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ABSTRACT

The behaviours of a swarm are not explicitly engineered. Instead, they are an emergent consequence
of the interactions of individual agents with each other and their environment. This emergent
functionality poses a challenge to safety assurance. The main contribution of this paper is a process
for the safety assurance of emergent behaviour in autonomous robotic swarms called AERoS, following
the guidance on the Assurance of Machine Learning for use in Autonomous Systems (AMLAS).
We explore our proposed process using a case study centred on a robot swarm operating a public
cloakroom.
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1 Introduction

Swarm robotics provides an approach to the coordination of large numbers of robots inspired by swarm behaviours in
nature [1]. The overall behaviours of a swarm are not explicitly engineered in the system. Instead, they are an emergent
consequence of the interactions of individual agents with each other and the environment [2]; this poses a challenge to
assurance. According to the ISO standard for systems and software engineering vocabulary [3], assurance is defined
as “all the planned and systematic activities implemented within the quality system, and demonstrated as needed, to
provide adequate confidence that an entity will fulfil requirements for quality”. Assurance tasks comprise conformance
to standards, verification and validation (V&V), and certification. Assurance criteria for autonomous systems (AS)
include both functional and non-functional requirements such as safety [4].

Existing standards and regulations of AS are either implicitly or explicitly based on the V lifecycle model [5], which
moves from requirements through design onto implementation and testing before deployment [6, 7]. However, this
model is unlikely to be suitable for systems with emergent behaviour (EB); for example through interaction with
other agents and the environment, as is the case with swarms. ISO standards have been developed for the service
robotics sector (non-industrial) (e.g. ISO 13482, ISO 23482-1, ISO 23482-2), and the industrial robotics sector (e.g.
ISO 10218-1, ISO 10218-2, ISO/TS 15066) [2]. However, although these standards focus on ensuring the assurance of
robots at the individual level, they do not cover safety or any other extra-functional property at the swarm level that may
arise through EB.

The main contribution of this paper is a process for the safety assurance of EB in autonomous robotic swarms (AERoS),
adapted from the guidance on the Assurance of Machine Learning for use in Autonomous Systems (AMLAS) [8].
AERoS covers six EB lifecycle stages: safety assurance scoping, safety requirements elicitation, data management,
model EB, model verification, and model deployment. The AERoS process is domain independent and therefore can be
applied to any swarm type (e.g. grounded, airborne). In this paper, we explore it using a case study centered on a robot
swarm operating a public cloakroom at events with 50 to 10000 attendees [9]. In the cloakroom, a swarm of robots
assist attendees to deposit, store, and deliver their belongings (e.g. jackets) [9]. As the swarm operates in a public
setting, the system must prioritise public safety.

The rest of the paper is organised as follows. In Section 2, we provide key related work to our study. Section 3 discusses
the six stages of the AERoS process. Finally, Section 4 provides a brief discussion and concludes the paper.

2 Related Work

AS are considered to follow a much more iterative life-cycle compared to the conventional V-model. Thus, there is a
need for new standards and assurance processes that extend beyond design time and allow continuous certification at
runtime [10]. In this context, there have been several standards and guidance introduced by various industry committees
and research groups. In 2016, the British Standards Institution introduced the BS 8611 standard that provides a guide to
the ethical design and application of robots and robotic systems. Then, IEEE through its Global Initiative on Ethics of
Autonomous and Intelligent Systems initiated the development of a series of standards to address autonomy, ethical
issues, transparency, data privacy and trustworthiness (e.g. IEEE P7001 [11], P7007, P7010). There are several
standards and guidance related to machine learning in aeronautics, automotive, railway and industrial domains [12], for
example the AMLAS process [8], the European Union Aviation Safety Agency (EASA) concept paper, the DEpendable
and Explainable Learning (DEEL) white paper, the Aerospace Vehicle System Institute (AVSI) report, the Laboratoire
National de Métrologie et d’Essais (LNE) certification, and the UL 4600 standard. However, none of these approaches
targets robot swarms.

