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Abstract Lattices and their order diagrams are an essential tool for com-
municating knowledge and insights about data. This is in particular true
when applying Formal Concept Analysis. Such representations, however,
are difficult to comprehend by untrained users and in general in cases where
lattices are large. We tackle this problem by automatically generating tex-
tual explanations for lattices using standard scales. Our method is based on
the general notion of ordinal motifs in lattices for the special case of stan-
dard scales. We show the computational complexity of identifying a small
number of standard scales that cover most of the lattice structure. For these,
we provide textual explanation templates, which can be applied to any
occurrence of a scale in any data domain. These templates are derived using
principles from human-computer interaction and allow for a comprehensive
textual explanation of lattices. We demonstrate our approach on the spices
planner data set, which is a medium sized formal context comprised of
fifty-six meals (objects) and thirty-seven spices (attributes). The resulting
531 formal concepts can be covered by means of about 100 standard scales.

Keywords: Ordered Sets, Explanations, Formal Concept Analysis, Closure Sys-
tem, Conceptual Structures

1 Introduction

There are several methods for the analysis of relational data. One such method is
Formal Concept Analysis [4] (FCA). The standard procedure in the realm of FCA
is to compute the concept lattice, i.e., a data representation on the ordinal level of
measurement [16]. Ordered data structures are comparatively more comprehensible
for users than, e.g., Euclidean embeddings. Nevertheless, untrained users may have
difficulties in grasping knowledge from lattices (and lattice diagrams). Moreover,
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even trained users cannot cope with lattice structures of large size. In addition,
there are up until now only rudimentary methods to derive basic meaning of lattices
that are of standard scale [4, Figure 1.26].

A meaningful approach to cope with both issues is to employ more complex
ordinal patterns, e.g., scales composed from standard scales. A recent result byHirth
et al. [9] allows for the efficient recognition of such patterns, there called as ordinal
motifs. Based on these we propose a method to automatically generate textual
explanations of concept lattices. For the recognition of ordinal motifs we employ
scale-measures, i.e., continuous maps between closure spaces. These are able to
analyze parts of a conceptual structure with respect to a given set of scale contexts.
While this approach is very expressive there may be exponentially many scale-
measures. Therefore we introduce an importancemeasure of ordinal motifs based on
the proportion of the conceptual structure that they reflect. With this our method
can identify a small number of ordinal motifs that covers most of the concept lattice.

An advantage of employing sets of standard scales is their well-known struc-
tural semantic, cf. basic meaning Figure 1.26 [4]. Based on this we constructed for
every standard scale textual templates based on principle from human computer
interaction. In detail we applied the five goodness criteria [11] for explainability in
machine learning to ensure that the textual templates are human comprehensible.

Besides our theoretical investigations we provide an experimental example on
a real world data set of medium size. All proposed methods are implemented in
conexp-clj [5], a research tool for Formal Concept Analysis. Our approach is not
only beneficial for untrained users but also provides explanations of readable size
for concept lattices that are too large even for experienced users.

2 Formal Concept Analysis

Throughout this paper we presume that the reader is familiar with standard FCA
notation [4]. In addition to that, for a formal context K := (G,M,I) we denote
by K[H,N ] :=(H,N,I∩H×N) the induced sub-context for a given set of objects
H⊆G and attributesN⊆M . If not specified differently the lift of a map σ :G1→G2

on P(G1)→P(G2) is defined as σ(A) :={σ(a) |a∈A} where A⊆G1. The second
lift to P(P(G1))→P(P(G2)) is defined as σ(A) :={σ(A) |A∈A} for A⊆P(G1).
For a closure system A on G we call D a finer closure system, denoted A≤D, iff D
is a closure system on G and A⊆D. In this case A is coarser than D. We call D a
sub-closure system of A iff D is a closure system onH⊆G and D={H∩A |A∈A}.

Note that there are other definitions for sub-closure systems in the literature [7].

