<]
TUDelft

Delft University of Technology

A General-Purpose Protocol for Multi-agent Based Explanations

Ciatto, Giovanni; Magnini, Matteo; Buzcu, Berk; Aydogan, Reyhan; Omicini, Andrea

DOI
10.1007/978-3-031-40878-6_3

Publication date
2023

Document Version
Final published version

Published in
Explainable and Transparent Al and Multi-Agent Systems - 5th International Workshop, EXTRAAMAS 2023,
Revised Selected Papers

Citation (APA)

Ciatto, G., Magnini, M., Buzcu, B., Aydogan, R., & Omicini, A. (2023). A General-Purpose Protocol for Multi-
agent Based Explanations. In D. Calvaresi, A. Najjar, A. Omicini, R. Carli, G. Ciatto, R. Aydogan, Y. Mualla,
& K. Framling (Eds.), Explainable and Transparent Al and Multi-Agent Systems - 5th International
Workshop, EXTRAAMAS 2023, Revised Selected Papers (pp. 38-58). (Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 14127
LNAI). Springer. https://doi.org/10.1007/978-3-031-40878-6_3

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1007/978-3-031-40878-6_3
https://doi.org/10.1007/978-3-031-40878-6_3

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!’ - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

l‘)

Check for
updates

A General-Purpose Protocol
for Multi-agent Based Explanations

&)@, Matteo Magnini'®, Berk Buzcu?®,
1

Giovanni Ciatto!
Reyhan Aydogan?3@®, and Andrea Omicini

! Department of Computer Science and Engineering (DISI), Alma Mater Studiorum
— Universita di Bologna, via dell’Universita 50, 47522 Cesena, FC, Italy
{giovanni.ciatto,matteo.magnini,andrea.omicini}@unibo.it
2 Department of Computer Science, Ozyegin University, Nisantepe Mah. Orman Sok.
No: 34-36 Alemdag, Cekmekdy, 34794 Istanbul, Turkey
berk.buzcu@ozu.edu.tr
3 Interactive Intelligence, Delft University of Technology, Mekelweg 4, 2628 CD
Delft, The Netherlands
reyhan.aydogan@ozyegin.edu.tr

Abstract. Building on prior works on explanation negotiation proto-
cols, this paper proposes a general-purpose protocol for multi-agent sys-
tems where recommender agents may need to provide explanations for
their recommendations. The protocol specifies the roles and responsibili-
ties of the explainee and the explainer agent and the types of information
that should be exchanged between them to ensure a clear and effective
explanation. However, it does not prescribe any particular sort of recom-
mendation or explanation, hence remaining agnostic w.r.t. such notions.
Novelty lays in the extended support for both ordinary and contrastive
explanations, as well as for the situation where no explanation is needed
as none is requested by the explainee.

Accordingly, we formally present and analyse the protocol, motivating
its design and discussing its generality. We also discuss the reification of
the protocol into a re-usable software library, namely PyXMas, which is
meant to support developers willing to build explainable MAS leveraging
our protocol. Finally, we discuss how custom notions of recommendation
and explanation can be easily plugged into PYXMas.

Keywords: XAI - recommender systems * multi-agent systems -
explanation protocols - SPADE + PyXMas

1 Introduction

Explainable AT (XAI) is an area of research aimed at developing AI systems
that can provide understandable explanations of their decisions or behaviours
to humans [11]. The need for XAT arises from the fact that many modern Al
systems, particularly those based on deep learning and other forms of machine
learning, are often seen as “black boxes” that are difficult to interpret or explain

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Calvaresi et al. (Eds.): EXTRAAMAS 2023, LNAT 14127, pp. 38-58, 2023.
https://doi.org/10.1007,/978-3-031-40878-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40878-6_3&domain=pdf
http://orcid.org/0000-0002-1841-8996
http://orcid.org/0000-0001-9990-420X
http://orcid.org/0000-0003-1320-8006
http://orcid.org/0000-0002-5260-9999
http://orcid.org/0000-0002-6655-3869
https://doi.org/10.1007/978-3-031-40878-6_3

A General-Purpose Protocol for Multi-agent Based Explanations 39

[13]. This lack of transparency and interpretability can create significant chal-
lenges, particularly in applications such as healthcare, finance, and criminal jus-
tice, where decisions can have profound consequences for human lives [4].

The current focus of XAI research is on developing techniques for “opening
up” these black boxes and providing insights about how an intelligent system
reached a particular decision or prediction [10]. This involves developing methods
for visualising the internal workings of the system, such as feature importance
scores, attention maps, or decision trees. In all such cases, the goal is to support
the Al expert willing to figure out how the intelligent system works, rather than
the non-expert user who wants to understand why the system is behaving in a
particular way. Furthermore, and more importantly, all such methods are based
on the assumption that software tools should aid humans’ interpretation of the
system. However, the expectations of the XAI community go beyond merely
opening up black boxes. Ideally, XAI systems should be able to automatically
provide explanations that surpass mere descriptions of how a system works [7].
Instead, they should offer insights into why the system is — or is not — behaving
in a particular way, possibly, by autonomously interacting with the explainee.

To achieve this goal, XAl researchers are increasingly focusing on the automa-
tion and interactivity of the explanation process [8]. This involves developing Al
systems that can generate explanations on the fly and adapt their explanations
to the needs and knowledge level of the explainee [5]. Along this line, multi-agent
systems (MAS) are likely the most adequate metaphor for intelligent explainable
systems. There, interaction and autonomy are first-class citizens. Hence, explana-
tion can be smoothly modelled as a multi-agent interaction, where the explainee
and the explainer agent (either a human or a software agent [18]) interact to
achieve a common goal, namely, providing a clear and effective explanation.

Accordingly, in this paper we focus on the general problem enabling the inter-
action between explainee and explainer agents. To address this problem, this
paper proposes a general-purpose protocol for multi-agent based recommenda-
tion and explanations. The protocol specifies the roles and responsibilities of the
explainee and the explainer agent and the types of information that should be
exchanged between them to ensure a clear and effective explanation. Notably,
our protocol builds on top of prior attempts to model explanations as multi-
agent interactions, such as the work by [3]. The key features of our proposal
are the (i) the separation of recommendations from explanations, and (i) the
support for contrastive explanations.

As a side contribution, the paper also describes the design of a Spade-based
Python library implementing the proposed protocol—namely, PYXMASs. It sup-
ports the plugging of different sorts of explanation strategies, and representa-
tions. This library can be used as a starting point for building intelligent explain-
able systems where both recommendation and explanation behaviours are del-
egated to individual agents. Overall, this paper represents an important step
towards developing XAI systems that can provide automatic and interactive
explanations.

40 G. Ciatto et al.

2 Background and Related Works

This section briefly overviews the literature on recommender systems, with an
emphasis on food recommender system and interactive/explainable recommen-
dations.

