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Abstract. The amount of different environments where data can be
exploited have increased partly because of the massive adoption of tech-
nologies such as microservices and distributed architectures. Accordingly,
approaches to treat data are in constant improvement. An example of
this is the Formal Concept Analysis framework that has seen an increase
in the methods carried out to increment its capabilities in the mentioned
environments. However, on top of the exponential nature of the output
that the framework produces, the data stream processing environment
still poses challenges regarding the flexibility in the usage of FCA and its
extensions. Consequently, several approaches have been proposed to deal
with them considering different constraints, such as receiving unsorted
elements or unknown attributes. In this work, the notion of flexibly scal-
able for FCA distributed algorithms consuming data streams is defined.
Additionally, the meaning of different scenarios of lattice merge in a par-
ticular data stream model is discussed. Finally, a pseudo-algorithm for
merging lattices in the case of disjoint objects is presented. The presented
work is a preliminary result and, in the future, it is expected to cover
the other aspects of the problem with real data for validation.

Keywords: Formal Concept Analysis · Lattice Merge · Scalability · In-
cremental Algorithm · Data Stream.

1 Introduction

Formal Concept Analysis (FCA), introduced by Wille in [16], is a method for
knowledge extraction from a dataset consisting of instances and their attributes.
The knowledge it allows to extract is a set of formal concepts, which can be un-
derstood as natural clusters of instances sharing certain properties. For example,
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as depicted in Table 1 and Figure 1, in a dataset with electronic devices, there
would probably be a concept with the attribute “screen” in which the instances
of television and mobile phone would belong to. In addition, there is the notion
of sub-concept by inclusion of attributes, e.g., following the last example, there
could be a sub-concept with the attributes “screen” and “battery” that would
include mobile phone and, unlike its super-concept, it would not include the in-
stance of television. These formal concepts can give additional information with
the form of “having X attributes implies also having Y ”, e.g., “instances with
batteries also have screen with a certain confidence”. Notice that the structural
output is bounded to the input, meaning that the mentioned result does not
imply that all instances with batteries also have a screen in the real world.

Objects
Attributes

Screen Battery

Television X
Mobile Phone X X

Table 1: Electronic devices dataset

Battery

Screen

Mobile Phone

Television

Fig. 1: Electronic devices con-
ceptual hierarchy

Over the last decades, FCA has been used in several areas such as knowledge
discovery, information retrieval, machine learning, or automatic software mod-
elling, among others. Additionally, it has been extended in a plethora of ways to
deal with the arising problems posed in the mentioned different areas. To name
a few, Relational Concept Analysis (RCA) [13], is one extension that allows
dealing with multi-relational data-mining (MRDM) [4]. Fuzzy Formal Concept
Analysis (FFCA) [8] is the extension that looks to model the uncertainty in data
by considering that the instances can have attributes with a degree of certainty
in the range of [0, 1], instead of their traditional binary nature, i.e., either hav-
ing an attribute or not. And Temporal Concept Analysis (TCA) [17], that is the
theory of temporal phenomena described with tools of FCA. All these extensions
add some degree of flexibility to the FCA method by incrementing the amount
of applications it can naturally interact with. However, one of the main pitfalls
of FCA is that the amount of formal concepts is exponential in the size of the
input in the worst case, making even the best algorithms not directly usable with
huge datasets. This poses a problem for scalability because as the input grows
bigger, algorithms and computers would require exponentially more resources in
order to handle the calculation of the entire set of formal concepts.

Moreover, the need for processing large datasets is becoming more and more
common nowadays and a considerable effort has been put into allowing FCA to
be applied in such datasets. For organization purposes, we consider three ways
of addressing the mentioned problem: reducing the size of the input [1], reducing
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the size of the output [14,12], and allowing the algorithm to scale in resources
and capabilities [6,5,2]. In this work, we focus on the third one, although it is
important to understand that the approaches are not mutually exclusive, e.g.,
there could be a method for reducing both the input and output, or any other
combination. Moreover, although there could be other approaches to address the
problem, they are out of the scope of this paper.

