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Abstract. Application compartmentalization and privilege separation are our primary weapons against
ever-increasing security threats and privacy concerns on connected devices. Despite significant progress,
it is still challenging to privilege separate inside an application address space and in multithreaded
environments, particularly on resource-constrained and mobile devices. We propose MicroGuards, a
lightweight kernel modification and set of security primitives and APIs aimed at flexible and fine-grained
in-process memory protection and privilege separation in multithreaded applications. MicroGuards take
advantage of hardware support in modern CPUs and are high-level enough to be adaptable to various
architectures. This paper focuses on enabling MicroGuards on embedded and mobile devices running
Linux kernel and utilizes tagged memory support to achieve good performance. Our evaluation show
that MicroGuards add small runtime overhead (less than 3.5%), minimal memory footprint, and are
practical to get integrated with existing applications to enable fine-grained privilege separation.

1 Introduction

More than ever, we depend on highly connected computing systems in today’s world, where over 6.3 Billion
people use smartphones, and 35.82 billion IoT (Internet of Things) devices are installed worldwide [49]. Our
growing reliance on edge-cloud services in recent years has been constantly and increasingly threatened by
a wide range of security and privacy breaches at scales never seen before[5,41,4,53]. The attack surface of
modern applications includes a mixture of traditional attack vectors with new threats within/across various
dependencies and system abstractions.

Many software attacks target sensitive content in an application’s address space, usually through remote
exploits, malicious third-party libraries, or unsafe language vulnerabilities. Processing highly sensitive data
in a single large compartment (e.g., process or enclave) leads to real threats that require effective protection
against: (i) attackers can exploit vulnerabilities in less secure parts of the code to leak information, escalate
privileges, or take control of the application or even the host. (ii) an application’s secret data (e.g., private
keys or user passwords) can be leaked in the presence of untrusted code parts or compromised third-party
libraries like OpenSSL [23]; (iii) privileged functions or modules can be misused to access private content [22];
(iv) applications written in memory-safe languages such as Rust or OCaml are vulnerable via unsafe external
libraries that jeopardize all other safety guarantees [6,35]; and (v) in multithreaded use cases, attackers can
exploit vulnerabilities (e.g., TOCTOU or buffer overflows) so the compromised thread can access sensitive
data owned by other threads [1]. This whole class of attacks could be avoided by providing a practical way
to enforce the least privilege within a shared address space. Table 1 summarizes some of these real threats
that intra-process protection is effective against.

Hence, the importance of in-address space security threats results in significant improvement in hardware
support for efficient memory isolation [11,31,9,58]. However, existing simple APIs for utilizing such hardware
features are not effective due to the complexity of attacks as well as various hardware limitations [55,43,20] in
security and performance particularly for resource constrained devices. These systems mainly require specific
programming languages or rely on x86 features which are not practical for wide range of IoT and mobile
devices.

∗This paper will appear at the ACNS-SecMT2023 (Security in Mobile Technologies).
†This work was done when the author was affiliated with the University of Cambridge.
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example CVE Description MicroGuards

In
-P

ro
c
e
ss

th
re

a
ts CVE-2021-3450 Improper access control in shared library ✓

CVE-2021-29922 unsafe language binding ✓

CVE-2021-31162 Rust runtime memory corruption ✓

CVE-2019-9345 Shared mapping bug ✓

CVE-2021-45046 thread-based privilege escalation ✓

CVE-2019-9423 missing bounds check ✓

CVE-2019-15295 unsafe third party library ✓

CVE-2019-1278 unsafe third party library ✓

CVE-2018-0487 unsafe third party library ✓

CVE-2017-1000376 unsafe native bindings ✓

CVE-2014-0160 Heartbleed bug ✓

CVE-2021-3177 Python ctypes memory leak ✓

CVE-2021-28363 Python ctypes memory leak ✓

O
th

e
r

CVE-2018-0497 SW side-channels
CVE-2017-5754 HW side-channels

Table 1: A representative selection of vulnerabilities that cause sensitive content leakage. The attacks with
a tick can be mitigated by using MicroGuards protection.