2.1 Interactive Recommendation Systems

In the past, interactive recommender systems have received significant attention
from the recommender systems researchers due to their ability to provide per-
sonalised recommendations to users dynamically based on their feedback and
interactions [12]. The key point behind interactivity is getting feedback from
the user during the recommendation session for the next recommendation. The
authors of [6], for instance, follow a one-shot recommendation where a few ques-
tions learned offline from past observations (i.e., from previous sessions) are asked
prior to the recommendation. Answers to these questions let the recommender
system personalise and improve future recommendations.

Building interactivity, researchers has also started to incorporate explainabil-
ity into recommender systems [3,21] in order to increase the transparency of a
recommender system. They do so through a repeated recommendation session
where the system also provides explanations (other than recommendations), and
it gets feedback given the positive effect observed in more transparent recom-
mendations [17]. For instance, in [15], the authors implement visual explanations
to users for music recommendation using grouped bar charts in a live compari-
son of the user’s specified preferences for six categories and the song’s matching
percentage of that category. Similarly, the authors of [20] propose a recommen-
dation system mimicking a human salesman: the system applies conversational
explanations to convince users to buy more fitting alternatives.

2.2 Prior Work on Explanation Protocols

This paper proposes an extension of the protocol introduced by [3], which is
tailored on food recommendations and explanations. There, the user starts the
interaction by providing their constraints, which include ingredients that they
are allergic to (such as milk or peanuts), preferred or disliked ingredients (such
as certain meats or vegetables), and the desired cuisine type (like Middle East-
ern or Mexican). The agent responds by suggesting a recipe and providing an
explanation. The user then can accept the recommendation, decline it, or pro-
vide feedback on either the recipe, the explanation, or both at once. Accordingly,
the agent may generate a new recipe or provide further explanation, or both at
once. This interaction continues in a turn-taking fashion until the user accepts,
leaves the session early, or reaches a time limit. Figure1 illustrates how agents
interact in line with this protocol.

Summarising, the key contribution of [3] is a framework for creating a
nutrition-related personalised recommender system that simultaneously pro-
duces recommendations and explanations. On the one hand, presenting recom-
mendations and explanations altogether establishes a transparent interaction

A General-Purpose Protocol for Multi-agent Based Explanations 41

I Request (C) H
@ H Send (R, €) ;

>

Accept (R, €)

H __ Critique € : \

Critique R

| Critque R& €

Reject R
Send (R, €'
o L ®.€) R

E E Repeat until Deadline

E P Accept R’

i

i

v \%

Fig. 1. FIPA representation of the negotiation protocol presented in [3]

with the user and may lead the user to accept such recommendations. On the
other hand, unrequested explanations could be perceived as redundant and cre-
ate an additional cognitive load on the user. The latter point has been studied,
for instance, by Mualla et al. in [16]. There, parsimony has been outlined as one
of the key features allowing successful human-agent interaction. In particular,
parsimonious explanation are defined as the least complex that describes the
situation adequately.

Accordingly, this work aims to revise the design to generate explanations
based on users’ requests, letting the user decide when to receive an explanation
rather than providing a one-for-all solution. Furthermore, our revised protocol
supports “zooming” explanations, where further explanatory details are only pre-
sented if and when the explainee is asking for them. In this way, the protocol
lets users dynamically decide what degree of parsimony is fine for them

2.3 SPADE: Multi-agent Programming in Python

SPADE! is an open-source multi-agent system platform developed in Python. It
provides a programming library for developing and simulating intelligent agents
in various environments. The library is designed to be highly modular and exten-
sible, allowing developers to easily create agents that can interact with each other
and their environment.

! https://spade-mas.readthedocs.io.

https://spade-mas.readthedocs.io

42 G. Ciatto et al.

At the modelling level, SPADE design and architecture are very close to the
ones of JADE [2]. Accordingly, SPADE systems are distributed systems composed
by agents which may or may not lay on the same network node. Agents’ activities
are governed by a set of behaviours, which are executed concurrently by the
agent. Both agents and behaviours are implemented as abstract Python classes,
which developers may extend to create their custom agents and behaviours.

Notable differences among SPADE and JADE mostly lay at the technological
level. While JADE is a Java-based platform, SPADE is implemented in Python.
This allows SPADE to be easily integrated with other Python libraries, there
including the many ML and Al framework which are nowadays available for the
Python platform. Furthermore, SPADE assumes agent interactions are mediated
by an XMPP service, which is a standard protocol for instant messaging. This
makes SPADE’s agent communication facilities quite robust, interoperable, and
scalable—as opposed to other agent platforms relying on proprietary or ad-hoc
protocols. It also makes it easier to realise blended applications where agents
interact with humans, other than with software agents.

Along this line, the SPADE framework comes with a range of features for
developing intelligent agents, including communication protocols, message pass-
ing, and event handling. Notably, it supports the implementation of interaction
protocols via finite-state machine behaviours—similarly to what JADE does.

Overall, the Spade library provides a powerful and flexible platform for devel-
oping intelligent agents, making it a popular choice for researchers and developers
working in the field of multi-agent systems.

3 Explanation-Based Recommendation Protocol

The word “explanation” derives from the Latin word “explicare”, which means
“to unfold”. There, the idea is that an explanation is a process of unfolding the
meaning of a concept. Such a process is typically interactive, as it involves the
interaction between some explainee and some explainer. In this sense, explana-
tions is an inherently social protocol.

As far as interactions among human beings are concerned, the protocol is typ-
ically informal and unstructured. However, it typically involves an explainee, ask-
ing for help in understanding a given matter to some — allegedly, more knowledge-
able — explainer. Explainers will then try their best to provide clear and effective
explanations, possibly by trial-and-error, exploiting different explanation strate-
gies or levels of detail. As interaction proceeds, explainers would also try to adapt
their explanations to the needs and knowledge level of the explainee. Further-
more, explanations are commonly provided upon request, possibly in response
to some prior information provided by either the explainee or the explainer, or
someone else.

Modern intelligent systems are supposed to support decision-making by pro-
viding recommendations—possibly relying on artificial intelligence. Hence, when
it comes to explainable intelligent systems, users commonly play the role of
explainee, whereas software systems play both the role of the recommender and

A General-Purpose Protocol for Multi-agent Based Explanations 43

the explainer. By adopting a multi-agent perspective, we can model both recom-
mendation and explanation as a single interaction protocol among two agents—
where one of the two (commonly, the explainee) is a human being [8]. Hence, we
may interchangeably use the terms “explainee” and “user” (resp. “explainer” and
“agent”). Accordingly, in this section, we propose a general-purpose interaction
protocol for multi-agent based recommendation and explanation.

