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Abstract. Climate crisis and correlating prolonged, more intense peri-
ods of drought threaten tree health in cities and forests. In consequence,
arborists and foresters suffer from increasing workloads and, in the best
case, a consistent but often declining workforce. To optimise workflows
and increase productivity, we propose a novel open-source end-to-end
approach that generates helpful information and improves task planning
of those who care for trees in and around cities. Our approach is based on
RGB and multispectral UAV data, which is used to create tree inventories
of city parks and forests and to deduce tree vitality assessments through
statistical indices and Deep Learning. Due to EU restrictions regarding
flying drones in urban areas, we will also use multispectral satellite data
and fifteen soil moisture sensors to extend our tree vitality-related basis
of data. Furthermore, Bamberg already has a georeferenced tree cadas-
tre of around 15,000 solitary trees in the city area, which is also used to
generate helpful information. All mentioned data is then joined and visu-
alised in an interactive web application allowing arborists and foresters
to generate individual and flexible evaluations, thereby improving daily
task planning.

Keywords: Computer vision · UAV data · Human centred AI · Sustain-
able development · Smart infrastructure

1 Introduction

According to the IPCC report from 2022 [39], the climate crisis is an enormous
challenge and already affects the lives of billions of people. One of the many
negative impacts of the climate crisis is its threat to whole ecosystems and,
therefore, the health of trees and forests by rising temperatures and consecutive
⋆ Special thanks to our cooperation partner Smart City Bamberg. The project BaKIM

is supported by Kommunal?Digital! funding of the Bavarian Ministry for Digital
Affairs. Project funding period: 01.01.2022 - 31.03.2024.
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Tree Inventory:
• Detectron (Mask RCNN)
• U-Net
• DeepLabv3+
• Unsupervised

Classification

Vitality Assessment:
• Normalized Difference

Vegetation Index (NDVI)
• Normalised Difference 

Red Edge index (NDRE)

UAVs

Satellite

Soil Moisture Sensor Tree Cadastre
(georeferenced solitary trees)

Fig. 1. Overview of the BaKIM pipeline with images from [1,2, 10,38]
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drought events, as experienced from 2018 to 2020 and in 2022 in Germany [5,
14, 27]. The consequence is an increasing vulnerability to a variety of pests and
increasing tree mortality rates, leading to an increasing frequency and scope of
measures arborists and foresters have to take [40]. At least in Bamberg, but
presumably in most German cities, this has to be done without an increase
in staff in the teams of arborists and foresters because the funding for said
departments is seldom increased. On top, they suffer from a shortage of skilled
workers.

To tackle these problems, in 2021, a cooperation of Smart City Bamberg,
Bamberg’s lead arborist, Bamberg’s lead forester and the Chair of Cognitive
Systems at the University of Bamberg applied for project funding to support
Bamberg’s arborists and foresters with Deep Learning approaches based on UAV-
data (Unmanned Aerial Vehicle). The result is the project BaKIM, which aims
to generate helpful and flexible information from remote sensing data gathered
by UAVs and satellites, as well as data from soil moisture sensors. To generate
information from this data, an ensemble of Deep Learning, Machine Learning
and statistical methods is used. All information is then visualised in an inter-
active web application which offers basic Geographic Information System (GIS)
functionalities and extends these by easy and fast filtering and plotting. The
complete pipeline of BaKIM is illustrated in Fig. 1.

In addition to these goals, it is of great importance for our project to develop
a human-centred AI approach as reflected in [48]. BaKIM will not, and does
not try to be an autonomous AI approach which replaces the decision-making
of arborists and foresters. Quite the contrary, BaKIM will rely on arborists
and foresters for: (i) verifying its AI-based decision suggestions, (ii) improving
BaKIM, (iii) learning from BaKIM, and (iv) taking responsibility for the final
decision as well as for compliance with legislation and ethical standards [43,48].

2 Data Acquisition and Technology

The first and most important data source for BaKIM are two drones which pro-
duce high-resolution image data. As EU-regulation [12] forbids the use of UAVs
heavier than 250g over houses and uninvolved people, we decided to additionally
use satellite imagery for the health assessment of solitary city trees. To control
the assessment of drought stress in trees, 15 soil moisture sensors were installed
in the city. In the following, the different data acquisition tools are described.