Many security-sensitive applications such as OpenSSH [44] rely on process-based isolation to separate
their components into different privileged processes. However, this usually requires redesigning an applica-
tion from scratch using a multiprocess architecture (e.g., Chrome) and is difficult for many multithreaded
applications such as web servers. Previous work such as Privtrans [18] and Wedge [16] provide automatic
process-based isolation of applications with a huge overhead (≈ 80%− 40x slowdown).
Conventional process abstractions such as fork introduce security and efficiency issues [13], and alternatives
such as clone are not fine-grained enough to switch between data sharing and copying between process
address spaces for security-critical resources. This lack of flexibility in the underlying interfaces means de-
velopers cannot easily prevent in-process attacks, and so multithreaded applications are difficult to privilege
separate. This class of attacks could be avoided by providing a practical way to protect memory within an
address space.

In this paper, we present MicroGuards, a new OS abstraction for enforcing least privilege on slabs of
memory within the same address space. It takes advantage of modern hardware features to provide a flexible
and efficient way to define trust boundaries to isolate sensitive data while supporting familiar APIs for
secure multithreading and memory management. We provide a virtual memory tagging and access control
abstraction within the kernel, then extend the kernel to support mapping MicroGuards to threads; hence,
any thread can selectively protect or share its memory compartments from untrusted code within itself or
from any untrusted thread (see Figure 1).

Hence, we designed a new memory compartmentalisation abstraction to overcome this limitation effi-
ciently. MicroGuards virtual memory tagging layer bypasses most of the kernel’s paging abstraction to
enable isolated blocks of tagged memory which could be mapped to the undelying hardware features such
as ARM MD (memory domains) or MTE (memory tagged extension) for stronger isolation enforcement and
performance optimization. Moreover, these hardware features are difficult to use securely (require a strong
access control mechanism) and portably due to differing semantics across the Linux Kernel virtual memory
abstraction and hardware provided features (§2). Note that MicroGuards virtual memory layer can also
be enabled with available simple address space translation mechanism and without hardware-based mem-
ory tagging capabilities. However, it is specifically designed for properly utilizing such beneficial hardware
security features. Hence, MicroGuards is a high-level OS abstraction that aims to:
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Fig. 1: High-level architecture of MicroGuards: it provides in-process isolation as well as thread-granularity
privilege separation so each MicroGuard thread can tag itself, its address space, and define its own trust
boundaries.

– develop a new kernel-assisted mechanism based on mutual-distrust for intra-process privilege separation
that supports isolating private contents, a secure multithreading model, and secure communication within
a shared address space.

– explain how to utilize modern CPU facilities for efficient memory tagging to avoid the overhead of existing
solutions (due to TLB flushes, per-thread page tables, or nested page table management).

– show that the implementation is sufficiently lightweight (≈ 5K LoC) to be practical for IoT and mobile
devices with a minimal memory footprint.

– evaluate our implementation using real-world software such as Apache HTTP server, OpenSSL, and
Google’s LevelDB, which shows MicroGuards add negligible runtime overhead for lightly modified ap-
plications.

The remainder of this paper elaborates on the CPU hardware features we use (§2), describes the archi-
tecture (§3) and implementation of MicroGuards (§4), presents an evaluation (§5) and the tradeoffs of our
approach (§6).

2 Background

2.1 ARM VMSA

ARM virtual memory system architecture (VMSA) is tightly integrated with the security extensions, the
multiprocessing extensions, the Large Physical Address Extension (LPAE), and the virtualization extensions.
VMSA provides MMUs that control address translation, access permissions, and memory attribute determi-
nation and checking for memory accesses. The extended VMSAv7/v8 provides multiple stages of memory
system control; for operation in Secure state (e.g., EL1&0 stage 1 MMU) and for operation in Non-secure
state (e.g., EL2 stage 1 MMU, EL1&0 stage 1 MMU, and EL1&0 stage 2 MMU). VMSAv8.5 adds more
MMUs for additional isolation in the secure world. Each MMU uses a set of address translations and associ-
ated memory properties held in TLBs. If an implementation does not include the security extensions, it has
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only a single security state, with a single MMU with controls equivalent to the Secure state MMU controls.
A similar argument is valid for when am implementation does not include the virtualization extensions.