Our protocol assumes that the user is in charge of initiating the interaction.
Hence, the agent waits for the user to trigger a query. When receiving a query,
the agent should respond by producing a recommendation.

While computing the recommendation, the agent may leverage on any infor-
mation available to it at that moment, including the user’s profile, the history of
previous interactions, and — possibly — aggregated information about other users.
Furthermore, it may take advantage of both symbolic Al reasoning facilities, and
machine learning predictors.

In response to a recommendation, the user may either simply accept/discard
the recommendation, or ask for explanations.

The explanation phase may involve several rounds of interaction, where the
user may either ask for further details or request comparisons; and the agent
attempts to provide all such kinds of information. Eventually, enlightened by
the explanation process, the user may either accept or reject the recommen-
dation. In both cases, the agent may consider the acceptance/rejection of its
recommendation — as well as the amount of explanatory information provided
required by the user to reach a decision — as feedback for future recommenda-
tions. In the particular case of a rejection, the agent may also be interested in the
reason for the rejection, so as to improve its recommendation and explanation
strategy.

Notably, explanations are always (i) provided upon request, (ii) related to the
recommendation, and (i) directed towards the user. Furthermore, explanations
may be of two broad types, namely:

Ordinary explanations, which aim at answering the question “why did you rec-
ommend me this?”;

Contrastive explanations, which aim at answering the question “why did you
not recommend me that instead?”.

Accordingly, our protocol supports both types of explanations, and it lets the user
decide which type of explanation to request. Of course, the exchanged messages
may be different depending on the type of explanation requested.

3.1 Abstract Formulation of the Protocol

Here, we propose an abstract formulation of the protocol which is agnostic w.r.t.
the particular way in which the recommendation and explanation are represented
and computed. In other words, we only focus on the messages exchanges among
explainers and explanees, what information they should carry, and in which
order they should be exchanged. Accordingly, the protocols relies on 13 types
of messages, which may carry data fields of 5 different types, to be exchanged
among agents playing 2 possible roles.

44 G. Ciatto et al.

> Why(K) m >Accept(K)> >C0||ISIDI|(R 3] Disapprove(R, M)

Legend!

MoreDetanIs(R 3] C
7\

>Un:lear(R E) Disapprove(R, E, M) Colllsmn(R 2,3 A::epl(R E) >Prefel(R R) >0verrlde(R')

@® Termination

may receive >

as anwer

Fig. 2. Message communication diagram between an explainer agent (blue boxes) and
an explainee (green boxes). Each box represents a message. Each message is connected
to the ones it can receive as reply. (Color figure online)

Roles are of course explainee (a.k.a. user) and explainer (a.k.a. agent). The
explainee initiates the protocol, while the explainer waits for the protocol to be
started by the explainee.

We also identify 5 data types which represent the potential payload that
agents may exchange during the protocol. As far as the abstract formulation of
our protocol is concerned, we do not constrain the shape / structure of these
types, but we simply assume they exist. In this way, implementers of the protocol
will be free to define their own specification for these types, tailoring them on
their particular application domain. In particular, the data types are:

Queries (denoted by @), i.e. recommendation requests concerning a given topic,
issued by the explainee when initiating the protocol;

Recommendations (denoted by R, R’), i.e. responses to queries, issued by the
explainer;

Explanations (denoted by E, E’), i.e. chunks of explanatory information issued
by the explainer to clarify their recommendation;

Features (denoted by F'), i.e. aspects of the user which are relevant which justify
some recommendation rejection, which the explainer should memorise and
take into account in future interactions;

Motivations (denoted by M), i.e. reasons for the rejection of a recommendation,
which may affect how the agent reacts to a rejection.

Finally, we identify 13 types of messages, which are exchanged among agents
playing the explainee and explainer roles. We denote messages as named records
of the form: Name(Payload), where Name represents the type of the message and
Payload represents the data carried by the message—which consists of instances
of the aforementioned data types. Payloads consist of ordered tuples of data
types, where items suffixed by a question mark are optional. A summary of
message types and their admissible payloads in Fig. 2. Accordingly, message types
are (description follows a breadth-first traversal the diagram in the figure):

10.

11.

12.

A General-Purpose Protocol for Multi-agent Based Explanations 45

Query(Q) is the message issued by the explainee to initiate the protocol: it
carries a recommendation request @;

. Recommendation(@, R) is the message issued by the explainer in response

to a query: it carries the query @) and the corresponding recommendation
R computed by the explainer;

Why(@, R) is the message issued by the explainee to request an explanation
of a recommendation: it carries the original query @ and the recommenda-
tion R;

WhyNot(Q, R, R’) is the message issued by the explainee to request a con-
trastive explanation of a recommendation: it carries the original query @, the
recommendation R, and a second recommendation R’, which the explainee
wants the explainer to contrast with R;

Accept(Q, R, E?) is the message issued by the explainee to accept a rec-
ommendation: it carries the original query @, the recommendation R, and
optionally the explanation E provided by the explainer;

Collision(@, R, F, E?) is the message issued by the explainee to notify the
explainer that the provided recommendation is colliding with some personal
feature/preference of theirs: it carries the original query @, the recommen-
dation R, a description of the feature F', and optionally the explanation
provided by the explainer;

Disapprove(@, R, M, E?) is the message issued by the explainee to notify
the explainer that the provided recommendation is not acceptable for some
reason: it carries the original query @, the recommendation R, a description
of the reason M, and optionally the explanation E provided by the explainer;
Details(@, R, E') is the message issued by the explainer to provide more
details about a recommendation: it carries the original query @, the recom-
mendation R, and the explanation F;

Comparison(@, R, R’, E) is the message issued by the explainer to provide
a contrastive explanation of a recommendation, in the case the one recom-
mendation proposed by the explainee is admissible as well: it carries the
original query @, the recommendation R computed by the explainer and
the one R’ proposed by the explainee, and an explanation F comparing the
two;

Invalid(Q, R', E) is the message issued by the explainer to notify the
explainee that the proposed recommendation is invalid: it carries the original
query @, the proposed (and invalid) recommendation R’, and an explanation
FE motivating the invalidity;

Unclear(Q, R, E) is the message issued by the explainee to notify the
explainer that the provided explanation is unclear: it carries the original
query @, the recommendation R, and the provided (and unclear) explana-
tion F;

Prefer(Q, R, R") is the message issued by the explainee to notify the explainer
that they prefer a different recommendation: it carries the original query
@, the recommendation R proposed by the explainer, and the preferred
recommendation R’ proposed by the explainee;

46 G. Ciatto et al.

13. Override(Q, R, R’) is the message issued by the explainee to notify the
explainer that want to force the decision to some recommendation which
is considered invalid by the explainer: it carries the original query @, the
recommendation R proposed by the explainer, and the forced recommenda-
tion R’ proposed by the explainee.