There are several reasons why reducing the input or the output is sometimes
not enough. On the one hand, not all datasets are made of relevant and not
relevant data, for example, we could consider a large dataset that has already
been reduced to the minimum, i.e., there is only relevant information left. In
addition, even though reducing the size of the output could work very well,
the information loss could be not acceptable in some situations. Hence, it is
important to have ways of scaling without reducing the size of the input or the
output. On the other hand, not all environments for knowledge discovery are the
same, in some of them it is reasonable to work with static data and also to wait
a considerable amount of time until the algorithm finishes. However, there are
other scenarios in which the data is dynamic and there is the need for processing
it in a short span of time as it arrives. For this reason, we will focus on the online
real-time data streams processing environment.

To deal with the aforementioned problem, as mentioned before, many ap-
proaches have been proposed and are currently used both in the industry and
the academy. Firstly, one of them is the reduction of the input size by consid-
ering only a part of, for example, the attributes [1]. Secondly, another way of
dealing with the exponential size of the formal concepts is to calculate only a
subset of them, as it is in the case of Iceberg Lattices [14] and AOC-posets [12].
Lastly, a huge effort has also been put in developing distributed algorithms in
order to take advantage of parallelization when possible [6,5,2]. Nevertheless, to
the best of our knowledge, there is still no algorithm, distributed or not, that
can be flexibly used to extract knowledge from infinite data streams (i.e., once
the data stream starts, it never stops producing data). Despite some algorithms
being able to process data streams, and even if they are incremental, this does
not scale well because at some point even adding one row to the formal con-
text would be computationally too costly. Thus, in this work, we present the
definition of a problem to solve in order to have a more flexible scalability in
the environment of FCA and its extensions considering the infinite constraint in
data stream processing.

As for the structure of the paper, in section 2, a set of relevant works in the
area of distributed algorithms for FCA for data stream processing are presented
and contrasted. In section 3, the definitions and the problem are precisely de-
fined. In section 4 the first approach of a solution is proposed. Finally, in section 5
the conclusion, future work, and final discussions are given.
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2 Related Works

Many distributed algorithms have been proposed [6,18,5,2], with their main ad-
vantage being the ability to compute in parallel and in that way reducing the
amount of time it takes to process the output. Most of the distributed algo-
rithms use the MapReduce framework [3] which is appealing to practitioners
mainly because they are easily implementable into cloud infrastructures.

In this section, we direct our attention to three main works in the field of
distributed algorithms in FCA: one presenting the incremental distributed algo-
rithm based on AddIntent in an iterative fashion, other considering the constraint
of not knowing the attributes in advance, and the last one being the only work,
to the best of our knowledge, that can run infinitely by forgetting concepts as it
processes the data stream. Thanks to an ongoing state-of-the-art study on the
characteristics of formal methods for knowledge extraction, and to the best of
our knowledge, we detected that these articles represent well the state of the art
in data stream processing algorithms for FCA (a subset of the reviewed articles
can be found in [7]).

Firstly, Xu et al. [18] contribute with the iterative distributed implementa-
tions of some known lattice calculation algorithms such as Ganter and Ganter+
which they call MGanter and MGanter+. They present theoretical properties
about partitioning the input and working with the partitions instead of the
entire formal context. And finally, they use the properties to argue about the
correctness of their MapReduce algorithms. The strengths of this approach are
that it uses a well accepted framework such as MapReduce, and that it is in-
cremental, which means that it updates the final lattice as the new rows arrive.
This also means it is possible to adapt it to process streams.

Secondly, Goel et al. [5] present a MapReduce algorithm that updates the
final lattice without assuming prior knowledge of the attributes and thus allows
the arbitrary distribution of the formal context. They calculate the lattice from
a snapshot taken at a particular time, and leave the merging step of several
snapshots out of the scope. Additionally, the algorithm is more suitable for
sparse context than for dense ones.