2.1 Areas of Interest

In BaKIM, we defined several Areas of Interest (AOIs), which we monitor through-
out the project and partially sample ground truth labels on a single tree basis
to train our different Convolutional Neural Nets (CNNs). See Fig. 2 to get an
overview of the size and location of the following AOIs:
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– Forest AOIs:
- Stadtwald AOI: 190ha, mostly coniferous forest
- Tretzendorf AOI 1: 60ha, mixed forest
- Tretzendorf AOI 2: 45ha, mixed forest

– Bamberg Hain AOI: 50ha, park with deciduous forest-like areas
– Bamberg graveyard AOI: 15ha solitary trees
– Bamberg city AOI: 5,462ha mostly solitary trees (only satellite imagery)

Fig. 2. All AOIs in and around Bamberg (Top left to bottom right: Tretzendorf AOI 1
(blue), Tretzendorf AOI 2 (green), Bamberg Graveyard AOI (red), Bamberg Hain AOI
(orange), Bamberg Stadtwald AOI (yellow))

2.2 UAV-Data

Due to the mentioned EU-regulation, we use two different UAVs: One fixed-wing
UAV with a take-off weight of up to 5,500g, which we use for forest areas outside
of the city and one smaller quadrocopter with a take-off weight of up to 1,050g
which we use for the Hain. Both UAVs are shown in Fig. 3.

Trinity F90+: The Trinity F90+ is a fixed-wing UAV with Vertical Take-Off
and Landing (VTOL) capability and a flight time of about 90 minutes. With its
5,500g take-off weight and 239cm wingspan, it is a C3 UAV and must be flown in
the open A3 category, meaning it must not fly near people and must fly outside
urban areas (150 m distance). However, it can carry interchangeable payloads
with heavier, more advanced sensors and cover larger areas than smaller UAVs.
Therefore, we use it for the three more remote forest AOIs outside of Bamberg.

The first sensor, used for RGB data collection, is a Sony RX1-RII camera
with 42.4 MP and a theoretical Ground Sampling Distance (GSD) of 1.55cm
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(a) Trinity F90+ [38] (b) DJI M3M [10]

Fig. 3. Both UAVs used for data acquisition in the BaKIM project

when flying 120m Above Ground Level (AGL). Our experience shows we get a
GSD of about 1.6 - 1.9cm in the finished orthomosaic. The second sensor, used
for multispectral (MS) data collection, is a MicaSense Altum-PT with 3.2MP
per MS band and a thermal infrared sensor with a resolution of 320 x 256 pixels.
The resulting GSD is 5.28cm for the MS bands and 33.5cm for the thermal band
when flying 120m AGL. Due to supply difficulties, our MicaSense Altum-PT
sensor arrived later than expected and was not tested yet.

DJI Mavic 3 Multispectral: To cover RGB and MS data acquisition of the
Hain, we use the smaller and lighter quadrocopter DJI Mavic 3 Multispectral
(DJI M3M), released in Q1 of 2023. Compared to the Trinity F90+, it does not
support swappable payloads and has a much shorter flight time of 43 minutes
at max. In return, with its maximum take-off weight of 1,050g and a diagonal
length of 38cm, it is a C2 UAV and can be flown in the A2 category where a
flight in urban areas and near uninvolved people is possible. The built-in sensor
consists of a 20MP RGB sensor with 2.95cm GSD at 120m AGL and a 5MP
multispectral sensor with 5.07cm GSD at 120m AGL.

FORTRESS Dataset: To start the training of the different Deep Learning
approaches described in Sect. 3 as early as possible, we used the FORTRESS
dataset [44]. It consists of 47ha of very-high-resolution orthomosaics with a GSD
of up to 0.6cm and covers mostly coniferous forest in the southwest of Germany.
In total, 16 different classes are labelled in FORTRESS. For a more detailed
description of the dataset, see the paper of Schiefer et al. [45].
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2.3 Orthomosaic Generation

To get image data where every pixel is georeferenced and the perspective is cor-
rected to a nadir view, the single UAV images need to be processed. For this,
different software is available, and we tested two products: WebODM 3 which is
open source and free software as well as Agisoft Metashape4 which is commercial
software. After testing and comparing WebODM and Metashape, we found the
orthomosaics produced with Metashape to be of slightly higher quality, show-
ing fewer artefacts. This was especially the case for our images taken with the
Trinity F90+, as they lack the very high front overlap necessary for orthomosaic
generation. You can find examples of Hain orthomosaics in Figs. 1 and 4.