Notably, messages are designed by keeping the representational sate transfer
(ReST, [9]) architectural style into account. Hence, each message type is designed
to carry all the information necessary for any involved party to decide which
action to take next. This is the reason why all/most messages carry the original
query @ and the recommendation R (or R') which they are referring to.

The message communication diagram from Fig. 2 depicts not only the mes-
sages exchanged by the explainee and explainer, but also the admissbile request—
response patterns which the protocol allows. There, a more detailed view of the
message flow is provided, which we briefly summarise in the following. The
explanation-based recommendation protocol consists in the following phases
(depth-first traversal of Fig. 2):

1. the explainee initiates the protocol, by issuing a message Query(Q);
2. the explainer provides a message Recommendation(@, R) in return;
3. the explainee may now:
3.1 accept the recommendation, by answering Accept(Q), R), hence terminat-
ing the protocol,
3.2 reject
the recommendation because of M, by answering Disapprove(Q, R, M);
or signal it as colliding with F', by answering Collision(Q, R, F'). In this
case, the explainer should propose another recommendation (go to 2.);
3.3 ask for ordinary explanations, by answering Why (@, R). In this case, the
explainer should propose an explanation, by answering Details(R, F). The
explainee may now:
3.3.1. accept, reject, or signal R in light of E, by answering Accept(Q, R, E),
Disapprove(Q, R, M, E), or Collision(Q, R, F, E), respectively, with
outcomes similar to cases 3.1. and 3.2;

3.3.2. ask for a better explanation via Unclear(Q, R, F') (go to 3.3.).

3.4 ask for contrastive explanations motivating why not R’, by answering
WhyNot(@Q, R, R’). The explainer may now:

3.4.1. explain the difference E among R and R', if R’ is admissible w.r.t. its
current knowledge base, by answering Comparison(Q, R, R', E). Now,
the explainee may either (in both cases, the protocol terminates):

3.4.1.1. accept R, via Accept(Q, R, E), or
3.4.1.2. state that they prefer R, via Prefer(Q, R, R').

3.4.2 explain that R’ is not an admissible recommendation because of E, by
answering Invalid(()Q, R, E). At this point, the explainee may either
(in both cases, the protocol terminates):

3.4.2.1. accept R, via Accept(Q, R, E), or

3.4.2.2. override the explainer’s decision, by stating that they prefer R’,
via Override(Q, R, R')—hence forcing the explainer to update
their own knowledge base accordingly.

A General-Purpose Protocol for Multi-agent Based Explanations 47

3.2 Relevant Scenarios and Protocol Analysis

The protocol is general enough to cover multiple relevant situations, correspond-
ing to different needs/desires of the users. For instance, users may: (i) simply
want a recommendation; (i) want the recommendation to be explained; (iii)
want more details for a given explanation; (iv) want to simulate other possible
recommendations; (v) provide positive or negative feedback about recommenda-
tions or explanations.

All such situations correspond to relevant usage scenarios of the protocol.
These are briefly summarised in Fig. 3, and discussed below.

Quick Accept. This is the scenario depicted in Fig.3a. There is no need for
explanations, and the user simply accepts the recommendation provided by the
agent.

For instance, the user asks for a restaurant recommendation, and the agent
proposes a restaurant, and the user is fine with it.

Quick Retry. This is the scenario depicted in Fig. 3b. There is no need for expla-
nations, and the user simply rejects the recommendation provided by the agent,
by either disapproving it or stating that it is in conflict with their own prefer-
ences. In both cases, the agent shall produce a new recommendation.

For instance, the user asks for a restaurant recommendation, and the agent
proposes a steakhouse, but the user does not like it because: (i) they are vege-
tarian or they do not like steak, or (i) they do not want to eat meat that day. In
the former case, the user shall signal a collision among the recommendation and
its preference—which the agent is expected to learn and to take into account for
future recommendations. In the latter case, the user shall simply disapprove the
recommendation—but the agent is not supposed to memorise such an event.

Ordinary Ezxplanation Loop. This is the scenario depicted in Fig. 3c. The user
asks for a recommendation, and the agent provides one. The user is not satisfied
with the recommendation, and asks for an explanation. The agent provides an
explanation, and the user is not satisfied with it. The user asks for further
details, and the agent provides them. The loop may be repeated several times.
Eventually, the user accepts the recommendation, or asks for a new one, similarly
to the quick accept/retry scenarios.

The interesting part here is the explanation loop. It is a flexible mechanism,
supporting zooming in/out explanations: the agent change the granularity of
the explanations, by providing more or less details. For instance, the agent may
provide local explanations first —i.e., explanations describing how the recommen-
dation was produced — and then global explanations—i.e., explanations describ-
ing how recommendations are computed in general. The agent may also change
the representation means of the explanations, by providing textual explanations
first, and then visual explanations—or vice versa.

As an example, consider the situation where the user asks for a restaurant
recommendation. The agent recommends some Asian restaurant in the users’

48 G. Ciatto et al.

Query(Q)

A

Recommendation (Q, R)

> -
|
]

Accept (Q, R)

A

¢ ¢
(a) Quick accept: the user accepts the

recommendation without asking for ex-
planations.

.E_ Query(Q)

Recommendation (Q, R) \I
g Why? (Q, R)
QT MoreDetails(Q R E)

Why, Uncl
Unclear(Q,R,E)[v, Unclear

_ Collision(Q,R,E,F)

lDisapprove(Q,R,E, F)

Reccommendation (R')

[Collision, Disapprove]

D‘ Accept(Q,R,E)

)
(c¢) Ordinary explanation loop: the user
asks ‘why’ after a recommendation, and
then agent answers with further details.
The request for details may be repeated
several times.

' Query(Q)

orlk

_,_Collision(Q, R, F)

4

> -

Recommendation (Q, R)

F-{

_ Disapprove(Q, R, M)

) ¢
(b) Quick retry: the user rejects the
recommendation without asking for ex-
planations. Another recommendation is
proposed, accordingly.

N A

i Query(Q)

Recommendation (Q, R) \I
Fadl
' Why Not? (Q, R, R)

A

Q Comparison(Q, R, R, E) -
[Why Not?, Override]

_ Prefer Alternative (R'),

Invalid Alternative (R’) ™

L [Prefer Alternative]

Ij‘ Override (R')

o1

D‘ Accept(Q,R,E)
®

(d) Contrastive explanation loop: the
user asks ‘why not’ another recommen-
dation. The agent may then explain why
the other recommendation is acceptable
or invalid. The user may either accept
the original recommendation or prefer
their own.

Fig. 3. Sequence diagrams describing most common scenarios of the protocol.