Lastly, De Maio et al. [2] present an incremental distributed algorithm based
on AddIntent [10], and suitable for online stream processing. It uses time interval
windows in which only one observation is taken into account from each node.
Moreover, the proposed algorithm uses Temporal FFCA instead of plain FCA,
in order to maintain a reasonably small lattice by taking full advantage of the
concepts’ support. In the algorithm, they also forget old concepts when there
have not been many occurrences of an object in it in a certain time window.

Supp(C) =
|extent(C)|

|G|
e−λ(t−tlio) (1)

The mechanic of “forgetting” is calculated based on a decay factor 0 ≤ λ ≤ 1
that decreases the support of a formal concept C based on how much time has
passed since the last object has been inserted into it. In the Equation 1, G is
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the set of all objects, t is the current timestamp and tlio is the timestamp of the
last inserted object into the concept C.

All these distributed algorithms have their advantages and disadvantages,
and particularly, the ones presented in [18,5] are not directly prepared for infinite
data stream processing, contrary to [2] which, although it is an online data stream
processing algorithm, it is based on an extension of FCA [8], and it is not trivial
to migrate it into its FCA version.

3 Flexibly scalable FCA for data streams

The goal of this section is to present a discussion about how to provide enough
flexibility in terms of scalability for stream processing. As presented in the pre-
vious section, there are several algorithms that are able to process data streams,
and some of them can run infinitely by “forgetting” some information. However,
doing so risks losing important concepts. For instance, let us suppose an FCA
algorithm that runs in a data stream to study temporal phenomena in smart
cities. By forgetting concepts without an object contributing to it in the defined
threshold λ, it is possible to lose concepts representing scenarios that rarely
occur, but have a huge impact when they do occur. Such a concept could be
the one representing a flood in a certain neighborhood or a protest that block
certain streets. Therefore, the ideal scenario would be to be able to perform
FCA on a data stream infinitely, without compromising too much the amount
of information lost.

As illustrated in Figure 2, and defined in [9], a data stream is a countably
infinite sequence of elements.

e1 e2 . . . ek . . . time

k elements

Fig. 2: Data stream over time

Regarding the usage of FCA in data stream processing, the model this work
considers is the one in which elements represent observations (instances) oc-
curring at a certain point in time, having certain properties (attributes). This
model has been addressed in [11,2], where the goal is to extract relevant knowl-
edge from the relations between events (concepts) in time (temporal paths). In
these works, the models were based on FCA and FFCA respectively. We call
it Ordered Temporal Model (OTM) because the observations occur ordered in
time.
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3.1 Merge lattices

A way of dealing with both the necessity of running infinitely, and the ability to
regain a part of the lost information, is to consider an algorithm that keeps the
size of the lattice bounded, and another algorithm that can perform the union
or merge of the lattices calculated in different points in time. Doing so would
give the practitioners the flexibility to choose the size they are able to maintain
given their resources, without the worry of losing all the information outside the
lattice they are maintaining. This, however, comes at the cost of having to store
the snapshots in a certain way, which goes outside the scope of this paper.

Definition 1. Let G and M be the objects and attributes of a formal context
respectively. The content of a Formal Context data stream in a given moment
k ∈ N is defined as an indexed family Sk = (rj)j∈1..k where rj ⊆ G×M .

Definition 2. Given a Formal Context data stream Sk, we define the underlying
traditional Formal Context K = (G,M, I), where G = {π1(r) | r ∈ Sk}, M =
{π2(r) | r ∈ Sk}, gIm ⇐⇒ ⟨g,m⟩ ∈ Sk, and both π1 and π2 are the functions
that return the first and second element of the tuple respectively.

Definition 3. A snapshot of a Formal Context data stream between moments
k, l ∈ N is the sequence of tuples Sk,l = Sl \ Sk.