Image Overlap: Image overlap is the most crucial parameter for orthomo-
saic generation. Especially when it comes to forests with their small structures
(leaves, branches) and the abrupt height changes of the surface (trees, ground).
Therefore, a front overlap of 90-95% and a sidelap of 80% is recommended. While
the DJI M3M can change its flight speed, the Trinity F90+ must keep an air-
speed of 17m/s to stay airborne. As the maximum shutter speed of the sensors
is limited, this results in a maximum front overlap of about 70% for the Sony
RX1-RII payload of the Trinity F90+. We partially compensate for this through
a sidelap of 90%, but the resulting orthomosaics of the Trinity F90+ still show
artefacts in certain points of the forest areas.

2.4 Ground Truth Labelling

Especially for the individual tree crown delineation (ITCD) described in Sect. 3.1,
but also for tree species prediction, we need ground truth data on the tree in-
stance level. Therefore, we commissioned a forester to delineate 108ha of tree
crowns in the AOIs Stadtwald, Tretzendorf and Hain. Additionally to the delin-
eation, tree species and a rough vitality assessment is labelled.

2.5 Other Data

Satellite Data: As already mentioned, EU-law heavily restricts flying UAVs in
urban areas. Therefore, we will use multispectral satellite imagery taken by the
Airbus pléiades neo satellite with a GSD of 1.2m. This imagery is tasked for July
2023 and September 2023 and will be used for additional tree health assessment.

Soil Moisture Sensors: To gather ground truth data on drought stress, we
decided to use soil moisture sensors provided by Agvolution. They track the soil’s
water content in three different depths and send the data via mioty standard to
agvolution’s server, where they are then processed and made accessible via an
API.
3 https://github.com/OpenDroneMap/WebODM
4 https://www.agisoft.com/

https://github.com/OpenDroneMap/WebODM
https://www.agisoft.com/
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Tree Cadastre: Bamberg’s arborists have tracked the vitality of most of the
solitary trees in the city area for decades and visit every tree at least once a
year. This information is stored in the tree cadastre and contains, among other
things, georeferences, tree species, tree dimension estimations, tree vitality and
site information. Unfortunately, the used software does not save a history of this
information per tree location, and no historical backups are available. Therefore,
we started to back up the current version every six months to make future time
series analysis possible. Figure 4 shows a part of the Hain orthomosaic and tree
cadastre information in the form of coloured dots.

Fig. 4. One possible visualisation of tree cadastre data with the point colour depicting
the tree species

3 Methods of Tree Inventory Generation

While solitary trees in the city of Bamberg are all georeferenced and tracked
well, this does not apply to the Hain and the forest areas surrounding Bamberg.
The latter are inventoried every 10-20 years by an estimation procedure, and
the Hain is partially inventoried because trees near paths are checked regularly.
Therefore, according to our forester and arborist, a more frequent and more
accurate park and forest inventory procedure supports task planning and allows
for a faster reaction to diseases like bark beetle infestation or weather events like
storms. To accomplish this, we decided to use high-resolution orthomosaics with
a Ground Sampling Distance (GSD) of 1.5 to 2.0 cm per pixel and different Deep
Learning and Machine Learning approaches from the Computer Vision domain,
which are described in the following sections.
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3.1 Single Tree Detection

Single tree detection is divided into two categories: Individual Tree Detection
(ITD), which is called object detection in the domain of computer vision (CV)
and individual tree crown delineation (ITCD), which is called instance segmen-
tation in the domain of CV. ITCD is considered the more challenging task, as it
additionally determines the crown boundaries of individual trees.