A General-Purpose Protocol for Multi-agent Based Explanations 49

surroundings, having 4.3 stars (out of 5) on ACME-Advisor.com. The user is
curious in understanding the reason why the agent proposed that restaurant,
and asks for an explanation. The agent provides an explanation, stating that
the restaurant is close to the user, and that it has a good rating. Furthermore,
the agent reminds to the user that — to the best of its knowledge — they like
Sushi. The user is still not satisfied, and asks for further details. The agent
provides a textual explanation, stating that it commonly recommends the highest
ranked restaurant matching the user’s tastes, and having a distance which is not
higher than 1km. Eventually, the user may be satisfied with the explanation,
and accept the recommendation; or they may reject the recommendation and
possibly request a new one.

Contrastive Explanation Loop. This is the scenario depicted in Fig. 3d. The user
asks for a recommendation, and the agent provides one (R). The user was not
expecting that recommendation, but rather another one (R’), and they ask for a
contrastive explanation. If the users’ recommendation is acceptable as well, the
agent provides a comparison between the two recommendations, arguing one of
the two is better than the other. Otherwise, if the users’ recommendation is not
acceptable, the agent provides an explanation for why it is not acceptable. In
both cases, the user may either accept the original recommendation or prefer
their own—possibly overriding the agent’s recommendation. In the case of an
override, the agent should learn from the user’s preferences, and possibly update
its recommendation policy. In any case, the interaction ends.

The key points here are the possibility, for the user, to (i) simulate alternative
recommendations, and (i) contradict the recommender agent in order to let it
learn.

Consider for instance the aforementioned restaurant recommendation case.
The user may not be satisfied with the agent’s recommendation concerning an
Asian restaurant, and propose the local steakhouse instead. The agent may
then either consider the proposal acceptable or not, depending on the dietary
goals and physiological condition of the user. If the agent considers the pro-
posal acceptable, it may provide a comparison between the two recommenda-
tions, stating that the Asian restaurant is closer. At this point, the user may
either accept the original recommendation (Asian restaurant) or prefer their
own (steakhouse). Otherwise, if the agent considers the proposal unacceptable,
it may provide an explanation for why it is not acceptable—e.g. steak is violat-
ing the user’s dietary goals. In this case, the user may either accept the original
recommendation (Asian restaurant) or override it (steakhouse).

3.3 Which Sorts of Explanations and Recommendation?

The explanation protocol is agnostic w.r.t. the particular way in which explana-
tions and recommendations are represented. Indeed, it is implementers’ responsi-
bility to define the representation means of explanations and recommendations—
other than deciding how they should be computed in practice. The protocol
simply dictates when explanations and recommendations should be computed.

50 G. Ciatto et al.

Accordingly, in this subsection we provide a few insights about the possible
design choices for explanations and recommendations.

Recommendations are commonly supported by means of one or more ML
predictors, trained on users’ data. Whether predictors’ training is a respon-
sibility of the recommender agent, or simply the agent is endowed with pre-
trained predictors at deployment time, is an implementation detail. In either
cases, the recommender agent is supposed to know (or be able to access or
acquire) profile-related information about the user. Such information may come,
for instance, from some initial configuration phase, as well as be inferred by the
agent itself, from the accepted/rejected recommendations. To support the latter
case, the agent should be endowed with some learning algorithm, making it able
to (re)train the predictors when new user data is avaliable. Under this perspec-
tive, as far as recommendations are concerned, the explainer agent is simply
proxying the ML predictor(s).

Explanations, on the other hand, are not necessarily supported by ML pre-
dictors. In this case, the XAI literature is full of possible approaches, including
both visual, textual, and numeric explanations. The interested reader may refer
to high impact surveys such as [1,10] for a comprehensive overview of the state of
the art. The key point here is that the explainer agent should not only wrap the
ML predictor(s), but also encapsulate the logic for representing and computing
explanations.

Along this line, one critical situation is the one where recommendations and
explanations come with different representation means—e.g. textual and visual.
In this case, the explainer agent should be able to bridge the gap between the two,
by providing a unified representation of the recommendation and its explanation.

To mitigate this issue, designers may consider adopting computational logic
as the reference framework for both recommendations and explanations. In com-
putational logic, both knowledge bases, and queries, are represented as logic
formulee. Logic formulse, in turn, can be exploited to represent both recom-
mendations and explanations. In fact, logic queries may be used to represent
recommendation requests, and logic solutions may be used to represent recom-
mendations, whereas proof trees may be exploited to compute explanations.

For instance, a recommendation query may consist of the logic goal
should _eat (Food,lunch), where Food is a logic variable, i.e., a placeholder for
unknown values. Recommendations R, R’, R”,... may be logic solutions, i.e.,
assignments of logic variables (e.g., Food = paella). Explanations E, E', E”, ...
may be of many sorts:

— local explanation, e.g. the path in the proof tree computed by the explainer
agent to provide the recommendation;

— global explanation, e.g. the logic program used by the explainer agent to
provide the recommendation;

— contrastive explanation, e.g. quality metrics comparing two or more recom-
mendations, or the violated constraints making some recommendation unac-
ceptable;

— any combination of the above.

A General-Purpose Protocol for Multi-agent Based Explanations 51

User features F, F’, F” ... may be raw facts describing the user (e.g., age(31),
goal(lose weight), category(vegetarian)). Disapprove motivations may be
predefined facts such as dislike — the user does not like a recommendation
and the agent should learn that — or not now—the user simply does not want
that recommendation now, may they like it in general (so the agent should not
memorise that).

4 From Theory to Practice with PYXMAS

In this section, we describe how our protocol can be reified into actually usable
agent-oriented software. Accordingly, we discuss the design of PYXMas?, i.e.,
our Python library for explainable multi-agent systems.

PYXMAS is an agent-oriented software library based on SPADE. It comes
with predefined — yet parametric — implementation of the protocol described in
Sect. 3, in the form of reusable agent behaviours. In this way, researchers and
developers can easily take advantage of our protocol to build explainable MAS,
without wasting time in re-implementing the protocol. Rather, they can focus
on the design of the actual recommender and explainer agents, as well as on
the representation means of recommendations and explanations. In particular,
PYXMAS requires designers to define which particular notion of recommenda-
tion and explanation they want their agents to support, and how should agents
compute or react to them.

4.1 PYXMAS Architecture

Recommender / Explainer
Protocol Responder

Recommendation Strategy

Explanation Strategy

Legend|

-

,,,,,,,,, -

User Profiler i
1 Agent | Data store
H

Fig. 4. Architecture of PYXMAas. Behaviours are provided by the library, and they
are parametric w.r.t. components. PYXMAS users are responsible for implementing
and plugging their own components, in order to tailor PYXMaAs to their specific needs.
Optionally, if the explainee agent is human, users may also need to implement a UX
component supporting interaction with the explainee—possibly via some device.