5. For convenience, we will use
the notation Lk,l when speaking about the underlying lattice from Sk,l.

In particular, there are three cases we consider important to highlight for
merging different lattice snapshots. The first one, depicted in Figure 3, is the
one in which the goal is to merge Lk,l with Ll+1,m. The second one, depicted
in Figure 4, is the one where the goal is to merge Lk,l and Ln,m and l < n
i.e., there is at least one element outside the covered range. And the last one,
depicted in Figure 5, is the one in which the goal is to merge two snapshots Lk,l,
and Ln,m, where k ≤ l, n ≤ m, and n < l. The separation in cases is thought
with two things in mind (1) Computation: in case there is repeated information
between the two snapshots, the computation cost of merging might be reduced
in comparison with the case in which both snapshots are completely disjoint.
(2) Interpretation: what should be the interpretation of the result when merging
two snapshots that are not contiguous?

ek ek+2 . . . el el+1 . . . em . . . time

Sk−1,l Sl,m

Fig. 3: Contiguous lattice snapshots merge.

5 Notice that l ≤ k implies Sk,l = ∅
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ek ek+2 . . . el . . . en . . . em . . . time

Sk−1,l Sn−1,m

Fig. 4: Spaced lattice snapshots merge case.

ek ek+2 . . . el el+1 . . . em . . . time

Sk−1,l+1

Sl−1,m

Fig. 5: Intersected snapshots merge case.

Regarding the model, the main problem is that although we could use in-
cremental algorithms to calculate their lattices, at some point the k would be
so large that even performing one more update would be too costly, either in
time or in space. Thus, for a flexible method whose goal is to run infinitely, it is
mandatory to consider “forgetting” objects, attributes, or concepts. Neverthe-
less, doing so implies potentially losing relevant information, meaning that it is
equally necessary to have a way of merging different snapshots of the stream,
as suggested in [5]. Although one option is to simply join the intervals, remove
duplicates, and apply the algorithm to the result, it could be possible that there
are not enough resources to run the algorithm with such an input. Moreover,
considering that a lattice for each interval has already been calculated, maybe
working with them would be more efficient than recalculating everything from
the ground up.

Considering this, we say that a method is flexibly scalable for knowledge
extraction in data stream processing, if it allows running in the data stream
infinitely, and it provides a way of considering “forgotten” information without
the necessity to recalculate or traverse the whole lattice.

Merge problem in the OTM As defined in [2] and in the previous section, the
data stream model merges FCA with Conceptual Time Systems by indexing the
timestamped objects adding a time variable to the subject of the formal context,
i.e., gti with g ∈ G. In this definition, t represents a time window, i ∈ N, and
gti is the latest observation g occurring in the time window assigned to that
specific time variable. The larger the time window, the more general the study,
the smaller, the more detailed it is. Formally (based on [11]):

– g represents a type of observation, e.g., change in temperature of the envi-
ronment,

– ti is the i-th element in a discretization of time with the time window t,
– gti is the last occurrence of g in the time ti,
– ti precedes tj if i < j for any two i, j ∈ N.
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Definition 4. (Definition 3.4 in [2]) The intention of an object O at time ti is
defined as

i{Oti} = {m | m ∈ M ∧OtiIm}

which is the set of all attributes of that particular object at time ti.

Definition 5. A Temporal Lattice Lt is a pair (L, Et) where L = (C,≤) is a
concepts lattice and Et is a set of temporal edges (see Definition 6).

Definition 6. (Based on the definition 3.7 in [2]) Given the set of concepts C,
a Temporal Edge etij ∈ Et is a pair (Ci, Cj) ∈ C × C iff there exist two objects
gts ∈ Ci and gtk ∈ Cj such that the time ts precedes the time tk.

The temporal edges have a weight associated with the time granule size
function ∆t : Et → R defined by ∆t(etij) = 1/|ts′−tk′ |. Furthermore, they define
a function that filters edges that are not so representative, called Temporal Edge
Support (TES). For the purpose of this work, we would consider the function,
but without any particular definition.