Historically, tree detection was accomplished with unsupervised approaches
such as local maxima (LM) [34, 37], marker-controlled watershed segmentation
(MCWS) [30], region-growing [11], edge detection [49] and template match-
ing [22,28], with LM and MCWS methods being the most commonly used [52].
The rapid development of deep learning methods, especially convolutional neural
networks (CNNs), led to much better results in CV tasks due to their ability to
extract low and high-level features. This motivated the application of deep learn-
ing methods in remote sensing applications. For example, the object detection
method Faster R-CNN [50] is used for ITD tasks, and more recently, the instance
segmentation method Mask R-CNN [3, 20, 32, 51] is used for ITCD tasks. The
difference between these approaches is that Faster R-CNN draws a bounding box
around the detected single tree. Mask R-CNN uses the Faster R-CNN structure
and extends the bounding box prediction by a branch to predict a segmentation
mask. This is advantageous because it provides more accurate information about
the actual crown area and avoids or greatly reduces distortions that may occur
in the background area of the bounding box.

Both classical and more recent deep learning methods have advantages and
disadvantages in processing time and data requirements. The most commonly
used classical methods, such as LM and MCWS [52], require a distinct height
model to perform their methods. Faster R-CNN and Mask R-CNN, on the other
hand, need RGB image data to detect trees. Another disadvantage of classi-
cal methods is that they show difficulties in detecting trees in areas where tree
crowns overlap strongly [52]. In contrast, Yu [52] has shown that LM and MCWS
are less computationally intensive than Mask R-CNN. Another advantage of
these classical methods is that they do not require manually labelled data and,
therefore, no training phase to detect trees. Faster R-CNN and Mask R-CNN
rely on ground truth data and mostly some form of retraining to perform the de-
tection task on new datasets. This makes it clear that the tree detection method
should be chosen according to the corresponding forest structure and in accor-
dance with the desired goal.

Due to the higher accuracies of DL approaches in BaKIM, a retrained tree de-
tection model based on the Mask R-CNN detectree2 implementation is used [3].
Figure 5 shows predictions for a section of the FORTRESS dataset.

3.2 Unsupervised Tree Species Classification

Many UAVs are characterised by relatively low cost and a simple structure.
Consequently, the dissemination and usage of UAVs increases, and much high-
resolution image data is captured [19,51]. This makes the demand for technolo-
gies and solutions that can quickly process this data more urgent. Most, if not
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all, current approaches that classify tree species rely heavily on a domain expert
to determine tree species for every single tree of the training data in a supervised
manner. This cumbersome human labelling process may not keep up with the
increasing demand for solutions.

The inclusion of an unsupervised method for classifying tree species is rarely
an issue in the literature. Franklin used multispectral data and pixel-based and
object-based image analysis to classify tree species in an unsupervised way [15].
Another unsupervised method proposed by Gini et al. also works pixel-based [16].
Schäfer et al. used spectroscopy data to identify tree species via clustering with-
out knowing how many trees per species occur [46]. All these unsupervised meth-
ods are based on costly spectral or LiDAR data that may not be available to
every practitioner. They are also unable to map a species to a particular detected
tree.

It is promising to use an unsupervised classification approach via clustering
to overcome the drawbacks mentioned above. The presented pipeline is inspired
by the work of [9, 18, 25] with the goal of transferring their good classification
results to the field of single tree classification. The first step in this pipeline is to
determine single tree crowns in an orthomosaic, as shown in Fig. 5. Subsequently,
small single tree crown images are extracted from the original orthomosaic. Then
the preprocessing techniques are applied to these small images. Next, the image
features are extracted from these small images. A dimensionality reduction step
follows to reduce the features to more meaningful components. Lastly, a cluster-
ing algorithm is used, which assigns a corresponding label to each tree image. In
this setup, the domain expert only needs to classify the appearing tree classes
once, which can be done quite quickly compared to determining the species of
every single tree in a particular training set.

A retrained tree detection model based on the Mask R-CNN detectree2 im-
plementation of [3] was used to detect single tree crowns at the beginning of this
pipeline. This model was retrained on a total of 4539 manually delineated tree
crowns from orthomosaics: 2262 from the FORTRESS dataset [45], 1651 from
the Bamberg Stadtwald AOI, and 626 from the Tretzendorf AOI 1.