Figure4 summarises the modular architecture of PYXMAS. Leveraging on
SPADE facilities, PYXMAS is implemented two behaviours, which can be easily

2 https://github.com /pikalab-unibo/pyxmas.

https://github.com/pikalab-unibo/pyxmas

52 G. Ciatto et al.

plugged into any agent—namely, the protocol initiator and the responder. On
the one hand, the initiator behaviour is responsible for sending recommendation
queries to the explainer agent, and for receiving and processing the correspond-
ing recommendations and explanations. Consequently, the initiator behaviour is
meant to be plugged into the explainee agent. On the other hand, the respon-
der behaviour is responsible for receiving requests from the initiator, and for
computing and sending recommendations and explanations. Consequently, the
responder behaviour is meant to be plugged into the explainer agent.

Figure4 also shows that PYXMAs is designed to be highly parametric. In
particular, the initiator and responder behaviours are parametric with respect
to a number of components which dictate the actual behaviour of the agents. In
this way, users of PYXMAS can easily tailor the library to their specific needs,
by implementing and plugging their own components.

Ezxplainer Agent. As far as the explainer agent is concerned, the responder
behaviour requires the following components provided by developers:

Recommendation Strategy— the component in charge of computing recom-
mendations for any given query. In addition to users’ requests and feedback,
the recommendation strategy should consider profile information about users
(e.g., their goals/interests, such ‘losing weight’), as well as their preferences
and interests (e.g., vegetarian users do not eat meat). Agents may have limited
information about their users’ preferences but could learn more over-time—
also thanks to our protocol. The learned preferences and constraints could be
exploited to generate well-targeted recommendations.

Explanation Strategy—the component in charge of computing explanations
for any given recommendation. This is where designers can develop different
approaches for generating explanations supporting the given recommenda-
tions. While operating, the explanation strategy may exploit the estimated
user profiles (e.g., the user dislikes animal-derived food), as well as common-
sense or background information (e.g., food X only contains vegetable-derived
ingredients) which is made available to the agent.

User Profiler—the component in charge of learning user profiles from users’
feedback. This component may adopt any heuristic-based or machine learn-
ing approach to learn users’ preferences over time. As the explainer agent
interacts with the explainee, it gets (possibly implicit) feedback about the
recommendations it provides. It this way, it may infer valuable information
about their preferences and interests. In this way, the agent can update the
explainee’s profile information—in order to eventually provide better expla-
nations or recommendations.

Interaction Strategy—the component in charge of which recommendation and
explanation strategies to exploit, and how to present recommendations and
explanations to the explainee. This component is responsible for processing
the content of the exchanged messages and transferring them to the related
components. Note that not only the content of the messages but also how
these messages are expressed /represented plays a crucial role in interactive

A General-Purpose Protocol for Multi-agent Based Explanations 53

intelligent systems. Consider for instance the case where the explainer agent
is a humanoid robot. In the case, the interaction component is in charge of
selecting the best gestures or facial expressions supporting the action taken
(e.g., a surprising facial expression when it discovers unexpected knowledge
about the user). The interaction strategy component may also operate the
other way around. For instance, if the robot can sense people facial emotion,
tones, or gestures, it may adjust other components behaviour accordingly.

It is worth mentioning that, to operate correctly, the explainer agent is sup-
posed to collect and store two sorts of information, namely: (i) profile data about
the explainee, and (%) common-sense/background knowledge about the domain
of interest. For an architectural perspective (cf. Fig. 4), information of these sorts
are store in to ad-hoc data stores. In particular, profile data is stored in the user
profile data store, while the common-sense/background knowledge is stored in
the knowledge base data store. These data stores are local w.r.t. the explainer
agent, and act as its memory /belief base. They are subject to reads/updates by
the different components of the explainer agent.

Explainee Agent. As far as the explainee agent is concerned, the initiator
behaviour requires the following components provided by developers:

Query Provider—the component in charge of generating queries for the
explainer agent, depending on the current goals of the explainee.

Recommendation Evaluator—the component in charge of evaluating the
recommendations provided by the explainer agent and deciding whether to
accept or reject them.

Explanation Evaluator—the component in charge of evaluating the expla-
nations provided by the explainer agent, and affecting the recommendation
evaluator accordingly.

In the particular case where the explainee agent is a human user, the explainer
agent should be implemented as a simple proxy agent, which acts on behalf of
the human and mediates their interaction with the recommender agent. In that
case, the proxy agent is responsible for human-computer interaction, possibly
via some user interface (UI) presented to the human on top of some device (e.g.,
a smartphone). This is the situation depicted in Fig. 4. When this is the case,
the proxy agent is supposed to include one further component, namely the User
Experience (UX) one.

When present, the UX component is in charge of governing the UI, hence
grasping humans’ inputs and presenting recommendations and explanations to
them. In this case, the other components are simply in charge of processing
the humans’ inputs and generating the appropriate messages to be sent to the
explainer agent.

54 G. Ciatto et al.

4.2 PYXMAS Design
PYXMAS consists of a Python library providing:

— abstract classes defining the (de)serialisation message payloads exchanged
between the explainer and explainee agents (cf. Sect. 3.1),
— abstract classes defining the initiator and responder behaviours.

In both cases, we exploit abstract classes as we leave room for costumisation. In
fact, developers may want to extend the provided abstract classes and override
specific methods to plug their own components.

Accordingly, in this subsection, we describe the abstract classes available in
PyXMaAs and the way they are supposed to be extended to so ars to build some
actual explainable MAS.

data)

@ Serializable

@Recommendatinn

@ Query

o parse(input)
o serialize(): str

{@ Motivationw [@ Featurew

[| [|
e) C)

Fig. 5. Abstract classes for message payloads in PyXMas.

Data Types for Message Payloads. As shown in Fig. 5, PYXMAS provides 5
abstract classes for the as-many data types defined in Sect. 3.1. These classes sim-
ply force developers to make these data types serialisable—i.e., to support their
conversion into/from strings. This is necessary for the explainer and explainee
agents to exchange messages over the network.

How to actually represent queries, recommendations, explanations, and so
on, is left to developers. In fact, the only constraint is that the serialised version
of these data types should be both machine- and human-interpretable.

When it comes to design some actual explainable MAS, developers may
plug their custom notion of query, recommendation, explanation, and so
on, by extending the provided abstract classes, and by implementing their
(de)serialization-related methods.