System Control coprocessor (CP15) registers control the VMSA, including defining the location of the
translation tables. They include registers that contain memory fault status and address information. The
MMU supports memory accesses based on memory sections or pages, supersections consist of 16MB blocks
of memory, sections consist of 1MB blocks of memory or 64KB blocks of memory, and pages consist of 4KB
blocks of memory. Operation of MMUs can be split between two sets of translation tables, defined by the
Secure and Non-secure copies of TTBR0 and TTBR1, and controlled by TTBCR. For hyp mode stage 1, The
HTTBR defines the translation table for EL2 MMU, controlled by HTCR. For stage 2 translation, The VTTBR

defines the translation table, controlled by VTCR. Access to a memory region is controlled by the access
permission bits and the domain field in the TLB entry.

ARM memory domains (MDs) A domain is a collection of contiguous memory regions. The ARM
VMSAv7 architecture supports 16 domains, and each VMSA memory region is assigned to a domain. First-
level translation table entries for page tables and sections include a domain field. Translation table entries for
super-sections do not include a domain field (super-sections are defined as being in domain 0). Second-level
translation table entries inherit a domain setting from the parent first-level page table entry. Each TLB
entry includes a domain field. A domain field specifies which domain the entry is in, and a two-bit field
controls access to each domain in the Domain Access Control Register (DACR). Each field enables access to
an entire domain to be enabled and disabled very quickly without TLB flushes so that whole memory areas
can be swapped in and out of virtual memory very efficiently. Hence DACR controls the behavior of each
domain and is not guarded by the access permissions for TLB entries in that domain. Also, DACR defines the
access permission for each of the sixteen isolation domains. The DACR is a 32-bit read/write register and is
accessible only in privileged modes. When the security extensions are implemented DACR is a banked register,
and write access to the secure copy of the register is disabled when the CP15SDISABLE signal is asserted high.
To access the DACR you read or write the CP15 registers. For example: ’MRC p15, 0, < Rt >, c3, c0, 0 ’ for
reading from DACR and ’MCR p15, 0, < Rt >, c3, c0, 0’ for writtig to DACR. Data Fault Status Register (DFSR)
holds status information about the last data fault in MDs. It is a 32-bit read/write register, accessible only in
privileged modes. These registers are banked when security extensions are enabled, so we could have separate
16 domains inside TrustZone secure world as well as the normal world.

Mode Bits Description

No Access 00 Any access causes a domain fault.

Manager 11 Full accesses with no permissions check.

Client 01 Accesses are checked against the page tables

Reserved 10 Unknown behaviour.
Table 2: ARM memory domains access permissions

The four possible access rights for a domain are No Access, Manager, Client, and Reserved (see Table 2).
Those fields let the processor (i) prohibit access to the domain mapped memory–No Access; (ii) allow
unlimited access to the memory despite permission bits in the page table– Manager; or (iii) let the access
right be the same as the page table permissions–Client. Any access violation causes a domain fault, and
changes to the DACR are low cost and activated without affecting the TLB.

ARM MDs look like a good building block for in-process memory protection. Changing domain permis-
sions does not require TLB flushes, and they do not require extensive modifications to the kernel memory
management structures that might otherwise introduce security holes due to inevitable TLB and memory
management bugs [61].
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Though ARM MDs are a useful isolation primitive in concept, the current hardware implementation and
OS support suffer from significant problems that have prevented their broader adoption:
Scalability: ARM relies on a 32-bit DACR register and so supports only up to 16 domains. Allocating a larger
register (e.g., 512 bits) would mean larger page table entries or additional storage for domain IDs.
Flexibility: Unlike Intel MPK, ARM-MDs only apply to first-level entries; the second-level entries inherit
the same permissions. This prevents arbitrary granularity of memory protections to small page boundaries
and reduces the performance of some applications [21]. Also, the DACR access control options do not directly
mark a domain as read-only, write-only, or exec-only. So the higher-level VM abstraction should resolve these
issues.
Performance: Changing the DACR is a fast but privileged operation, so any change of domain access permis-
sions from userspace require a system call. This is unlike Intel MPK that makes its Protection Key Rights
Register (PKRU) accessible directly from userspace.
Userspace: There is no Linux userspace interface for using ARM-MD; it is only used within the kernel to
map the kernel and userspace into separate domains. In contrast, Linux already provides some basic support
for utilizing Intel MPK from userspace.
Security: Though the DACR is only accessible in privileged mode, any syscall that changes this register is
a potential breach that could cause the attacker to gain full control of the host kernel (e.g., through the
misuse of the put user/get user kernel API in CVE-2013-6282). Also, since only 16 domains are supported,
guessing other domains’ identifiers is trivial, making it essential not to expose these directly to application
code.

