RISC-V Vector assembly 11

29% faster for FIRST DIFF and 15% faster for FIRST SUM. When comparing
scalar performance on the Allwinner D1 against a single core of the U74 which
is in the VisionFive V2, it can be observed that the V2 is significantly faster for
high arithmetic intensity kernels, such as GEMM, compared to the Allwinner
D1 running either vector or scalar code. However, for most kernels the vectorised
kernels running on the Allwinner D1 is comparable with, if not faster than, the
U74. This is especially impressive considering that the Allwinner D1 is consider-
ably cheaper than the VisionFive V2, although it should be highlighted that we
are comparing single-core performance here and unlike the D1 the U74 contains
four compute cores so would likely deliver greater performance in practice.

A more general observation across our benchmark kernels was that we found
when it comes to the compiler determining whether to generate vectorised or
scalar instructions for execution depends heavily on loop ranges, which both
compilers tend to be very sensitive to. For example, for some kernels the vec-
torised code is run only when the loop range is divisible by 8, and this demon-
strates that it is therefore crucial that users manually check whether vectorised
code is being emitted by the compiler, and executed, after compilation in order
to obtain best performance.

5 Conclusions, recommendations and future work

In this paper we have explored compiler toolchains that enable vectorisation on
mass-produced, commodity available RISC-V physical hardware. Whilst there is
no main branch version of GCC that supports RISC-V vectorisation, a bespoke
version by T-Head based on GCC 8.4 does support v0.7.1. However, as illustrated
in Table 3, it is less capable of automatic vectorisation compared to Clang 15.
The challenge with Clang is that this only supports RVV v1.0 and-so we have
introduced our tool, rvv-rollback, to backport the generated v1.0 assembly to
v0.7.1

We have demonstrated that our tool runs across a wide set of benchmark
codes, and the gathered performance numbers have illustrated that, in the main,
vectorisation via Clang 15 is beneficial compared to T-Head’s GCC 8.4 although
there are always exceptions to this rule. Furthermore, we have demonstrated
that whilst for most of our benchmark kernels the performance difference when
compiling using VLA or VLS via Clang is narrow, for some codes it can make a
more significant difference and-so it is important for programmers to experiment
with these compiler flags.

One of the surprising aspects for us was that whilst the compiler will report
that it has auto-vectorised code, it can sometimes revert to executing scalar-only
code without the programmer knowing. Therefore it is crucial that programmers
are aware of this and manually check what has been generated. One of our
recommendations is that Clang should be clearer on this and also improve range
checking to reduce the sensitivity around whether it picks one path or the other.
Furthermore, effort should be invested into investigating why Clang is currently
unable to execute auto-vectorised matrix multiplication operations.



12 J. K. L. Lee et al.

In terms of future work, at the time of writing Clang 16 was released just a
couple of days ago. Whilst we do not anticipate that this will have any impact on
our rvv-rollback tool, it will be interesting to explore whether the performance
insights reported in Section 4 have changed at all due to this latest version.

6 Acknowledgement

The authors would like to thank the ExCALIBUR H&ES RISC-V testbed for
access to compute resource and for funding this work.

References

1. ExCALIBUR H&ES RISC-V testbed, http://riscv.epcc.ed.ac.uk/
2. RISCVtestbed/rvv-rollback: Translate RISC-V Vector Assembly from v1.0 to v0.7,

https://github.com/RISCVtestbed/rvv-rollback

3. T-Head C906, https://www.t-head.cn/product/c906?lang=en
4. RISC-V ”V” Vector Extension 0.7.1 (2019), https://github.com/riscv/

riscv-v-spec/releases/tag/0.7.1

5. Vehave User Guide · Wiki · EPI-public / RISC-V Vector Environ-
ment · GitLab (Nov 2021), https://repo.hca.bsc.es/gitlab/epi-public/

risc-v-vector-simulation-environment/-/wikis/Vehave-User-Guide

6. Raja performance suite (Feb 2023), https://github.com/LLNL/RAJAPerf
7. Adit, N., Sampson, A.: Performance Left on the Table: An Evaluation of

Compiler Autovectorization for RISC-V. IEEE Micro 42(5), 41–48 (Sep 2022).
https://doi.org/10.1109/MM.2022.3184867, conference Name: IEEE Micro

8. GNU, International, R.V.: Risc-v gnu compiler toolchain (rvv-next branch), https:
//github.com/riscv-collab/riscv-gnu-toolchain/tree/rvv-next

9. International, R.V.: Risc-v ”v” extension 1.0, https://github.com/riscv/

riscv-v-spec/releases/download/v1.0/riscv-v-spec-1.0.pdf

10. Lee, J.K.L., Jamieson, M., Brown, N.: Test-driving RISC-V Vector hardware for
HPC. Proccedings for the First International workshop on RISC-V for HPC (Mar
2023), under peer review

11. Perotti, M., Cavalcante, M., Wistoff, N., Andri, R., Cavigelli, L., Benini, L.: A
“New Ara” for Vector Computing: An Open Source Highly Efficient RISC-V V
1.0 Vector Processor Design. In: 2022 IEEE 33rd International Conference on
Application-specific Systems, Architectures and Processors (ASAP). pp. 43–51 (Jul
2022). https://doi.org/10.1109/ASAP54787.2022.00017, iSSN: 2160-052X

http://riscv.epcc.ed.ac.uk/
https://github.com/RISCVtestbed/rvv-rollback
https://www.t-head.cn/product/c906?lang=en
https://github.com/riscv/riscv-v-spec/releases/tag/0.7.1
https://github.com/riscv/riscv-v-spec/releases/tag/0.7.1
https://repo.hca.bsc.es/gitlab/epi-public/risc-v-vector-simulation-environment/-/wikis/Vehave-User-Guide
https://repo.hca.bsc.es/gitlab/epi-public/risc-v-vector-simulation-environment/-/wikis/Vehave-User-Guide
https://github.com/LLNL/RAJAPerf
https://doi.org/10.1109/MM.2022.3184867
https://github.com/riscv-collab/riscv-gnu-toolchain/tree/rvv-next
https://github.com/riscv-collab/riscv-gnu-toolchain/tree/rvv-next
https://github.com/riscv/riscv-v-spec/releases/download/v1.0/riscv-v-spec-1.0.pdf
https://github.com/riscv/riscv-v-spec/releases/download/v1.0/riscv-v-spec-1.0.pdf
https://doi.org/10.1109/ASAP54787.2022.00017

	Backporting RISC-V Vector assembly