3 Recognizing Ordinal Motifs of Standard Scale

For the generation of textual explanations we recognize parts of the concept lattice
that match an ordinal motif, i.e., are isomorphic to a standard scale. For this task
we employ (full) scale-measures as introduced in the following.



Automatic Textual Explanations of Concept Lattices 3

Definition 3.1 (Scale-Measure (Definition 91 [4])). For two formal contexts
K, S a map σ :GK→GS is a scale-measure iff for all A∈Ext(S) the pre-image
σ−1(A)∈Ext(K). A scale-measure is full iff Ext(K)=σ−1(Ext(S)).

Wemay note that we use a characterization for full scale-measures (Definition 91
[4]) which can easily be deduced. The existence of a scale-measure from a contextK
into a scale context S implies that the conceptual structure of the image of σ in S is
entailed inB(K). Thus, if we are able to explain Swe can derive a partial explanation
of K. In contrast, for full scale-measures we can derive an exact explanation (up to
context isomorphism) ofK. Obviously, both scale-measures and full scale-measures
differ in their coverage of Ext(K), i.e., partial and exact. However, both morphisms
are defined on the entire set of objects G of K and are therefore global scope.

Even though global explanations are the gold standard for explainable arti-
ficial intelligence, they often elude from human comprehensibility due to their
size. Therefore we divide the problem of deriving a single global explanation into
multiple local explanations. To locally describe a part of context K a generalization
of scale-measures is introduced in Hirth et al. [9].

Definition 3.2 (Local Scale-Measures [9]). For two contexts K, S a map
σ :H →GS is a local scale-measure iff H ⊆GK and σ is a scale-measure from
K[H,M ] to S. We say σ is full iff σ is a full scale-measure from K[H,M ] to S.

Based on this we want to construct in the following templates for textual
explanations. The basis for these templates are standard scales. Given a context
K, a local (full) scale-measure σ of K into S we can replace every instance of an
object g∈GS in a textual explanation template of S by its pre-image σ−1(g)⊆G.
This yields a textual explanation of K with respect to σ.

For the standard scales, i.e., nominal, ordinal, interordinal, crown and contra-
nominal, we show textual templates in Section 5. These are designed such that they
can be universally applied in all settings. Prior to discussing the textual templates
we have to discuss how to recognize standard scales in a given formal context. The
general ordinal motif recognition problem was introduced in Hirth et al. [9]. In this
work the authors are only concerned with the recognition of ordinal motifs based
on scale-measures into standard scales. Nonetheless, we recall the general problem
for enumerating scale-measures.

Problem 1 (Recognizing Ordinal Motifs [9]). Given a formal context K and an
ordinal motif S find a surjective map from K into S that is:

global local

partial scale-measure local scale-measure
full full scale-measure local full scale-measure

Theunderlying decision problemofProblem1has beenproven to beNP-complete [9].
In a moment we will investigate a particular instance of this problem for standard
scales. But first we want to give the idea of how the recognition of standard scales
relates to the overall explanation task.
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In practice we consider families of standard scales for investigating a given
formal context K such that we have explanation templates for each scale. Thus we
have to solve the above problem for a family of scale contexts O. Moreover, usually
we are not only interested in a single scale-measure into a scale context S but all
occurrences of them.

Fortunately, for all standard scales but the crown scales is the existence of local
full scale-measures hereditary with respect to subsets of H ⊆G. For example a
context for which there exists a local full scale-measure σ :H→GS into the ordinal
scale of size three does also allows for a local full scale-measure into the ordinal
scale of size two by restricting σ to two elements of H. Thus when enumerating all
local full scale-measures a large number of candidates do not need to be considered.

Another meaningful restriction for the rest of this work is to consider local
full scale-measures only. Thus our methods focus on local full explanations (cf.
Problem 1). Moreover, this choice allows to mitigate the enumeration of all scale-
measures. For a family of standard scales of a particular type, e.g., the family of
all ordinal scales, let Sn be the scale context of size n. We thus consider only the
local full scale-measures σ :H→GSn of K where there is no local full scale-measure
H∪{g}→GSn+1

fromK to Sn+1 with g∈G,g 6∈H. For example, in case thatH is of
ordinal scale with respect to σ we can infer that all proper subsets ofH are of ordinal
scale. We remind the reader that we only consider surjective maps (cf. Problem 1).