55

A General-Purpose Protocol for Multi-agent Based Explanations

WaitingRecommendation
waiting response from agent

Disapprouve(R,M)

Collision(R, F)

Recommendation(R)

WaitingUserDecision
waiting user input

Collision(R,E,F) \Disapprouve(R,E,M)

WhyNot(R')

WaitingComparativeExplanation
waiting response from agent

Invalid(R',E)

WaitingDeteils
waiting response from agent

Unclear(R,E) \Details(R,E)

Comparison(R,R',E)

(WaitingUserDecisionOnExp\anationw

Q«amng user input

(Wait\'ngUserDecisionOnComparison lw (Wa\tingUserDecisionOnComparisonzw
) buamng user input)

blvaltlng user input
Prefer(R',R) (OK(R,E) [Override(R')

(a) Initiator-side state diagram.
®

WaitingUserQuery

waiting user message

Query(Q)

ComputingRecommendation

computing recommandation to send

Collision(R,F) / Disapprouve(R,M)

Recommendation(R)

(WaitingRecommendationFeedbackw

(aiting user message
Collision(R,E,F) \Disapprouve(R,E,M)

WhyNot(R')

ComputingExplanation
computing explanation to send

(ComputingComparativeExplanationw

Lcumpuung explanation to send

Comparison(R,R",E) \Invalid(R',E)

WaitingExplanationFeedback

(Wa itingComparisonFeedback lw (Wa itingComparison Feedbackzw
) Q«ainng user message)

Qvainng user message
Prefer(R",R) \Ok(R,E) |Override(R")

(b) Responder-side state diagram.

Fig. 6. State diagrams describing the initiator and responder behaviours as imple-

mented in PyXMas.

56 G. Ciatto et al.

Predefined Behaviours. PYXMAS also provides two abstract classes for as
many protocol roles agents may play, namely: the initiator and the responder
behaviours. Building on SPADE facilities, these classes are technically finite-state
machine (FSM) behaviours. In other words, they are implemented as a set of
states, each of which is associated with a set of actions to be performed when the
agent enters that state. Figure 6 shows the state diagrams describing the initiator
and responder behaviours as implemented in PYXMAS. Broadly speaking, states
either represent situations where agents are waiting for messeges from the other
side, or situations where one of the agent is busy computing (resp. evalutation)
a message for (resp. from) the other side.

These classes come with template methods (a.k.a. callbacks) that develop-
ers may override to plug their own components. In particular, on the initia-
tor side, callbacks are supposed to be overridden to control how the explainee
agent: (i) generates queries, (i) evaluates recommendations and decides whether
to accept or reject them, (iii) evaluates explanations, and decides whether to
accept or reject recommendations accordingly. On the responder side, callbacks
are supposed to be overridden to control how the explainer agent: (i) generates
recommendations, (i) generates explanations, (7i7) handles situations where rec-
ommendations are accepted/rejected.

5 Conclusion and Future Work

In this paper, we present a general-purpose protocol for explainable MAS. The
protocol is based on the idea that explanations should be provided upon request,
by letting the same intelligent agent that is responsible for the recommendation
process explain its own decisions. This subtends the existence of another entity
— namely, the explainee agent — which requests recommendations and, possibly,
explanations to the aforementioned intelligent agent. Under such hypotheses,
our protocol regulates the interaction among such agents.

Despite our formulation is abstract, we discuss how concrete sorts of rec-
ommendations and explanations could be modelled and exchanged via the
proposed protocol. Along this line, we also provide a Python implementation
of the protocol — namely, PYXMAs —, which is available as an open-source
library on GitHub. PYXMAS supports the pluggability of custom recommen-
dation/explanation definitions—hence making it possible to re-use the protocol
in different contexts.

Future works. Our protocol, as well as the PYXMAS technology, plays a crucial
role in the context of the EXPECTATION project [5|—which is funding this work.
There, the exploitation of multi-agent interaction as a means for explaining rec-
ommendations is at the core of the project.

Accordingly, further research is needed to investigate how the protocol
impacts human-user interaction as a means for XAI. Along this way, we are
planning both theoretical extensions of the protocol and technical improvements
of the PYXMAs technology—possibly enabling empirical studies on the impact
on explainability.

A General-Purpose Protocol for Multi-agent Based Explanations 57

In particular, concerning the protocol, we are planning to extend the for-
mulation to support meta-data describing the emotional state of the explainee
agent—hence studying of such meta-information may affect the recommenda-
tion/explanation process.

Concerning the PYXMAS technology, we are planning to support the
exploitation of symbolic knowledge extraction [19] and injection [14] as a means
for explaining recommendations. This would imply leveraging on symbolic Al
techniques to represent explanations and recommendations. Finally, we plan to
provide better support towards human-computer interaction based on PYXMas.
In this regard, our intention is to develop a Web- or Telegram-based graphical
user interface for letting humans interact with PYXMAS agents.

Acknowledgements. This work has been supported by the CHIST-ErRa IV
project “EXPECTATION”, the Italian Ministry for Universities and Research (G.A.
CHIST-ERA-19-XAI-005), and by the Scientific and Research Council of Turkey
(TUBITAK, G.A. 120N680).

References

1. Barredo Arrieta, A., et al.: Explainable explainable artificial intelligence (XAI):
concepts, taxonomies, opportunities and challenges toward responsible AI. Inf.
Fusion 58, 82-115 (2020). https://doi.org/10.1016/j.inffus.2019.12.012

2. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems
with JADE. Wiley, Hoboken (2007). http://eu.wiley.com/WileyCDA /WileyTitle/
productCd-0470057475.html

3. Buzcu, B., Varadhajaran, V., Tchappi, 1., Najjar, A., Calvaresi, D., Aydogan, R.:
Explanation-based negotiation protocol for nutrition virtual coaching. In: Aydogan,
R., Criado, N., Lang, J., Sanchez-Anguix, V., Serramia, M. (eds.) PRIMA 2022:
Principles and Practice of Multi-Agent Systems - 24th International Conference,
Valencia, Spain, 16-18 November 2022, Proceedings. Lecture Notes in Computer
Science, vol. 13753, pp. 20-36. Springer, Heidelberg (2022). https://doi.org/10.
1007/978-3-031-21203-1_ 2

4. Calegari, R., Ciatto, G., Omicini, A.: On the integration of symbolic and sub-
symbolic techniques for XAI: a survey. Intelligenza Artificiale 14(1), 7-32 (2020).
https://doi.org/10.3233 /IA-190036

5. Calvaresi, D., et al.. EXPECTATION: personalized explainable artificial intelligence
for decentralized agents with heterogeneous knowledge. In: Calvaresi, D., Najjar,
A., Winikoff, M., Framling, K. (eds.) EXTRAAMAS 2021. LNCS (LNAI), vol.
12688, pp. 331-343. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
82017-6_20

6. Christakopoulou, K., Radlinski, F., Hofmann, K.: Towards conversational recom-
mender systems. In: KDD 2016: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 815-824 (2016).
https://doi.org/10.1145/2939672.2939746