In this work we used AMLAS [8] as the foundation for developing an assurance process for autonomous robotic swarms.
AMLAS provides guidance on how to systematically integrate safety assurance into the development of the machine
learning components based on offline supervised learning. AMLAS contains six stages where assurance activities
are performed in parallel to the development activities. AMLAS has the advantage of ensuring safety assurance for
complex AS where the behaviour of the system is controlled by machine learning algorithms. In this work, we take
inspiration from AMLAS, but adapt it to focus on emergence as the driver for complexity, rather than learning.

3 The AERoS Process

This section discusses the six main stages of AERoS targeting autonomous robot swarms. AERoS is iterative by design,
and the assurance activities are performed in parallel to EB development (see Fig. 1). For each stage, we describe its
inputs and outputs, main assurance activities and their associated artefacts.
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Figure 1: The AERoS process with the six stages adapted from AMLAS.

3.1 Stage 1: EB Safety Assurance Scoping

Stage 1 contains two activities which are performed to define the safety assurance scope for the swarm (see Fig. 2).

Activity 1. Define Assurance Scope for the EB Description and Expected Output The goal of Activity 1, which
has four inputs [A–D] (Fig. 2), is to define the safety assurance scope for the EB and expected output. The output of this
activity is the Safety Requirements Allocated to the Swarm [E]. The requirements defined in this stage are independent
of any EB technology, which reflects the need for the robot swarm to perform safely regardless of emergence.

Figure 2: Stage 1: The AERoS emergent behaviour assurance scoping process.

[A] System Safety Requirements: The system safety assessment process generates the safety requirements of the swarm,
and covers the identification of hazards (e.g. the blocking of critical paths in the cloakroom) and risk analysis. Figure 3
illustrates how individual robot failures propagate through the neighbourhood to swarm-level hazards: we can then
derive safety requirements in the form of concrete failure conditions at the level of the whole swarm which capture,
implicitly, all levels of the swarm. Although this has been illustrated as a simplified linear chain of events, in reality this
represents a complex sequence which can be difficult to distil into distinct events and causes.

Figure 3: Failure conditions in a swarm adapted from DO-178C and AMLAS.
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[B] Environment Description: It is essential to consider the system environment when allocating safety requirements to
the swarm. In the cloakroom, a swarm of robotic agents collects and delivers jackets, which are stored in small box-like
containers. The agents are required to navigate a public space between collection and delivery points.

[C] System Description: In the cloakroom, we can consider three inputs: sensor availability, neighbourhood data
(used because there is no access to global data in real-world deployments), and swarm parameters (see Fig. 4). The
sensors available to agents can be cameras and laser time-of-flight sensors. The neighbourhood data of the swarm
can be specified through the communication systems available to agents, in this case Bluetooth. Through the use of
this short-range communication, agents can access neighbourhood data, such as approximate position or current state
of local agents. As for the swarm-level parameters, we can consider options specified by a user, that is, the number
of agents deployed, and the maximum speed of agents. Once defined, the three inputs are then fed to the individual
agents to instruct their behaviour. This behaviour enacted by multiple agents then produces a swarm-level EB as the
individuals interact with one another and their environment.

Figure 4: Inputs fed into individual agent behaviour producing overall swarm emergent behaviour.

[D] EB Description and Expected Output: By expected output, we refer to the gains that can arise from the system by
deploying multiple agents. In the cloakroom, the output is a collaborative system capable of collecting, sorting, and
delivering jackets in a public setting. To achieve this, the EB of the system needs to arise from the available behaviours
of the individual agents, their interactions, and the constraints outlined in the system description.

Activity 2. Instantiate EB Assurance Scoping Argument Pattern Each stage of the AERoS process includes an
activity to instantiate a safety argument pattern based on the evidence and artefacts generated in that stage. Argument
patterns [8], which are modelled using the Goal Structuring Notation, can be used to explain the extent to which the
evidence supports the relevant EB safety claims. In Activity 2, we use the artefacts generated from Stage 1 (i.e. [A–E])
to instantiate the EB Assurance Scoping Argument Pattern ([F] – see Fig. 5). The instantiated argument [G] along with
other instantiated arguments resulting from the other five stages of AERoS constitute the safety case for the swarm. The
activities to instantiate argument patterns of the other stages follow a very similar pattern so are not shown due to space
limitations.