Proposition 3.1 (Recognizing Standard Scales). Deciding whether for a
given formal context K there is a full scale-measure into either standard scale Nn,
On, In, Cn or Bn is in P.

Proof. WLoG we assume that K is clarified.
For a contranominal scale Bn := ([n], [n], 6=) every pair of bijective maps

(α : [n]→ [n], β : [n]→ [n]) is a context automorphism of Bn ([4]). Thus we can select
an arbitrary mapping from G into [n] and check if it is a full scale-measure from K
into the contranominal scale Bn. The verification of full scale-measures is in P [9].
The same reasoning applies to nominal scales Nn :=([n],[n],=).

For ordinal scales we need to verify that for each pair of objects their object
concepts are comparable. Hence, the recognition for ordinal scales is in P.

For an interordinal scale In := ([n], [n],≤)|([n], [n],≥) we can infer from the
extents of K of cardinality two two possible mappings σ≤,σ≥ that are the only can-
didates to be a full scale-measure. For interordinal scales the extents of cardinality
two overlap on one object each and form a chain. From said chain we can infer two
order relations of the objects G given by position in which they occur in the chain.
From the total order onG we can infer a mapping σ≤ :G→ [n] where the objects are
mapped according to their position. We can construct σ≥ analogously by reversing
the positions. All maps other than σ≤ and σ≥ would violate the extent structure of
the chain. For σ≤ and σ≥ we can verify in P either is a full scale-measure. Moreover,
the extents of cardinality two can be computed in polynomial time using TITANIC
or next_closure. Hence, the recognition for interordinal scales is in P.

For crown scales Cn := ([n], [n], J) where (a, b) ∈ J ⇐⇒ a = b or (a, b) =
(n,1) or b= a+1 we can select an arbitrary object g ∈ [n] and select repeatedly
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without putting back a different h∈ [n] with {g}′∩{h}′ 6={}. Starting from g there
is a unique drawing order. In order to find a full scale-measure we have to find an
isomorphic drawing order for the elements of G in the same manner. From this
we can derive a map G→ [n] with respect to the drawing order and verify if it is
a full scale-measure. The computational cost of the drawing procedure as well as
the verification is in P.

We may note that our problem setting in the contranominal case is related but
different to the question by Dürrschnabel, Koyda, and Stumme [2] for the largest
contranominal scale of a context K.

Once we can recognize standard scales we are able to provide contextual expla-
nations that are based on them. One may extend the set of scale to non-standard
scales, yet this may be computationally intractable if they cannot be recognized
in polynomial time.

While we are able to decide if a context K is of crown scale, it is NP-hard to
decide if it allows for a surjective scale-measure into a crown scale of size |G|.

Proposition 3.2. Deciding for a context K if there is a surjective scale-measure
into a crown scale of size |G| is NP-hard.

Proof. To show the NP-hardness of this problem we reduce the Hamilton cycle
(HC) problem for undirected graphs to it, i.e., for a graph G is there a circle(-path)
visiting every node of G exactly ones. This problem is known to be NP-complete.

For the reduction, we map the graphG :=(V,E) (WLoG |V |≥2) to a formal con-
textK :=(V,V̂ ∪E,∈) where V̂ :={{v}|v∈V }. This map is polynomial in the size of
the input. The set of extents of K is equal to V̂ ∪E∪{V,{}}. The context K accepts
a surjective scale-measure into the crown scale of size |G| iff there is a sequence of
extents of cardinality twoA1,...,An ofK such that (V,{A1,...,An})≤G is a cycle vis-
iting each object v∈V exactly ones. This is the case iffG has a Hamilton cycle.

First experiments [9] on a real world data set with 531 formal concepts revealed
that the number of local full scale-measures into standard scales is too large to be
humanly comprehended. Thus we propose in the following section two importance
measures for selection approaches.