7. Ciatto, G., Calegari, R., Omicini, A., Calvaresi, D.: Towards XMAS: eXplainability
through multi-agent systems. In: Savaglio, C., Fortino, G., Ciatto, G., Omicini, A.
(eds.) AI&IoT 2019 - Artificial Intelligence and Internet of Things 2019, CEUR
Workshop Proceedings, vol. 2502, pp. 40-53. Sun SITE Central Europe, RWTH
Aachen University (2019). http://ceur-ws.org/Vol-2502/paper3.pdf

https://doi.org/10.1016/j.inffus.2019.12.012
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470057475.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470057475.html
https://doi.org/10.1007/978-3-031-21203-1_2
https://doi.org/10.1007/978-3-031-21203-1_2
https://doi.org/10.3233/IA-190036
https://doi.org/10.1007/978-3-030-82017-6_20
https://doi.org/10.1007/978-3-030-82017-6_20
https://doi.org/10.1145/2939672.2939746
http://ceur-ws.org/Vol-2502/paper3.pdf

58

©

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

G. Ciatto et al.

. Ciatto, G., Schumacher, M.I., Omicini, A., Calvaresi, D.: Agent-based explanations
in AI: towards an abstract framework. In: Calvaresi, D., Najjar, A., Winikoff, M.,
Framling, K. (eds.) EXTRAAMAS 2020. LNCS (LNAI), vol. 12175, pp. 3-20.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51924-7 1

. Fielding, R.T., Taylor, R.N.: Principled design of the modern Web architecture.

ACM Trans. Internet Technol. 2(2), 115-150 (2002). https://doi.org/10.1145/

514183.514185

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.:

A survey of methods for explaining black box models. ACM Comput. Surv. 51(5),

93:1-93:42 (2018). https://doi.org/10.1145/3236009

Gunning, D.: Explainable artificial intelligence (XAI). Funding Program DARPA-

BAA-16-53, DARPA (2016). http://www.darpa.mil/program//explainable-

artificial-intelligence

Knijnenburg, B.P., Willemsen, M.C., Hirtbach, S.: Receiving recommendations and

providing feedback: the user-experience of a recommender system. In: Buccafurri,

F., Semeraro, G. (eds.) EC-Web 2010. LNBIP, vol. 61, pp. 207-216. Springer,

Heidelberg (2010). https://doi.org/10.1007/978-3-642-15208-5 19

Lipton, Z.C.: The mythos of model interpretability. Commun. ACM 61(10), 36-43

(2018). https://doi.org/10.1145/3233231

Magnini, M., Ciatto, G., Omicini, A.: On the design of PSyKI: a platform for sym-

bolic knowledge injection into sub-symbolic predictors. In: Calvaresi, D., Najjar,

A., Winikoff, M., Framling, K. (eds.) Explainable and Transparent Al and Multi-

Agent Systems, 4th International Workshop, EXTRAAMAS 2022, Virtual Event,

Revised Selected Papers, Lecture Notes in Computer Science, 9-10 May 2022, vol.

13283, chap. 6, pp. 90-108. Springer, Heidelberg (2022). https://doi.org/10.1007/

978-3-031-15565-9_6

Millecamp, M., Htun, N.N., Conati, C., Verbert, K.: To explain or not to explain:

The effects of personal characteristics when explaining music recommendations.

In: TUT 2019: Proceedings of the 24th International Conference on Intelligent User

Interfaces, pp. 397-407. Association for Computing Machinery, New York (2019).

https://doi.org/10.1145/3301275.3302313

Mualla, Y., et al.: The quest of parsimonious XAI: a human-agent architecture

for explanation formulation. Artif. Intell. 302, 103573 (2022). https://doi.org/10.

1016/j.artint.2021.103573

O’Donovan, J., Smyth, B., Gretarsson, B., Bostandjiev, S., Hollerer, T.: Peer-

Chooser: visual interactive recommendation. In: CHI 2008: Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, pp. 1085-1088

(2008). https://doi.org/10.1145/1357054.1357222

Omicini, A.: Not just for humans: explanation for agent-to-agent communication.

In: Vizzari, G., Palmonari, M., Orlandini, A. (eds.) AIxIA 2020 DP — AIxIA 2020

Discussion Papers Workshop. AT*IA Series, vol. 2776, pp. 1-11. Sun SITE Central

Europe, RWTH Aachen University, Aachen (2020). http://ceur-ws.org/Vol-2776/

paper-1.pdf

Sabbatini, F., Ciatto, G., Calegari, R., Omicini, A.: Symbolic knowledge extraction

from opaque ML predictors in PSyKE: platform design & experiments. Intelligenza

Artificiale 16(1), 27-48 (2022). https://doi.org/10.3233/IA-210120

Shimazu, H.: ExpertClerk: a conversational case-based reasoning tool for devel-

oping salesclerk agents in e-commerce webshops. Artif. Intell. Rev. 18, 223-244

(2002). https://doi.org/10.1023/A:1020757023711

Zhang, Y., Chen, X.: Explainable recommendation: a survey and new perspectives.

Found. Trends Inf. Retr. 17(1), 1-101 (2020). https://doi.org/10.1561 /1500000066

https://doi.org/10.1007/978-3-030-51924-7_1
https://doi.org/10.1145/514183.514185
https://doi.org/10.1145/514183.514185
https://doi.org/10.1145/3236009
http://www.darpa.mil/program/explainable-artificial-intelligence
http://www.darpa.mil/program/explainable-artificial-intelligence
https://doi.org/10.1007/978-3-642-15208-5_19
https://doi.org/10.1145/3233231
https://doi.org/10.1007/978-3-031-15565-9_6
https://doi.org/10.1007/978-3-031-15565-9_6
https://doi.org/10.1145/3301275.3302313
https://doi.org/10.1016/j.artint.2021.103573
https://doi.org/10.1016/j.artint.2021.103573
https://doi.org/10.1145/1357054.1357222
http://ceur-ws.org/Vol-2776/paper-1.pdf
http://ceur-ws.org/Vol-2776/paper-1.pdf
https://doi.org/10.3233/IA-210120
https://doi.org/10.1023/A:1020757023711
https://doi.org/10.1561/1500000066

	A General-Purpose Protocol for Multi-agent Based Explanations
	1 Introduction
	2 Background and Related Works
	2.1 Interactive Recommendation Systems
	2.2 Prior Work on Explanation Protocols
	2.3 Spade: Multi-agent Programming in Python

	3 Explanation-Based Recommendation Protocol
	3.1 Abstract Formulation of the Protocol
	3.2 Relevant Scenarios and Protocol Analysis
	3.3 Which Sorts of Explanations and Recommendation?

	4 From Theory to Practice with PyXMas
	4.1 PyXMas Architecture
	4.2 PyXMas Design

	5 Conclusion and Future Work
	References