Figure 5: Emergent behaviour safety assurance scoping argument pattern.
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3.2 Stage 2: EB Safety Requirements Assurance

Stage 2 contains three activities (Fig. 6), which are performed to provide assurance in EB safety requirements for the
swarm.

Figure 6: Stage 2: The AERoS emergent behaviour safety requirements assurance.

Activity 3. Develop EB Safety Requirements The input to Activity 3 in Stage 2 is the Safety Requirements Allocated
to the Swarm [E]. We define EB safety requirements to specify risk controls for the swarm-level hazards by taking into
account the system architecture defined and the operating environment.

In the swarm context, we consider four types of requirements: performance, adaptability, human safety, and environment.
In particular, the environment requirements capture the need for the system to be robust to variation in the operative
space. We consider several safety metrics under each requirement category: (i) performance: low-impact and high-
impact collisions (the swarm should operate below a critical number of such collisions); (ii) adaptability: percentage of
swarm stationary outside of the delivery site, number of stationary agents, time since last agent moved; (iii) human
safety: velocity or average velocity of agents, swarm size, rate of humans encountered, proximity to humans; (iv)
environment: sum of objects in an area (the density of objects in the environment should not block swarm operation).
As the robot swarm is composed of many agents, there is potential for a large number of faults to occur at any given
time [13]. This motivates three further sub-categories for each of the performance, adaptability and human-safety
requirements: faultless operations, failure modes (graceful degradation), and worst case. Graceful degradation refers
to the acceptable level of faults, their impact, and how the system should react when faults occur. Worst case accounts
for the least acceptable impact the system should experience and the means to avoid it. A key output of Activity
3 is [H], which describes the EB Safety Requirements relating to: performance, adaptability, and environment (see
Table 1), as well as human safety (Table 2). These example requirements have been generated following three main
considerations: the hazards for each safety requirement type, the metrics [13] available to assess these hazards, and the
realistic thresholds [14] given the specification of the system.

Activity 4: Validate EB Safety Requirements The required input to Activity 4 is the EB Safety Requirements [H].
These are validated by both review and simulation. Firstly, the requirements derived for the cloakroom have been
reviewed by a safety-critical systems engineering expert to ensure that the specified EB safety requirements for the
swarm will deliver its intended safe operation. Secondly, we validated all safety requirements (excepting RQ3.5 from
Table 1) for the cloakroom system using the Gazebo 3D simulator. This simulation is an exact replica of the 4m x 4m
lab environment used for hardware implementation (see Fig. 7). In Activity 5, the artefacts generated in this stage are
used to instantiate the EB Safety Requirements Argument Pattern [I].

3.3 Stage 3: Data Management

When designing EB, input data for training an algorithm comes from local sensing of individual agents, both onboard
the agent itself and in its local environment. The activities and outputs in this stage take into account the complexities
of interactions between multiple agents.

Activity 6. Define Data Requirements In our adaptation of Activity 6, we take the EB Safety Requirements [H]
outlined in Stage 2 as an input (see Fig. 8). These safety requirements guide the data requirements in this activity,
feeding into the data specification outlined here. We split the data requirement outputs into two multi-agent focused
requirements: [L.0] Data Type Requirements and [L.1] Data Availability Constraints.

[L.0] Data Type Requirements: This element focuses on the relevance, completeness, accuracy, and balance of the
information that will be used to construct the swarm behaviour, and subsequently, to test the EB of the system before
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Table 1: Examples of performance, adaptability, and environmental safety requirements for the cloakroom scenario.

RQ Performance Requirements
1.1 The swarm shall experience < 1 high-impact (V > 0.5m/s) collisions across a day of faultless

operation.
1.2 The swarm shall experience < 0.1% increase in high-impact collisions across a day’s operation

with full communication faults occurring in 10% of the swarm.
1.3 The swarm shall experience < 0.1% increase in high-impact collisions across a day’s operation

with half-of-wheels motor faults occurring in 50% of the swarm.
1.4 The swarm shall experience < 2 high-impact (V > 0.5m/s) collisions across a day of faulty

operation.
1.5 The swarm agents shall weigh < 3kg and shall have acceleration < 4m/s so that the maximum

collision force in the swarm is within acceptable bounds.
1.6 The swarm agents shall only carry objects of weight < 2kg.