4 Important Ordinal Motifs

Our goal is to cover large proportions of a concept latticeB(K) using a small set of
scale-measures S into a given set of ordinal motifs. We say a concept (A,B)∈B(K)
is covered by (σ,S)∈S iff it is reflected by (σ,S), i.e., there exists an extent D∈S
with σ−1(D)=A.

The above leads to the formulation of the general ordinal motif covering problem.

Problem 2 (Ordinal Motif Covering Problem). For a context K, a family of
ordinal motifs O and k∈N, what is the largest number c∈N such that there are
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surjective local full scale-measures (σ1,O1),...,(σk,Ok) of K with O1,...,Ok∈O and∣∣∣∣∣∣
⋃

1≤i≤k

(ϕK◦σ−1i )
(
Ext(Oi)

)∣∣∣∣∣∣ = c

where ϕK denotes the object closure operator of K. If K does not allow for any
scale-measure into an ordinal motif from O the value of c is 0.

We call the set {(σ1,O1),...,(σk,Ok)} an ordinal motif covering of K.
If one is able to find an ordinal motif covering that reflects all formal concepts

of K we can construct a formal context O which accepts a scale-measure (σ,S) if
and only if (σ,S) is a scale-measure of K.

Proposition 4.1 (Ordinal Motif Basis of K). Let K be a formal context with
object closure operator ϕK and ordinal motif covering {(σ1,O1),...,(σk,Ok)} that
covers all concepts of K, i.e., c= |B(K)|. Let

O :=|1≤i≤k (G,MOi
,IOi,ϕK), with (g,m)∈IOi,ϕK ⇐⇒ g∈ϕK

(
σ−1i ({m}IOi )

)
where | is the context apposition. Then is a pair (σ,S) a local full scale-measure

from K[H,M ] to S iff σ is a local full scale-measure from O[H,MO] to S. In this
case we call O an ordinal motif basis of K.

Proof. We have to show that the identity map is a full scale-measure from K to
O. Hence, we need to prove that all attribute extents of O are extents in K [7,
Proposition 20] and each extent of K is an extent of O. For an attribute m∈MSi
is {m}ISi,ϕ ∈Ext(K) per definition. The second requirement follows from the fact
that c= |B(K)|.

The just introduced basis is a useful tool when investigating scale-measures
of a context K given a set of ordinal motifs O. One can perceive O as a set of
analytical tools and the existence of O implies that a found ordinal motif covering
{(σ1,O1),...,(σk,Ok)} is complete with respect to scale-measures of K.

4.1 Scaling Dimension Complexity

An interesting problem based on the ordinal motif covering for (non-local) scale-
measures is to determine the smallest number k such that c= |B(K)|. This number
is also the scaling dimension [3] of K with respect to the family of scale contexts
O. Note that the scaling dimension for a given context K and family of scales O
does not need to exist. In the following we recall the scaling dimension problem
in the language scale-measures.

Problem 3 (Scaling Dimension Problem [3]). For a context K and a family of
scale contexts O, what is the smallest number d∈N of scale contexts S1,...,Sd∈S,
if existent, such that K accepts a full scale-measure into the semi-product

5
4

1≤i≤d
Si.
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The scaling dimension can be understood as ameasurement for the complexity of
deriving explanations for a formal context based on scale-measures and a set of ordi-
nal motifs. However, determining the scaling dimension is a combinatorial problem
whose related decision problem is NP-complete, as can be seen in the following.

Theorem 4.1 (Scaling Dimension Complexity). Deciding for a context K
and a set of ordinal motifsO if the scaling dimension is at most d∈N is NP-complete.

Proof. To show NP-hardness we reduce the recognizing full scale-measure problem
(RfSM) [9] to it.

For two input contexts K̂ and Ŝ of the RfSM let contextK :=K̂. We map ĉontext
to K and K̂[S] to the set of ordinal motifs O := {Ŝ} and set d= 1. This map is
polynomial in the size of the input.