Definition 7. (Definition 3.9 in [2]) A temporal path is defined as a path
π = (Cs, . . . , Ct) ∈ C × C × . . . C, such that there exist a temporal edge etij ∈ Et

for s ≤ i ≤ j ≤ t.

In this context, the merge problem is defined by, given two temporal lattice
snapshots Lt

k,l = (L1, E
t
1), Lt

n,m = (L2, E
t
2), return a lattice L̂t = (L̂, Êt) such

that L̂ = L1 | L2 (see Definition 8), and Êt is the set of temporal edges in the
new lattice with a TES support above the given threshold.

Definition 8. Given two lattices L1, and L2 coming from the contexts K1 =
(G1,M1, I1) , and K2 = (G2,M2, I2), their merged lattice L1 | L2 is defined as
the resulting lattice from the following formal context:

K1 | K2 = (G1 ∪G2,M1 ∪M2, I1 ∪ I2) (2)

Notice that in the worst case, the |G1∪G2| = (l−k)+(n−m), so the merge
algorithm that calculates it will still be bounded by its size, that could be up to
2max(|G1∪G2|,|M1∪M2|).

4 Merge Lattice Snapshots

In this section, the different cases and particularities in the implementation of
lattice snapshot merge in the OTM data stream model are discussed. Moreover,
a pseudo-algorithm for the lattice snapshot merge in the disjoint data streams
case is presented.
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4.1 Interpretation

In the contiguous and intersected merge cases, the model should have the inter-
pretation: after performing the merge, the resulting lattice represents the same
as if the incremental algorithm had run from point k to m. However, that is not
the case when there are elements in the middle that are lost between l and n. In
OTM, there would be some gti where g either has been previously introduced or
not. On the one hand, if it was not previously introduced (i.e., i = 1) there would
be no impact in the temporal paths, besides losing the first part of them (see
Figure 6). On the other hand, if g was previously introduced, it would simplify
the path in the erased part by taking much less granular edges (see Figure 7).

lost

remains

l n

Fig. 6: Temporal path after merging
when gti occurs for the first time be-
tween l and n

remains

lost
l n

rem
ain

s

lessgranularedges

Fig. 7: Temporal path after merging
when gti occurs before l

4.2 Computation

Computing the merge of lattices needs to be treated differently depending on
the model. Particularly, in the OTM, the implementation should consider the
repeated objects that could belong to different concepts in the two lattices in the
intersected snapshots merge case. Additionally, in the other cases, it is possible
that the snapshot had objects with incomplete attributes, i.e., if the snapshot
had been taken some time later, some objects in it would have more attributes.
The rest of the section from now on focuses on the OTM when objects are
disjoint, i.e., spaced, and contiguous snapshots merge cases without incomplete
attributes.

Given two concept lattices L1 = (C1,≤) and L2 = (C2,≤), whose formal
context are K1 = (G1,M1, I1) and K2 = (G2,M2, I2) respectively. When G1

and G2 are disjoint, we claim that each intent would remain unchanged after the
merge since closures at most would have more objects. Moreover, the only new
intents that could be added to the merged lattice are: ∅ and M1 ∪M2, and the
ones resulting from the intersection of two intents in L1 and L2.
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Lemma 1. Let K1 = (G1,M1, I1),K2 = (G2,M2, I2),Ks = K1 | K2 be three
formal contexts where G1 ∩ G2 = ∅. Let L1 = (C1,≤), L2 = (C2,≤),Ls =
L1 | L2 = (Cs,≤) be their respective lattices. Then, given a concept (X,Y ) =
C1 ∈ C1, such that Y ̸= ∅ and X ̸= ∅, there exist a (Z, Y ) ∈ Cs, where X ⊆ Z.