Address space identifier The VMSA permits TLBs to hold any translation table entry that does not
directly cause a translation fault or an access flag fault. To reduce the software overhead of TLB maintenance,
the VMSA differentiates between global pages and process-specific pages through the Address Space Identifier
(ASID). A global virtual memory page is available for all processes on the system, and a single cache entry can
exist for this page translation in the TLB. A non-global virtual memory page is process-specific, associated
with a specific ASID. The ASID identifies pages associated with a specific process and provides a mechanism
for changing process-specific tables without maintaining the TLB structures. Hence, multiple TLB entries
can exist for the same page translation, but only TLB entries that are associated with the current ASID are
available to the CPU (x86 supports a similar mechanism, called PCID). On ARMv7, the current ASID is
defined by the Context ID Register (CONTEXTIDR), and on ARMv8, the ASID is defined by the translation
table base registers that causes better performance compare to ARMv7. Each TTBR contains an ASID field,
and the TTBCR.A1 field selects which ASID to use. If the implementation supports 16 bits of ASID, then the
upper 8 bits of the ASID must be written to 0 by software when the context being affected only uses 8 bits.
ASIDs/PCIDs are useful for relatively faster context switching [38] and more efficient page table isolation as
shown in design of kernel page-table isolation (KPTI or PTI, previously called KAISER [27]) for mitigating
Meltdown vulnerability [37].

MTE & PAC Memory Tagging Extension (MTE), also called memory coloring, is introduced in Armv8.5-
A. Memory locations are tagged by adding four bits of metadata to each 16 bytes of physical memory (this is
the Tag Granule). Tagging memory implements the lock. Hence, pointers and virtual addresses are modified
to contain the key. In order to implement the key bits without requiring larger pointers, MTE uses the
TBI (top byte ignore) feature of the Armv8-A Architecture. When TBI is enabled, the top byte of a virtual
address is ignored when using it as an input for address translation similar to PAC (Pointer Authentication
Code) design. This allows the top byte to store metadata. Memory tagging and pointer authentication both
use the upper bits of an address to store additional information about the pointer: a tag for memory tagging,
and a PAC for pointer authentication. Both technologies can be enabled at the same time. The size of the
PAC is variable, depending on the size of the virtual address space. When memory tagging is enabled at the
same time, there are fewer bits available for the PAC.

MTE adds a new memory type, Normal Tagged Memory, to the Arm Architecture. A mismatch between
the tag in the address and the tag in memory can be configured to cause a synchronous exception or to be
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asynchronously reported. When the asynchronous mode is enabled, upon fault, the PE updates the TFSR EL1

register. Then the kernel detects the change during context switching, return to EL0, kernel entry from EL1,
or kernel exit to EL1. MTE is currently supported by LLVM, and when it is enabled, a call to malloc()

will allocate the memory and assign a tag for the buffer. The returned pointer will include the allocated tag.
If software using the pointer goes beyond the limits of the buffer, the tag comparison check will fail. This
failure will allow us to detect the overrun. Similarly, for use-after-free, on the call to malloc() the buffer
gets allocated in memory and assigned a tag value. The pointer that is returned by malloc() includes this
tag. The C library might change the tag when the memory is released. If the software continues to use the
old pointer, it will have the old tag value, and the tag-checking process will catch it.
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MG Thread 1
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Fig. 2: simple MicroGuards simple threading example: each MicroGuard thread is a security principal, it
can define security policies for controlling its own MicroGuards collection, and pass its capabilities to other
threads for secure sharing. The kernel then enforces MicroGuard security policies and handles its virtual
memory management.