If there is a full scale-measure from K̂ into Ŝ we can deduce that there is a full
scale-measure of K into the semi-product that has only one operand and is thus
just one element of O. Hence, this element is Ŝ and therefore the scaling dimension
is at most one. The inverse can be followed analogously.

An algorithm to decide the scaling dimension problem can be given by non-
deterministically guessing d scale contexts S1, ... ,Sd ∈ O and d mappings from
σi=GK→GSi . These are polynomial in the size of the input. The verification for
full scale-measures in P [9].

4.2 Ordinal Motif Covering with Standard Scales

The ordinal motif covering problem is a combinatorial problem which is computa-
tionally costly even for standard scales. Thus, we propose in the following a greedy
approach which has two essential steps. First, we compute all full scale-measures
S which is computationally tame due to the heredity of local full scale-measures
for standard scales. Our goal is now to identify in a greedy manner elements of S
that increase c of the ordinal motif covering the most. Thus, secondly, we select
k full scale-measures where at each selection step i with 1 ≤ i ≤ k we select a
scale-measure (σ,O)∈S that maximizes Equation (1).∣∣∣∣∣∣(ϕK◦σ−1)

(
Ext(O)

)
\
⋃

1≤j<i

(ϕK◦σ−1j )
(
Ext(Oj)

)∣∣∣∣∣∣ (1)

In the above equation (σj ,Oj) denotes the scale-measure that was selected at
step j ≤ i. The union is the covering number c of the ordinal motif covering
(σ1,O1),...,(σi−1,Oi−1). Overall, the computed cardinality is equal to the number of
concepts reflected by (σ,O) that are not already reflected by (σ1,O1),...,(σi−1,Oi−1).

For obvious reasons this approach results in the selection of scale-measures that
have the largest number of (so far) uncovered concepts.Adownside of this heuristic is
that it favors ordinal motifs that have in general more concepts, e.g., contranominal
scales over ordinal scales. To compensate for this we propose to normalize the
heuristic by the number of concepts of the ordinal motif, i.e.,

∣∣σ−1(Ext(O)
)∣∣.
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In the first step, the normalized heuristic does not account for the total size of
the ordinal motif. The first selected scale-measure covers at least the top extent, i.e.,
G, and thus the scores for all following ordinal motifs are at most |Ext(S)|−1/|Ext(S)|.

5 Human-Centered Textual Explanations

Wewant to elaborate on textual explanations of concept lattices based on principles
drawn from human-computer interaction for state of the art human-centered expla-
nations. One of the currently most applied fields of these explanations in computer
science is Explainable AI (XAI) [15]. Developing explainable systems commonly
begins with “an assertion about what makes for a good explanation” [13], which
are not seldomly based on guidelines or collections of principles. Those principles
aim to derive human-centered textual explanations that impart complex concepts
in a manner that is accessible, relevant, and understandable. They are designed
to cater to the individual cognitive and emotional needs of readers, anticipating
their concerns and queries. Thereby they aim at fostering the understanding of
the reader by exposing reasoning and additional information to accompany data
structures they rely on [17]. Moreover, textual explanations based on goodness
criteria in the context of computer-generated knowledge and information help to
strengthen trust in the computed reasoning results [11].

Mamun et al. [11] proposed five goodness criteria for explainability in the context
of machine learning models. We identify them as adaptable to our task for textual
explanations of concept lattices. The first criterion is accuracy, which requires that
an explanation is a valid reflection of the underlying data. [14]. The second criterion
is scope, which refers to the level of detail in the explanation, which can vary from
explaining a single action to a global description of a system, depending on the
tasks and needs of the reader. The third criterion relates to the type of question the
explanation answers, which is called the explanation form criterion. The questions
can be of type “what. . . ”, “why. . . ”, “why not. . . ”, “what if. . . ”, or “how to. . . ”. This
is related to the so-called explanation triggers identified by Mueller et al. [12].
In their study, Mamun et al. [11] found that many explanations in Explainable
AI contexts were “what” statements. The fourth criterion is simplicity, which
emphasizes the importance of making an explanation easy to read and understand
(e.g., Kulesza et al. [10]). Mamun et al. [11] suggested testing the appropriate
readability level by comparing the grade level of other related content with one’s
explanations. Finally, the fifth criterion is the knowledge base criterion, which
emphasizes the importance of providing workable knowledge in the explanation.
Thus, explanations should predominantly be written as factual statements [11]. In
the following, we first propose our textual explanation templates for standard scales
and afterwards discuss how the principles above are implemented in their design.