Proof. For reading purposes, we will say Y = Y1 = Y2 = Ys. Y
′
1 will be used

when speaking about the derivation in the context of L1. Similarly, Y ′
2 will be

used when speaking about the derivation in the context of L2, and Y ′
s when

speaking about the derivation in the context of Ls. Analogously, we will use the
same notation for the set of objects X = X1 = X2 = Xs.

Since (X,Y ) is a formal concept in C1, X ′
1 = Y and Y ′

1 = X.

1. If X1 at least has one element, it would be an element of G1, i.e., g ∈ G1.
Then X ′

s = Y , because the merge does not change the attributes held by
any of the G1 objects.

2. Y ′
s = {g ∈ G1∪G2 | gIsm,∀m ∈ Ys} = {g ∈ G1 | gIsm,∀m ∈ Y }∪{g ∈ G2 |

gIsm,∀m ∈ Y } = Y ′
1 ∪ Y ′

2 . Then Y ′′
s = (Y ′

1 ∪ Y ′
2)

′ = (X ∪ Y ′
2)

′ = X ′ ∩ Y ′′
2 .

3. Since Y ′
s = Y ′

1 ∪ Y ′
2 (because of step 2), then Y ′

1 ⊆ Y ′
s . Therefore, X ⊆ Y ′

s .
4. Since X ′ = X ′

s = Y (because of the step 1)., Y ′′
s = X ′ ∩ Y ′′

2 = Y ∩ Y ′′
2 =⇒

Y ′′
s ⊆ Y .

5. Since Y ̸= ∅, let m ∈ Y . Let us suppose that m /∈ Y ′′
s , then, there exist an

object x ∈ Y ′
s such that x��Ism, which is absurd because Y ′

s = {g ∈ G1 |
gIsm,∀m ∈ Y }∪ {g ∈ G2 | gIsm, ∀m ∈ Y }, Is = I1 ∪ I2 and objects are dis-
joint, thus gI1m implies gIsm. Analogously, gI2m implies gIsm. Therefore,
m ∈ Y ′′

s , which means Y ⊆ Y ′′
s .

6. Since Y ′′
s ⊆ Y and Y ⊆ Y ′′

s , then Y = Ys = Y ′′
s (steps 4 and 5). Thus,

(Z, Y ) = (Y ′
s , Ys) ∈ Cs, and X ⊆ Z (step 3).

⊓⊔

Lemma 2. Let K1 = (G1,M1, I1),K2 = (G2,M2, I2),Ks = K1 | K2 be three
formal contexts where G1 ∩ G2 = ∅. Let L1 = (C1,≤), L2 = (C2,≤),Ls =
L1 | L2 = (Cs,≤) be their respective lattices. Let (X,Y ) ∈ Cs, Y ̸= ∅,
Y ̸= M1 ∪M2 be a formal concept such that its intent Y is not empty nor the
whole set of attributes, and it is not an intent of C1 nor in C2, then Y = Z1 ∩Z2

where Z1 is an intent in C1 and Z2 is an intent in C2.

Proof. Let Y ′
1 = {g ∈ G1 | gI1m,∀m ∈ Y } and Y ′

2 = {g ∈ G2 | gI2m,∀m ∈ Y }.
By definition Y ′ = Y ′

1 ∪Y ′
2 . Since Y is not an intent in C1 nor in C2, both Y ′

1 and
Y ′
2 yield a set of objects whose derivatives are larger than Y , i.e., Y ⊂ Y ′′

1 and
Y ⊂ Y ′′

2 . Then Y = Y ′′
1 ∩ Y ′′

2 . Since Y is an intent of Cs, Y = Y ′′ and X = X ′′.
Moreover, Y ′

1 ⊂ X and Y ′
2 ⊂ X because otherwise, their derivative could not

possibly yield more attributes. Let us suppose that Y ′′
1 is not an intent of C1,

then Y ′′
1 ⊂ Y ′′′′

1 which is absurd because B′ = B′′′ for any attribute set in the
same context (proofed in section 1.1, Proposition 10 of [15]). Similarly, Y ′′