3 MicroGuards

We now describe the implementation of MicroGuards, which is an abstraction over the underlying kernel and
hardware memory management for efficient intra-process isolation. MicroGuards abstraction has an emphasis
on security, performance, and extensibility to support various hardware memory tagging primitives through
a higher-level interface that hides the hardware limitations (§2.1).

3.1 Design Principles

The MicroGuards interface aims to enforce least privilege principle for memory accesses via the following
guidelines:
Fine-grained strong isolation: All threads of execution should be able to define their security policies
and trust models to selectively protect their sensitive resources. Current OS security models of sharing
(“everything-or-nothing”) are not flexible enough for defining fine-grained trust boundaries within processes
or threads (lightweight processes).
Performance: Launching MicroGuards, changing their access permissions, sharing across processes, and
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communications through capability passing should have minimal overhead. Moreover, untrusted (i.e., MicroGuards-
independent) parts of applications should not suffer any overhead.
Efficiency: MicroGuards should be lightweight enough even for mobile and IoT devices running on a few
megabytes of memory and slow ARM CPUs.
Compatibility: It is difficult to provide strong security guarantees with no code modifications, and Micro-
Guards is no exception. We move most of these modifications into the Linux kernel (increasingly popular for
embedded deployments [2]) and provide simple userspace interfaces. MicroGuards should be implemented
without extensive changes to the Linux and not depend on a specific programming language, so existing
applications can be ported easily.

To achieve fine-grained isolation with mutual-distrust, we need a security model that lets each thread
protect its own MicroGuards from untrusted parts of the same thread as well as other threads and processes.
Simply providing POSIX memory management (e.g. malloc or mprotect) is inadequate. As a simple example,
attackers can misuse the API for changing the memory layout of other threads MicroGuards or unauthorized
memory allocation. The MicroGuards interface needs to (i) provide isolation within a single thread; (ii)
be flexible for sharing and using MicroGuards between threads, and (iii) provides the capability to restrict
unauthorized permission changes or memory mappings modification of allocated MicroGuards. Previous
work such as ERIM [55] or libMPK [43] does not offer such security guarantees since their focus is more on
performance and domain virtualization.

We derive inspiration from Decentralized Information Flow Control (DIFC) [34] but with a more con-
strained interface – by not supporting information flow within a program, we avoid the complexities and
performance overheads that typically involves. Existing DIFC kernels such as HiStar [59] achieve our isola-
tion goals, but requires a non-POSIX-based OS that opposes our compatibility goal. To have a practical and
lightweight solution, we therefore built MicroGuards over a modified Linux kernel, and internally utilizing
modern hardware facilities such as ARM MDs for good performance.

3.2 Threat Model & Assumptions

This paper focuses on two types of threats. First, memory-corruption based threats inside a shared address
space that lead to sensitive information leakage; these threats can be caused by bugs or malicious third-party
libraries (see Table 1). Second, attacks from threads that could get compromised by exploiting logical bugs
or vulnerabilities (e.g., buffer overflow attacks, code injection, or ROP attacks). We assume the attacker can
control a thread in a vulnerable multithreaded application, allocate memory, and fork more threads up to
resource limits by the OS and hardware. The attacker will try to escalate privileges through the attacker-
controlled threads or gain control of another thread, e.g., by manipulating another thread’s data or via code
injection. The adversary may also bypass protection regions by exploiting race conditions between threads
or by leveraging confused-deputy attacks.

MicroGuards thus provides isolation in two stages: firstly within a single thread (through mg lock/unlock
calls), and then across threads in the same process. We consider threads to be security principals that can
define their security policies based on mutual-distrust within the shared address space. We protect each
thread’s MicroGuards against unauthorized, accidental, and malicious access or disclosure. Therefore, the
TCB consists of the OS kernel, which performs this enforcement. It also assumes developers correctly specify
their policies through the userspace interface for allocating MicroGuards and transferring capabilities.

MicroGuards are not protected against covert channels based on shared hardware resources (e.g., a cache).
Systems such as Nickel [47] or hardware-assisted platforms such as Hyperflow [25] could be a helpful future
addition for side-channel protection on MicroGuards.