Adaptability Requirements
2.1 The swarm shall have < 10% of its agents stationary* outside of the delivery site at a given time.

*Assumption: Agents are considered stationary once they have not moved for > 10 seconds.
2.2 All agents of the swarm shall move at least every 100 seconds if outside of the delivery site.
2.3 The swarm shall experience < 10% increase in the number of stationary agents at any time with

half-of-wheels motor faults occurring in 50% of the swarm.
2.4 The swarm agents shall experience < 10% increase in stationary time with half-of-wheels motor

faults occurring in 50% of the swarm.
2.5 The swarm shall experience < 10% increase in number of stationary agents at any given time with

full communication faults occurring in 10% of the swarm.
2.6 The swarm agents shall experience < 10% increase in stationary time with full communication

faults occurring in 10% of the swarm.
2.7 The swarm shall have < 20% of its agents stationary* outside of the delivery site at a given time.

*Assumption: Agents are considered stationary once they have not moved for > 10 seconds.
Environmental Requirements

3.1 The swarm shall perform as required in environmental density levels 0-4 po of objects (sum of boxes
and agents per m2) in the environment.

3.2 The swarm shall perform as required when floor incline is 0-20 degrees.
3.3 The swarm shall perform as required in a dry environment.
3.4 The swarm shall perform as required in smooth-floored environments with step increases no greater

than 0.5cm.
3.5 The swarm shall only operate in environments where humans have devices that identify the

human’s location to the swarm agents.

Figure 7: 3D simulation created to validate several emergent behaviour safety requirements.

deployment. The relevance of the data used in the development of the EB specifies the extent to which the test
environment must match the intended operating domain of the robot swarm. The completeness of the data specifies the
conditions under which we test the behaviour, that is, the volume of experiments or tests that will be run, the variety
of tests executed, and the diversity of environments expected to be used in the testing process. The aim is to cover
a representative sample of conditions for testing. Accuracy in this context relates to how well the data captures the
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Table 2: Examples of human-safety requirements for the cloakroom scenario.

RQ Human-Safety Requirements
4.1 The swarm agents shall travel at speeds of less than 0.5m/s when within 2m distance of a trained

human (a worker who has received relevant training).
4.2 The swarm agents shall travel at speeds of less than 0.25m/s when within 3m distance of an attendee.
4.3 The swarm agents shall only come within 2m distance of a human < 10 times collectively across

1000 seconds of faultless operations.
4.4 The swarm shall only allow < 5 agents to request intervention from a trained human at a given

time.
4.5 A trained human shall monitor 5-20 agents at a given time.
4.6 The swarm shall only allow 1 agent to request input from an attendee at a given time.
4.7 An attendee shall receive information from < 5 agents of the swarm at a given time.
4.8 The swarm shall experience < 10% increase in human encounters across 1000 seconds of operation

with full communication faults occurring in 10% of the swarm.
4.9 The swarm shall experience < 10% increase in human encounters across 1000 seconds of operation

with half-of-wheels motor faults occurring in 50% of the swarm.
4.10 The swarm agents shall only come within 2m distance of a human < 20 times collectively across

1000 seconds of faulty operations.

parameter space defining the performance of the robot swarm. For example, an accurate dataset for what constitutes
a delivery in a logistics scenario [15] should track the footprint of a deliverable to ensure it is well-positioned in the
delivery zone (RQ7.1). Balance refers to the evenly distributed trials executed in the testing process of the EB algorithm.
By considering balance, we expect the number of tests conducted for failure modes or environments to be justified,
ensuring that there is not an unrealistic bias in testing towards a particular scenario. See Table 3 for examples of data
requirements relating to relevance, completeness, accuracy, and balance.