2 is an
intent in C2. If we rewrite Y ′′

1 = Z1 and Y ′′
2 = Z2, we have that Y = Z1∩Z2. ⊓⊔

Considering these properties, a naive algorithm to compute the merged lattice
could be the one presented in Algorithm 1. Firstly, it initializes the set of different
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intents between the two given sets of concepts, and the set of concepts of the
new lattice with the top and bottom ones (commonly referred to as ⊤ and ⊥).
Secondly, for each different intent Y , it adds a concept (X,Y ) to the Cs set,
where Y is exactly the intent being iterated and X is the union of extents of the
respective concepts in each lattice including that intent. For reading purposes,
we say that C[Y ] is the concept (X,Z) = C ∈ C such that Y ⊆ Z and Z is
minimal (i.e., �∃(U, V ) ∈ C such that Y ⊆ V ∧ |V | < |Z|). If no such concept
exists, it returns a tuple (∅,∅), so that π1(C) = ∅. Lastly, for each pair of
formal concepts in both lattices, if their intersection is not ∅, the formal concept
{(X1 ∪X2, Y1 ∩ Y2)} is added.

Algorithm 1 Merge L1 = (C1,≤) and L2 = (C2,≤)

1: All Intents← {Y | (X,Y ) ∈ C1 ∪ C2 ∧X ̸= ∅ ∧ Y ̸= ∅}
2: Cs ← {⊤,⊥}
3: for Y ∈ All Intents do
4: Cs ← Cs ∪ {(π1(C1[Y ]) ∪ π1(C2[Y ]), Y )}
5: end for
6: for (X1, Y1) ∈ C1 do
7: for (X2, Y2) ∈ C2 do
8: if Y1 ∩ Y2 ̸= ∅ then
9: Cs ← Cs ∪ {(X1 ∪X2, Y1 ∩ Y2)}
10: end if
11: end for
12: end for
13: return (Cs,≤)

Lemma 1

Lemma 2

As an example, let us suppose two different lattice snapshots calculated from
the formal context defined in Table 1 and Table 2. The merged underlying con-
text is shown in Table 3. For the sake of readability, let us rename Television = o1,
Mobile Phone = o2, Remote Control = g1 and Notebook = g2 for the objects, and
for the attributes Screen = a1, Battery = a2, Camera = a3. Considering this, the
concepts of their respective lattices are C1 = {({o1, o2}, {a1}), ({o2}, {a1, a2})}
on the one hand, and on the other C2 = {({g1, g2}, {a2}), ({g2}, {a2, a3})}. Fol-
lowing, if we run the algorithm with the input L1 = (C1,≤),L2 = (C2,≤), in
the line 1, All Intents = {{a1}, {a2}, {a1, a2}, {a2, a3}}. Then, in the line 2,
Cs = {({o1, o2, g1, g2},∅), (∅, {a1, a2, a3})}. Then, the iterations between line 3
and line 5 go in order:

1. (Y = {a1}): Cs = Cs ∪ {({o1, o2}, {a1})}
2. (Y = {a1, a2}): Cs = Cs ∪ {({o2}, {a1, a2})}
3. (Y = {a2}): Cs = Cs ∪ {({o2} ∪ {g1, g2}, {a2})}
4. (Y = {a2, a3}): Cs = Cs ∪ {({g2}, {a2, a3})}

Afterwards, between line 6 and line 12, the only combination with a non-empty
intersection is ({o2}, {a1, a2}) and ({g2}, {a2, a3}), adding the formal concept
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({o2}∪ {g1, g2}, {a2}) which was already added. This shows how the naive algo-
rithm potentially repeats calculations, and that there is room for improvement.