3.3 MicroGuards Access Control Mechanism

Each MicroGuard is a contiguous allocation of memory that (by default) only its owner thread can access,
add/remove pages to/from it, and change its access permission. Our modified Linux kernel enforces the
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syscalls Description

mg alloc tag()→ t allocate a unique tag

mg modify label(L) modify a thread’s label/tag

mg transfer caps(L → c∗, p) passing capabilities to thread p

mg declassify(L → t∗) thread declassification or endorsement

mg grant(L → t∗, p1, p2) adds an acts-for or a delegation link

mg revoke grant(L → t∗, p1, p2) removes an acts-for or a delegation link

mg lock (L → t∗) disables access to an object

mg unlock (L → t∗) enables access to a locked object

mg clone (L, int(∗fn)(void∗)...) → p creates a thread
Table 3: MicroGuards access control system calls. Pi represents principal i, L as a label that is a list of tags
(t∗) and their capabilities (c∗).

access control via a dynamic security policy based on DIFC [59] and a simpler version of the Flume [34]
labeling model.

Each MicroGuard thread t has one label Lt that is the set of its unique tags. Privileges are represented in
forms of two capabilities θ+ and θ− per tag θ for adding or removing tags to/from labels. These capabilities
are stored in a capability list Cp per thread p. To improve its performance, MicroGuards have only one
unique secrecy tag assigned internally by the kernel when created by mg create. For improving security,
none of MicroGuards API propagates tags in the userspace; all APIs access control is done internally within
the kernel. The kernel allows information flow from α to β only if Lα ⊆ Lβ . Every thread p may change its
label from Li to Lj if it has the capability to add tags present in Lj but not in Li, and can drop the tags
that are in Li but not in Lj . This is formally declared as (Lj − Li ⊆ C+

p ) ∧ (Li − Lj ⊆ C−
p ).

When a thread has θ+ capability for MicroGuard θ, it gains the privilege to only access MicroGuard θ
with the permission set by its owner (read/write/execute). The access privileges to each MicroGuard can
be different; hence, two threads can share a MicroGuard, but the access privileges can differ.
Having a θ− capability lets it declassify MicroGuard θ. This allows the thread to modify the Micro-
Guard memory layout by add/remove pages to it, change permissions, or copy the content to untrusted
sources.Unsafe operations like declassification r equire the thread to be an owner or an authority (acts-for
relationship) then via mg grant and mg revoke calls (see Table 3).

3.4 MicroGuards Threads

Each MicroGuard thread may have multiple MicroGuards attached to it. There is no concept of inheriting
capabilities by default (e.g., in the style of fork) as this makes reasoning about security difficult [13]. Here,
a tagged thread can create a child by calling mg clone; the child thread does not inherit any of its parent’s
capabilities. However, the parent can create a child with a list of its MicroGuards and selected capabilities
as an argument of mg clone. For instance, in Figure 2, thread 3 is a child of MicroGuard thread 2, which
only gets “plus” capabilities for both shared MicroGuards 18 and 46 via mg clone with a specific Label
passed by its parent thread.

For a MicroGuard to propagate, it must be through transferring capabilities; this can be done directly
by calling mg transfer caps for “plus” capabilities and mg grant for declassification. Both these operations
are also possible via specific arguments of mg clone syscall when creating a child thread. Figure 2 shows
how each thread can use the MicroGuards API for creating tags, changing labels, and passing capabilities
to other threads. For instance, thread 1 gains access to MicroGuard 18 by directly getting the b+ capability
from thread 2. Since it does not have the b− capability, it cannot change MicroGuard 18 permissions or its
memory mappings.