[L.1] Data Availability Constraints: With the introduction of multiple agents comes the issue of data availability.
Distributed communication is a key feature found in emergent systems. As such, it is crucial to define how much
information each agent is expected to hold, how easily data may transfer between agents, and across what range agents
should be able to transfer information between one another. Feasible constraints include [14]: (i) storage capacity: the
swarm agents shall have a maximum of 2 GB of information stored on board at any time; (ii) available sensors: the
swarm agents shall only have access to environmental data deemed feasibly collectable by radially positioned cameras
and laser time-of-flight sensors; (iii) communication range: the swarm agents shall only have access to other agent
data when within communications range of 5 metres; and (iv) operator feedback: the swarm agents shall only share
information with non-agents (e.g. operator terminal) when within communications range of 5 metres.

Figure 8: Stage 3: The AERoS data management process.
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Table 3: Examples of requirements for output [L.0].

RQ Relevance Requirements Examples
5.1 All simulations shall include environments with ranges of incline between 0-20°.
5.2 All simulations shall be conducted in a dry environment.

Completeness Requirements Examples
6.1 All simulations shall be repeated to include occurrences of faults representative of full communication

faults.
6.2 All simulations shall be repeated a sufficient number of times to ensure results are representative of

typical use.
6.3 All simulations shall be repeated in multiple environments representative of those expected in real-

world use of the system.
Accuracy Requirements Examples

7.1 All boxes shall only be considered ‘delivered’, if all four of the boxes’ feet are positioned within the
delivery zone.

7.2 All boxes shall only be considered ‘delivered’, once they are no longer in direct contact with a swarm
agent.
Balance Requirements Examples

8.1 All simulations shall be repeated so as to obtain representative evaluations for each possible mode of
failure (defined under performance, adaptability, and human-safety requirements in Stage 2).

8.2 All simulations shall be repeated equally across all test environments.

[M] Data Requirements Justification Report: This report is an assessment of the data requirements, providing analysis
and explanation for how the requirements and constraints ([L.0] and [L.1]) address the EB Safety Requirements [H].

Activity 7. Define Swarm Evaluation Requirements Taking the outputs [L.0] and [L.1] from Activity 6, the evaluation
requirements consider how the EB of the swarm will be assessed, specifying the testing environment and the metrics to
be used to assess the test results.

[N] Test Environment: This takes into consideration the requirements specified in Activity 6, and defines the environment
in which the EB will be tested. In most cases this will be multiple simulation environments featuring diverse sets
of the terrain, environmental conditions, and obstacle configurations. There may also be instances in which this test
environment is specified as a physical environment operating under laboratory conditions, with a hardware system
acting as a test bed to observe designed behaviours.

[O] Swarm Performance Metrics: This output is used to quantify how well the system is performing. While there may
be multiple performance metrics, these metrics should be defined with respect to the primary function of the robot
swarm. Metrics that might feature in this output could include: the delivery rate in a logistics scenario, the rate of area
coverage in an exploration task, or the response time in disaster scenarios.

[P] Verification Metrics: These metrics should be derived from the EB Safety Requirements [H] specified in Stage 2.
They are intended to be used as the criteria for success within the verification process. For example, swarm density,
which is used in verifying environmental safety specifications such as RQ3.1, maximum collision force experienced by
agents, which could be used to verify that the swarm meets performance requirements such as RQ1.1 and RQ1.2, or the
current speed of all agents, a metric relating directly to the human-safety requirements RQ4.1 and RQ4.2. Identifying
[P] early, ideally during the requirements assurance stage, allows consideration of [P] during the design and development
of the swarm to facilitate verification.

[Q] Sensing and Metric Assumptions Log: This log serves as a record of the details and decisions made in Activities 6
and 7. It should contain details of the choices made when producing the Test Environment [N], Swarm Performance
Metrics [M], and the Verification Metric [P].

Activity 8. Validate Evaluation Requirements Taking into account outputs [N], [O], and [P] from Activity 7, this
activity aims to validate these components with respect to the requirements specified in Activity 6. Should any
discrepancies exist between the data requirements and the evaluation requirements, they should be fully justified and
recorded in the output Swarm Evaluation Validation Results [S]. The artefacts generated in this stage are used to
instantiate the EB Data Argument Pattern [R] in Activity 9.