Nominal Scale: The elements n1, ... , nk−1 and nk are incomparable, i.e., all
elements have at least one property that the other elements do not have.

Ordinal Scale: There is a ranking of elements n1,...,nk−1 and nk such that an
element has all the properties its successors has.
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Interordinal Scale: The elements n1,...,nk−1 and nk are ordered in such a way
that each interval of elements has a unique set of properties they have in
common.

Contranominal Scale: Each combination of the elements n1,...,nk−1 and nk
has a unique set of properties they have in common.

Crown Scale: The elements n1,...,nk−1 and nk are incomparable. Furthermore,
there is a closed cycle from n1, over n2,...nk−1 and nk back to n1 by pairwise
shared properties.

We motivate how our setup based on scale-measures relates to the goodness
criteria above.

Accuracy The generation of textual explanations are based on ordinal motif
coverings with scale-measures, i.e., continuous maps between closure spaces.
These maps do not introduce any conceptual error [8]. Moreover, ordinal motif
coverings can function as a basis for the complete conceptual structure of the
data set with respect to Proposition 4.1. Therefore an accurate mapping of
an explanation onto the represented information is guaranteed.

Scope For the scope of the introduced explanations we differed between global
and local explanations which is determined by the choice of scale-measures, i.e.,
local vs non-local. In addition to that we can differentiate between two kinds of
coverage, i.e., full and non-full scale-measures. However, with our experiments
and the ordinal motif covering we focus mainly on local full explanations.
Altogether, we can serve different task requirements with the explanations.

Explanation Form The main question addressed by ordinal motifs is dependent
on the type of scale-measure. For full scale-measures we answer the question
on “What is the conceptual relation between a given set of objects.” and for
non-full scale-measures we answer “What is a conceptual relation between a
given set of objects.”.

Simplicity The presented explanations arewritten using terms familiar for readers
with basic knowledge about graphs and mathematical descriptions. Formu-
lations that require prior knowledge about conceptual structures have been
avoided. In addition to that, the textual structure is kept simple and expla-
nations are composed of at most two short sentences.

Knowledge Base The generated textual explanations describe the conceptual
relations between objects and can thus be considered to be factual statements.

All proposed textual explanations are designed to be applicable in every data
domain that is representable by formal contexts. However, different data domains
and applications come with different requirements for the design of human-centered
textual explanations. Thus, a development of domain specific explanations for a
large variety of settings is advisable. Given more general principles of HCI [1], user
studies with the prospective users of a system are the gold standard in evaluating
any kind of interaction [11]. Since the focus of this work is to introduce the the-
oretical foundation on how to derive human-centered explanations we deem the
execution of a user study future work.
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6 Application Example

To show the applicability of our method, we compute the ordinal motif covering
for the spices planner data set [6]. This context contains fifty-six meals as objects
and thirty-seven spices and food categories as attributes. The context has 531
formal concepts for which we found over ten-thousands local full scale-measures
into standard scales.In Table 1 we recall results [9] on how many local full scale-
measures there are per family of standard scales. The most frequent ordinal motif
of the spices planner context is the interordinal motif. The motif having the largest
scale size is the nominal scale motif, which includes up to nine objects. There are
no non-trivial ordinal scale motifs in the spices planner context, i.e., the size of
all local full scale-measure domains into ordinal scales within the spices planner
context is one. Therefore we exclude the ordinal scales from the following analysis.