This pipeline’s preprocessing, dimensionality reduction, and clustering steps
can be performed in several ways, as shown in Fig. 6. Therefore, an experiment
is conducted to determine and evaluate the best combination of methods. Two
different preprocessing steps were applied to the image datasets in this experi-
ment. Once Contrast Limited Adaptive Histogram Equalization (CLAHE) was
applied to the images, and once a combination of CLAHE and denoising was
applied to the images. Afterwards, the image features were extracted via a for-
ward hook using the following pretrained CNN backbones: VGG16, ResNet152,
InceptionV3, EfficientNetV2 and DenseNet201. PCA and UMAP were used for
the dimensionality reduction of the image features. The reduced feature vec-
tors were used as input for the cluster algorithms k-means++, mean shift, fuzzy
c-means, agglomerative clustering and Ordering Points to Identify the Cluster-
ing Structure (OPTICS). Some cluster algorithms such as k-means++, fuzzy
c-means (fc-means) and agglomerative clustering require setting the number of
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dataset

extracted single tree crowns

CLAHE CLAHE and Denoising

ResNet152VGG16 InceptionV3 EfficientNetV2 DenseNet201

PCA UMAP

Fuzzy c-MeansK-Means++ OPTICS Agglomerative Clustering Mean Shift

Fig. 6. Scheme representing all possible combinations of methods

clusters in advance, which is difficult. However, in this case, the number of clus-
ters was set to the number of occurring species to obtain more meaningful results.
All mentioned methods for each step result in 100 possible combinations.

Evaluating cluster results is challenging in real-world applications because
ground truth labels are often unavailable. In this case, however, ground truth
data was available, and therefore cluster algorithms could be evaluated based
on the F1-scores. The proposed experiment was performed 30 times, and then
the mean F1-scores were calculated from these 30 cumulative values for each
possible combination of methods.

Table 1. Five best method combinations from the experiment conducted on the
FORTRESS dataset

Preprocess CNN DR Clustering Species F1 weighted F1

clahe densenet pca k-means++ 4 0.82 0.79
clahe+denoising densenet pca k-means++ 4 0.79 0.75
clahe resnet umap fc-means 4 0.75 0.72
clahe resnet umap k-means++ 4 0.75 0.72
clahe resnet umap agglo 4 0.75 0.72
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Table 2. F1-scores per class for the best combination of methods, clustering the data
in four classes

Class TP FP FN F1

Picea Abies 1534 264 123 0.89
Fagus Sylvatica 589 192 89 0.81
Pinus Sylvestris 165 30 64 0.78
Abies Alba 253 70 87 0.76
Pseudotsuga Menziesii 0 0 113 0.00
Larix Decidua 0 0 30 0.00
Quercus Spec 0 0 23 0.00
deadwood 0 0 15 0.00
Fraxinus Excelsior 0 0 9 0.00
Betula Pendula 0 0 3 0.00

The results of the best-performing combination of methods were evaluated
using FORTRESS as an example. The five most frequent tree species after the
extraction of 3097 single tree crowns were Picea Abies (53.5%), Fagus Sylvatica
(21.9%), Abies Alba (11.0%), Pinus Sylvestris (7.4%) and Pseudotsuga Men-
ziesii (3.6%). Table 1 shows that the best combination is composed of CLAHE,
densenet, PCA, and k-means++. The F1-score and weighted F1-score show only
slight differences, even though only four of ten classes were clustered. Neverthe-
less, the large amount of correctly predicted samples from the majority classes
has a higher impact on the F1-score than those with a lower sample size. These
findings suggest that the proposed pipeline has problems in classifying minor-
ity classes. Table 2 shows how only four classes are assigned, which yields high
F1-scores for the majority classes, but an F1-score of 0.00 for all unassigned
classes.

This unsupervised pipeline demonstrates that tree species can be classified
by clustering based on RGB image data alone. However, the inability to detect
lower sample classes reduces the practical benefit if a practitioner wants a correct
picture of the species distribution. Moreover, it became clear that it is difficult
to clearly distinguish the tree crowns of different species because of their similar
structure. The results also show that the preprocessing steps are not sufficiently
capable of highlighting the particular characteristics of the tree species and that
the separation of the clusters needs to be improved in the future.

3.3 Semantic Segmentation of Tree Species

Another way to classify tree species in high-resolution UAV imagery is semantic
segmentation. It resembles an ITCD approach that does not distinguish between
individual trees but uses less computational resources than, for example, the
Mask R-CNN based detectree2 [3, 45].