8



AERoS D.B. Abeywickrama and J. Wilson et al.

3.4 Stage 4: Model Emergent Behaviour

In the design of an EB algorithm, the challenge is in selecting behaviours at the individual level of the agents which
give rise to the desired EB at the swarm level. In our adaptation of AMLAS for the robot swarm, we step away from the
machine learning paradigm to allow consideration for all possible optimisation algorithms which may attain the target
EB.

Activity 10. Create EB Algorithm This can be nature inspired, hand designed, or evolved from a relatively simple set
of instructions for individual behaviour, which takes into account agent-to-agent and environmental interactions [16].
These instructions when given to a large number of agents, create a synergistic behaviour for the swarm that is more
powerful than the sum of the individual agent’s performance. The EB algorithm is engineered at the level of the
individual agent behaviours for the Test Environment output [N] from Stage 3. The resultant EB must meet the Safety
Requirements [H] defined in Stage 2 (see Fig. 9). In the cloakroom case study, the target EB for the swarm must ensure
that items are stored and retrieved by individuals whilst meeting all requirements specified. For example, performance
requirements RQ1.1 and RQ1.2 specify an upper bound on the low/high-impact collisions that a swarm shall experience
in a given time frame. These requirements may be fulfilled by constraining the maximum velocity of individual robots
or by ensuring that a robot has one or more sensory devices, such as a camera, enabling it to detect obstacles. The key
output from this activity is the Candidate EB [U] for testing.

Figure 9: Stage 4: The AERoS model learning process.

[V] Model Development Log: This should log the rationale in the design process of the EB algorithm, in particular how
all Safety [H] and Data Type Requirements [L.0] have been met given the Data Availability Constraints [L.1].

Activity 11. Test EB Algorithm In this activity, the candidate EB will be tested against the Swarm Performance
Metrics [O] produced in Stage 3. Testing ensures that the EB performs as desired with respect to the defined metrics
and in the case where performance passes accepted thresholds, the EB Algorithm [W] will be produced as the output of
the activity.

[Y] Internal Test Results: This output provides a degree of transparency in the testing procedure as the results may
be further examined to ensure tests have run correctly. In Activity 12, the artefacts generated in this stage are used to
instantiate the EB Argument Pattern [X].

3.5 Stage 5: Model Verification

Activity 13. Verify EB The inputs to the verification process are the EB Safety Requirements [H], Verification Scenarios
(Test Generation) [P], and the EB Algorithm [W] (see Fig. 10). The verification method and assessment process within
that method will be largely determined by the specifics of the safety requirements. Some safety specifications lend
themselves towards certain assessment methods due to the scenarios they prescribe. For example, to assess that the
robot swarm meets the requirements for performance given a motor-fault occurrence (see RQ1.3), it may be easier to
realise this in physical or simulation-based testing approaches rather than attempting to construct a formal model of
robot behaviour given the complex physical dynamics of a faulty wheel.

9
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Figure 10: Stage 5: The AERoS verification process.

However, when considering the adaptability requirements, a formal, probabilistic verification technique of the EB
Algorithm [W] is more suitable. For example, in RQ2.1, analysis using a probabilistic finite state machine of the
swarm behaviour could identify the dwell period within states. Monitors could be used to observe when agents enter
a stationary state, for example, agent_velocity=0 ∧ t_counter ≥ 100, and identify if time within that state
exceeds some fixed value, and ascertain a probabilistic value to this metric.

[P] Verification Scenario (Test Generation): In most cases there will be multiple, valid verification scenarios (test
cases) applicable for each of the safety specifications. A ‘good test case’ must be effective at finding defects, efficient
in minimising the number of tests required, use resources economically and be robust to system changes [17]. An
example of a test case could include a scenario of the swarm in a hazardous environment where too many boxes create
an obstacle.