Table 1. Results for ordinal motifs [9] of the spices planner context. Every column
represents ordinal motifs of a particular standard scale family. Maximal lf-sm is the
number of local full scale-measures for which there is no lf-sm with a larger domain.
Largest lf-sm refers to the largest domain size that occurs in the set of local full scale-
measures.

nominal ordinal interordinal contranominal crown
local full sm 2342 37 4643 2910 2145
maximal lf-sm 527 37 2550 1498 2145
largest lf-sm 9 1 5 5 6

In our experiment we applied the introduced greedy strategy. In Figure 1 we
report the extent sizes of selected ordinal motifs. In the left diagram we depict in the
abscissa the steps of the greedy selection and in the ordinate the number of newly
covered concepts. We report the results for the standard scales individually and
combined, for the later we also experimented with the normalized heuristic. In the
right diagram we depict the accumulated values, i.e., the value c. First we observe
that the normalized heuristic does not decrease monotonously in contrast to all
other results. From the right diagram we can infer that the crown, interordinal and
nominal are unable to cover all extents. The contranominal and the combined scale
family took the fewest selection steps to achieve complete extent coverage. This
followed by the normalized heuristic on the combined scale family which about
thirty percent more steps. Out of the other scale families the crown scales achieved
the highest coverage followed by the interordinal and nominal scales.

With Figure 2 we investigate the influence of the normalization on the greedy
selection process. For this we depict the relative proportion of selected scale types
up to a step i (abscissa). The left diagram shows the proportions for the standard
heuristic and the right reports the proportions for the normalized heuristic. We
count ordinal motifs that belong to multiple standard scale families relatively. For
example we count the contranominal scale of size three half for the crown family.
In the first diagram we see that a majority of the selected ordinal motifs are of
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Figure 1. The extent coverage (left) for the ordinal motif covering computation for all
and each standard scale family individually. The right diagram displays the accumulated
coverage at each step in the ordinal motif covering computation. The legend of the left
diagram does also apply to right diagram with the addition of the total number of extents
(pink) in the context.

contranominal scales. This is not surprising since they have themost concepts among
all standard scales. The interordinal and crown scales are almost equally represented
and the nominal motifs are the least frequent. In contrast to this the normalized
heuristic selects crown and interordinal motifs more frequently (right diagram).

Overall we would argue that while the normalized heuristic produces slightly
worse coverage scores they provide a more diverse selection in terms of the standard
scales. Therefore, the normalized heuristic may result in potentially more insightful
explanations.

Figure 2.The ratio of each standard scale family in the ordinalmotif covering computation
for the standard (left) and normalized heuristic.

We conclude by providing automatically generated textual explanations for
spices planner context. For this we report the top ten selections for the standard
and normalized heuristic. First we depict the explanations for the standard heuris-



12 Johannes Hirth , Viktoria Horn, Gerd Stumme, and Tom Hanika

tic which consist solely of contranominal motifs. Thereafter we will turn to the
normalized heuristic results.

1. Each combination of the elements Thyme, Sweet Paprika, Oregano, Caraway
and Black Pepper has a unique set of properties they have in common.

2. Each combination of the elements Curry, Garlic, White Pepper, Curcuma and
Cayenne Pepper has a unique set of properties they have in common.

3. Each combination of the elements Paprika Roses, Thyme, Sweet Paprika,White
Pepper and Cayenne Pepper has a unique set of properties they have in common.

4. Each combination of the elements Paprika Roses, Thyme, Allspice, Curry and
Curcuma has a unique set of properties they have in common.

5. Each combination of the elements Thyme, Basil, Garlic, White Pepper and
Cayenne Pepper has a unique set of properties they have in common.

6. Each combination of the elements Tarragon, Thyme, Oregano, Curry, and Basil
has a unique set of properties they have in common.

7. Each combination of the elements Vegetables, Caraway, Bay Leef and Juniper
Berries has a unique set of properties they have in common.

8. Each combination of the elements Meat, Garlic, Mugwort and Cloves has a
unique set of properties they have in common.

9. Each combination of the elements Oregano, Caraway, Rosemary, White Pepper
and Black Pepper has a unique set of properties they have in common.