In [45], Schiefer et al. explored the viability of using convolutional neural
networks (CNNs) for classifying tree species from drone images. They used an
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adjusted version of U-Net [41], which was originally designed for the segmenta-
tion of biomedical images but has found its way into other areas like semantic
segmentation of tree species [26]. It is made up of two symmetric paths, the
encoder and the decoder. The encoder downsamples the input image to cap-
ture contextual information, while the decoder upsamples the encoded feature
maps to increase the spatial resolution. One key feature of U-Net is that the de-
coder also receives skip connections from the encoder. This way, the information
learned by the downsampling layers in the encoder is used to reconstruct the
input image at its original spatial resolution while preserving fine details and
features.

The FORTRESS dataset [44] includes 16 classes. After analysing the share
of pixels each class has in the entire dataset, we noticed that the smallest seven
classes (other, Aesculus, Fallopia, Ilex, Fraxinus Excelsior, Larix Decidua and
Betula Pendula) combined only makeup 1.3% of the total area covered, while the
largest class alone (Picea Abies) makes up 38.3%. This substantial imbalance in
the dataset was already mentioned in [45], where they tried to mitigate this by
using weighted cross-entropy loss. On top of a weighted loss function, we also
decided to combine the smallest seven classes into just one class called other to
adapt to this extreme imbalance in the dataset.

The primary metric we used to evaluate the performance of the models is
Intersection over Union (IoU). It measures the accuracy of a prediction as a
value between 0 and 1, where 0 means no overlap between the prediction and
the ground truth and 1 being an exact match. The overall IoU is calculated as
the average of the IoU of each class, weighted by their share in the dataset. The
overall IoU reaches around 0.78 after 100 epochs of training. Despite achieving
a good overall result, examining the per-class IoU values shows a significant
difference in the model’s performance across classes that are less represented
in the dataset than those that are well-represented. Table 3 shows that classes
Picea Abies, Fagus Sylvatica and Abies Alba make up 75.5% of the dataset and
have IoU Test scores of 0.75, 0.73 and 0.76 respectively. While classes Quercus
Spec. and Acer Pseudoplatanus make up 1.9% and have much lower IoU Test
scores of 0.11 and 0.39. However, these low representations of some classes will
be reduced with the labelled data from the Bamberg AOIs.

As part of future work, we aim to incorporate a post-processing step that was
employed in the accuracy assessment of [45]. This involves generating multiple
predictions for each pixel using a moving window technique and assigning the
final prediction through a majority vote.

We are also currently working on using another CNN for the same task,
Deeplabv3+ [8], which is a promising CNN architecture for this task as shown
by [13, 31, 35]. Deeplabv3+ is based on Deeplabv3 [7], which uses atrous convo-
lutions [21] and atrous spatial pyramid pooling (ASPP) [6]. Atrous convolutions
are used to retain the same spatial resolution while increasing the feature maps
without increasing the parameters or amount of computation. ASPP aggregates
features at multiple scales and captures context information from a larger image
region.
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Table 3. Per class comparison of area-related share and IoU of the validation-set and
test-set

class area-related share IoU Validation IoU Test

Picea Abies 38.3% 0.84 0.75
Fagus Sylvatica 26.5% 0.82 0.73
Forest floor 12.6% 0.65 0.54
Abies Alba 10.7% 0.76 0.61
Pinus Sylvestris 4.2% 0.78 0.71
Pseudotsuga Menziesii 3.5% 0.77 0.81
Acer Pseudoplatanus 1.1% 0.46 0.39
Quercus spec. 0.8% 0.32 0.11
Deadwood 0.7% 0.30 0.18
other 1.3% 0.27 0.32

weighted average 0.78 0.68

Deeplabv3+ combines Deeplabv3 with an Encoder-Decoder structure like U-
Net. It uses a slightly modified version of Deeplabv3 as the encoder. Instead
of directly upsampling the encoder output to the original image resolution, the
decoder combines them with features from early convolutional layers, analogous
to the skip connections used in U-Net. While Deeplabv3+ will most likely out-
perform U-Net, it also needs more computational resources.

4 Tree Vitality Assessment

Apart from detecting single trees and their species, assessing tree vitality on an
instance level is of great importance to arborists and foresters. To accomplish
this, we opted for two different kinds of approaches: First, statistical evaluation
of multispectral sensor imagery by building indices and second, deep learning
methods applied to very-high-resolution imagery to detect dead branches or
secondary pests like mistletoes.