Verification Results [AA] from individual assessments form entries in the Verification Log [BB]. The Verification Log
identifies assessments where assurance of the EB Algorithm [W] is acceptable with respect to the Safety Requirements
[H] and can be used as a set of evidence for building an assurance case. The artefacts generated in this stage are used to
instantiate the EB Verification Argument Pattern [CC] in Activity 14.

3.6 Stage 6: Model Deployment

Activity 15. Integrate EB With the EB verified, the next step is to take the EB Algorithm [W], System Safety
Requirements [A], Environment Description [B], and System Description [C] and integrate the EB with the system to
be deployed (see Fig. 11).

Figure 11: Stage 6: The AERoS model deployment assurance process.

In this activity, we use the inputs to this stage to inform the implementation of the EB and anticipate errors we might
expect in the interactions between agents and the overall EB. Despite the rigorous validation and testing conducted
in previous stages, there will still be a gap between the test environment and the intended, everyday-use, deployed
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scenario. The output, [EE] Erroneous Behaviour Log, captures these anticipated gaps between testing and reality and
the differences in behaviour that may surface.

Activity 16. Test the Integration Once the initial integration is complete, the physical implementation should undergo
additional testing in which the system will be observed in multiple operational scenarios, as specified in [FF].

[FF] Operational Scenarios: These scenarios should reflect the environment descriptions specified in [B], offering
real-world situations to examine the behaviour of the integrated system. The testing of the integrated system in these
true-to-operation environments should be conducted in a safe manner, ensuring that the entire multi-agent system can
be shut down in an emergency. In the cloakroom, an example of [FF] may take the form of a deployment of agents in a
controlled storage area that will not interfere with emergency services.

[GG] Integration Testing Results: Results from the integration testing will be reported here, detailing how the system
performs against the EB Safety Requirements [H] specified in Stage 2. The artefacts generated in this stage are used to
instantiate the EB Deployment Argument Pattern [HH] in Activity 17.

4 Discussion and Future Work

Using AMLAS [8] as a foundation, we have produced the six-stage development process AERoS. This process acts as
guidance for those looking to construct swarm robot systems, particularly those that exhibit emergent behaviour through
environmental and agent-to-agent interaction. The stages of AERoS break down the design of these systems to ensure
that fundamental safety requirements are adhered to, even in instances of system degradation and compounded failures
that should be expected, and managed, in robot swarms. We achieve this with an approach that allows for iteration of
and feedback to the previous stages as issues of safety are encountered and investigated. We combine this iteration with
repeated specification at each stage, observing the issue of safety through the lens of: data, modelling/behaviour design,
verification, and deployment.

While the iterative nature of AERoS is a key advantage, some limitations have been identified. First, the scope of
this work has been limited to investigating inherent swarm qualities and the emergent properties that arise from these.
However, one can expand on this, and consider adaptation of individual robots through techniques such as machine
learning (e.g. by applying AMLAS). Second, we can broaden the evaluation by considering additional swarm use cases
(e.g. monitoring fires in a natural environment, and also a social swarm), and by providing a worked example of the
entire AERoS process.

While the focus of the AERoS process is to ensure the safety assurance of EB in swarms, the trustworthiness of an
AS can be dependent on many factors other than safety. These include consideration of ethics, and governance and
regulation of AS design and operation. In future work, we intend to build on Porter et al.’s [18] Principle-based Ethical
Assurance Argument for AI and Autonomous Systems and develop ethics requirements for swarm robots around the
ethical principles of beneficence, non-maleficence, respect for autonomy, and justice. In addition to ethics requirements,
we intend to introduce regulatory requirements into the consideration of AS specification. In particular, we observe the
work of Macrae’s [19] Structural, Organisational, Technological, Epistemic, and Cultural (SOTEC) framework to help
us identify sources of socio-technical risk in Autonomous and Intelligent systems. Viewing regulatory requirement
analysis from a socio-technical perspective allows us to move away from a purely technical conception of requirements,
and helps us design AS that better fit the organisation and operators’ work in which safety considerations are meaningful
within the wider system and operational context. The relevance of SOTEC for crafting regulatory requirements for the
swarms in the cloakroom as a safety assurance mechanism will be described in a future paper.
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