Finally, in line 13, the returned value is

Cs = {({o1, o2, g1, g2},∅), (∅, {a1, a2, a3}), ({o1, o2}, {a1}),
({o2}, {a1, a2}), ({o2, g1, g2}, {a2}), ({g2}, {a2, a3})}

and its line diagram representation is depicted in Figure 8.

Objects
Attributes

Battery Camera

Remote Control X
Notebook X X

Table 2: Extended Formal Context on electronic devices

Objects
Attributes

Screen BatteryCamera

Television X
Mobile Phone X X
Remote Control X
Notebook X X

Table 3: Merged Formal Context on electronic de-
vices

ScreenBattery

Camera

Television

Mobile Phone

Remote Control

Notebook

Fig. 8: Merged lattice Ls

Considering the given algorithm for merging lattices in the case of disjoint
objects, it would be possible to use a method that runs maintaining a bounded
size, as done in [2], but adapted to the case in which elements are like the ones
defined in Definition 1.

5 Conclusion and Future Work

In this paper, the problem of scalability in algorithms for data stream knowl-
edge extraction with FCA has been approached by starting a discussion from
several points of view. On the one hand, the notion of flexibly scalable for FCA
distributed algorithms consuming data streams has been defined in section 3.
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Furthermore, in the same section, the work formalized the notion of lattice snap-
shot between times k ∈ N and l ∈ N, and opened a discussion about the meaning
of merging two snapshots in three different cases as a way of dealing with the
loss of information when keeping a bounded-sized lattice. Additionally, in sec-
tion 4, the interpretation and computation of the three different merge cases is
discussed considering the model OTM. Finally, a pseudo-algorithm for merging
lattices in the case of disjoint objects has been presented, with the addition of
the properties that prove its correctness.

The contributions of this paper can be summarized as: (1) The starting point
of the discussion about having a general and flexible method for practitioners
in order to find a balance between scalability and losing information. (2) A
first result in a very specific but real scenario: the intents in the merged lattice
when objects are disjoint between the respective formal contexts are composed
of all the intents in the two lattice snapshots plus their intersections. (3) The
presentation of a naive pseudo-algorithm to compute the lattice in the case of
disjoint objects.

For the future work, the study about the non-disjoint objects should be ad-
dressed. In addition, it would be interesting to understand whether it is possible
to compute the merge using a distributed algorithm to increase the flexibility
even further. Particularly, we will work on the study of the rest of the cases to
understand their properties and to implement the needed algorithms. Addition-
ally, we plan on working in the study of the merge applied to the multi-relational
extensions of the FCA framework (Relational Concept Analysis, Polyadic Con-
cept Analysis, Graph-FCA), to understand whether it could add flexibility there
as well or not.

Furthermore, concerning the given properties about the merge with disjoint
objects, they should be dual in the sense that they work also with disjoint at-
tributes. However, we did not present the particular proofs for that, so it would
be interesting to add them in an extension of the work.

Finally, the study of the time complexity of the algorithm is also needed. For
that reason, part of the plan is to study and compare different implementations
of Algorithm 1 big-o complexities. Furthermore, we plan on performing bench-
marking tests using a real-world case study in the field of e-commerce applied
to ski lessons.
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Analysis Algorithms Based on an Iterative MapReduce Framework. In: Dome-
nach, F., Ignatov, D.I., Poelmans, J. (eds.) Formal Concept Analysis. pp. 292–
308. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29892-9 26

https://doi.org/10.1016/S0169-023X(02)00057-5
https://linkinghub.elsevier.com/retrieve/pii/S0169023X02000575
https://linkinghub.elsevier.com/retrieve/pii/S0169023X02000575
https://www.academia.edu/3362029/Formal_concept_analysis_mathematical_foundations
https://www.academia.edu/3362029/Formal_concept_analysis_mathematical_foundations
https://doi.org/10.1007/978-94-009-7798-3_15
https://doi.org/10.1007/978-3-642-29892-9_26

	Towards a Flexible and Scalable Data Stream Algorithm in FCA