4.1 Statistical Indices Derived from Multispectral Data

The usage of multispectral imagery for tree vitality assessment dates back to the
1970s and has been used since [23, 24, 29, 36, 42, 47]. In BaKIM, we plan to use
at least the following two indices:

NDVI: The Normalised Difference Vegetation Index was introduced back in
1974 and is one the most used indices to classify if a pixel shows live green
vegetation [42]. It is based on the near-infrared (NIR) band as well as the red
band and is calculated as follows:

NDVI =
(NIR− Red)

(NIR + Red)
(1)
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As all three sensors used in BaKIM capture near-infrared and red bands, we can
calculate the NDVI for all AOIs.

NDRE: The Normalised Difference Red Edge index takes the red edge (RE)
band as well as the red band into account and represents the chlorophyll content
in leaves [4]. In their review of commonly used remote sensing technologies to
measure plant water stress, Govender et al. found red edge to be one of the most
important bands when investing plant stress [17]. The NDRE index is calculated
as follows:

NDRE =
(RE− Red)

(RE + Red)
(2)

As all three sensors used in BaKIM capture red edge and red bands, we can
calculate the NDRE for all AOIs.

Additionally to the NDVI and NDRE, the thermal band of the Micasense
Altum-PT sensor theoretically allows us to use further indices that reflect water
stress in plants. As the calculation for such indices is often based on additional
ground measurements, we still have to see in how far we can implement them in
BaKIM [17].

4.2 Deep Learning for Tree Vitality Assessment

A second option for tree vitality assessment from very-high-resolution UAV data
is Deep Learning. On the one hand, mistletoe (posing a secondary parasite) can
easily be seen in UAV data, and on the other, dead leaves and branches in tree
crowns are also visible in UAV data. Therefore, CNNs, as introduced before,
can be used to classify mistletoe or the vitality of tree crowns [33]. The only
problem is, again, the need for a high amount of training data. Together with an
apprentice of the forestry department, we plan to gather ground truth data on
mistletoe visible in our UAV data and train an object detection CNN to classify
mistletoe. The rough estimation of tree vitality labelled by our commissioned
forester, as described in Sect. 2.4, will be used for exploratory tests using image
classification CNNs on images of single delineated tree crowns.

5 Interactive Web Application to Visualise Generated
Information

Everything described so far is useless if Bamberg’s arborists and foresters are not
enabled to access the information we generated. To create this access, we chose
dash5 to create an interactive web application which visualises all information
gathered and generated in BaKIM. The main goal of this web application is to
be very flexible so that the arborists and foresters can tailor the underlying data
to their needs. This is accomplished by individual filter options and different
5 https://dash.plotly.com/

https://dash.plotly.com/
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views and plots. For the storage and filtering of the data geopandas6 is used,
for plotting plotly7 is used, and to visualise the orthomosaics a mbtileserver8

is used. We are currently developing the web application prototype with basic
functionalities.

6 Conclusion and Outlook

So far, BaKIM reached important milestones on its way to become a helpful
tool based on human-centred AI. The feedback of Bamberg’s lead arborist and
forester shows that the concept and solutions we are developing promise to be
helpful for their daily task planning. Furthermore, the creation of a database of
UAV data and predictions, as well as the beginning of tracking the changes made
to the tree cadastre, will make time series analysis possible in the future. This
will be especially important when it comes to adapting to the climate crisis.

Another benefit of BaKIM is that the infrastructure being built in the project
can have multiple uses. For example, the soil moisture sensors installed in Bam-
berg can also give the arborists live information on the city trees’ water deficit. A
modified view in the web application could be used to inform Bamberg’s citizens
about the trees in the city. On top of this, community services like tree water-
ing patronages or an interface to report branches that threaten to fall might be
possible in the near future due to BaKIM.

While our tree inventory approaches, with accuracies of about 80%, are not
perfect yet, we already plan several changes and improvements which should
yield significantly higher accuracies. Nevertheless, even with higher accuracies,
BaKIM will by no means be a substitution for the expertise and decision-making
competency of the arborists and foresters. Much rather, the higher frequency and
detail of information enables them to improve their work and, thereby, the health
of trees in and around Bamberg.
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