10. Each combination of the elements Curry, Ginger, Nutmeg and Garlic has a
unique set of properties they have in common.

These explanations cover a total of 195 concepts out of 531. An interesting
observation is that explanation number eight has only four objects compared to
the five objects of explanation number nine. Yet, explanation eight was selected
first. The reason for this is that number eight has more non-redundant concepts
with respect to the previous selections.

The results for the normalized heuristic are very different compared to the
standard heuristic. The ten selected motifs cover a total of 125 concepts. They
consist of one interordinal motif, four contranominal, one nominal and four motifs
that are crown and contranominal at the same time. For the ordinal motifs that
are of crown and contranominal scale we report explanations for both.

1. The elements Thyme, Caraway and Poultry are ordered in such a way that each
interval of elements has a unique set of properties they have in common.

2. Each combination of the elements Curry, Garlic, White Pepper, Curcuma and
Cayenne Pepper has a unique set of properties they have in common.

3. Each combination of the elements Allspice, Ginger,Mugwort and Cloves has
a unique set of properties they have in common.

4. Each combination of the elements Sweet Paprika,Oregano, Rosemary and Black
Pepper has a unique set of properties they have in common.

5. Each combination of the elements Sauces, Basil and Mugwort has a unique set
of properties they have in common.
The elements Basil, Sauces and Mugwort are incomparable. Furthermore, there
is a closed cycle from Basil over Sauces and Mugwort back to Basil by pairwise
shared properties.
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6. Each combination of the elements Paprika Roses, Meat and Bay Leef has a
unique set of properties they have in common.
The elementsPaprika Roses,Meat andBay Leef are incomparable. Furthermore,
there is a closed cycle from Paprika Roses over Meat and Bay Leef back to
Paprika Roses by pairwise shared properties.

7. Each combination of the elements Saffron, Anisey and Rice has a unique set
of properties they have in common.
The elements Saffron, Anisey and Rice are incomparable. Furthermore, there
is a closed cycle from Saffron over Anisey and Rice back to Saffron by pairwise
shared properties.

8. Each combination of the elements Vegetables, Savory and Cilantro has a unique
set of properties they have in common.
The elements Savory, Cilantro and Vegetables are incomparable. Furthermore,
there is a closed cycle from Savory over Cilantro and Vegetables back to Savory
by pairwise shared properties.

9. The elements Tarragon, Potatos and Majoram are incomparable, i.e., all ele-
ments have at least one property that the other elements do not have.

10. Each combination of the elementsPaprika Roses,Thyme, Sweet Paprika,White
Pepper and Cayenne Pepper has a unique set of properties they have in common.

7 Conclusion

To the best of our knowledge our presented method is the first approach for the auto-
matic generation of textual explanations of concept lattices. It is a first step towards
making Formal Concept Analysis accessible to users without prior training in math-
ematics. Our contribution comprises the theoretical foundations as well as the prepa-
ration of human-centered textual explanations for ordinal motifs of standard scale.

In particular, we have shown that the recognition of standard scales can be
done in polynomial time in the size of the context. This is also the case when the
standard scale has exponential many concepts. This is a positive result for the
generation of textual explanations of large real world data sets.

Based on ordinal motif coverings we are able to limit the generated textual
explanations to a low number of non-redundant conceptual relations. In detail, we
proposed a greedy method for the computation of ordinal motif coverings based
on two heuristics.

To asses the complexity of potential textual explanations of a concept lattice,
we showed the relation between ordinal motif coverings and the scaling dimension.
For the later we proved that the computational complexity of the related decision
problem is NP-complete.

Accompanying our theoretical investigation, we derived criteria on how to de-
rive textual explanations for ordinal motifs with principles from human-computer
interaction. In addition to that, we demonstrated the applicability of our approach
based on a real world data set.

As a next logical step, we envision a participatory user study. This will lead
to improved textual explanations for ordinal motifs that are easier to comprehend
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by humans. Moreover, the development of domain specific textual explanations
may increase the number of applications for our proposed methods.
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