Table 3 describes the userspace MicroGuard API. A thread can create a tag by calling mg alloc tag,
and the kernel will create and return a fresh unique tag. The thread that allocates a tag becomes its owner
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Name Description

mg create → id Create a new MicroGuard

mg kill(id) Destroy a MicroGuard

mg malloc(id, size) → void* Allocate memory within a MicroGuard

mg free(id, void∗) free memory from a MicroGuard

mg mprotect(id, ...) change an MicroGuard’s pages permission

mg mmap(id, ...)→ void* Map a page group to a MicroGuard

mg munmap(id, ...) Unmap all pages of a MicroGuard

mg get(id)→ perms Get a MicroGuard permission
Table 4: Some of userspace MicroGuards memory management API. Each MicroGuard has an id and is a
tagged kernel object internally. MicroGuards access control is checked within the kernel.

and can give the capabilities for the new tag to other threads. Each thread specifies its security policies by
mutating its labels via mg modify label, and can declassify its own MicroGuards via mg declassify.

Threads can lock access or permission changes of their MicroGuards via mg lock, which temporarily
change MicroGuard tag to restrict any modifications of MicroGuards state. A locked MicroGuard can only
be accessed by calling mg unlock.

MicroGuards Memory Management To provide in-process isolation with good performance (sec-
tion 3.1) we provide a virtual memory management abstraction within the kernel for MicroGuards-aware
memory tagging, mappings, protection, page faults handling, and least privilege enforcement. This abstrac-
tion bypasses most of the kernel paging abstraction that improves its performance. Furthermore, it hides the
intricacies of hardware domains (??). Then we provide a userspace library on top of our modified kernel,
using our MicroGuards-specific system calls, for managing MicroGuards memory. An application creates
a new MicroGuard by calling mg create; the kernel creates a unique tag with both capabilities (since it is
the owner) and adds it to the thread’s label and capability lists, and returns a unique ID. A MicroGuard
can be kernel-backed (just depending on commodity pagetable for isolation) or hardware-backed which maps
a MicroGuard to finer-grained memory safety/tagging features. We extend the kernel VM layer to sup-
port MicroGuards and maintain a private per- MicroGuard virtual page table (pgd t) that is loaded into
the TTBR register when the thread needs to do memory operations inside an MicroGuard during a lightweight
context switch. An internal MicroGuard data structure maintains its address space range and permissions
as shown in the following codelisting 1.1.

struct mg_struct {

// operation bitmaps: set to 1 if mg[i] is allowed to do this operation , 0 OW

DECLARE_BITMAP(mg_Read , MG_MAX);

DECLARE_BITMAP(mg_Write , MG_MAX);

DECLARE_BITMAP(mg_Execute , MG_MAX);

DECLARE_BITMAP(mg_Allocate , MG_MAX);

int mg_id;

struct mutex mg_mutex;

struct mem_segment *mg_range;

};

Listing 1.1: Internal MicroGuard data structure

Threads (or Linux tasks) in a process share the same mm struct that describes the process address space.
Having separate mm struct for threads would significantly impact system performance, as all the memory
operations related to page tables should maintain strict consistency [29]. Instead, we extend mm struct to
embed MicroGuard metadata within it as lightweight protected regions in the same address space as shown

9



in listing 1.2. It stores a per- MicroGuard pgd t for threads and other metadata for memory management,
fault handling, and synchronization.

The standard Linux kernel avoids reloading page tables during a context switch if two tasks belong to the
same process. We modified check and switch context to reload MicroGuard page tables and flush related
TLB entries if one of the switching threads owns an MicroGuard. We further mitigate the flushing overhead
using ASID tagged TLB feature and ARM MDs. We modify mmap.c to keep track of MicroGuard-mapped
memory ranges and add mg mmap/mumap operations.

The kernel handle mm fault handler is also extended to specially manage page faults in MicroGuard
regions, so an MicroGuard privilege violation results in the handler killing the violating thread.

struct mm_struct {

...

#ifdef CONFIG_MG

struct mg_struct *mg_metadata[MG_MAX ];

atomic_t num_mg; /* number of mgs */

pgd_t *mg_pgd_list[MG_MAX ]; /*mg Page tables per threads.*/

int curr_using_mg;

spinlock_t sl_mg[MG_MAX ];

struct mutex mg_metadata_mut;

DECLARE_BITMAP(mg_InUse , MG_MAX);

#endif

... };

Listing 1.2: Extending the Linux kernel mm struct with MicroGuards metadata.

Example code 1.3 shows a basic way of using MicroGuards to protect sensitive content in a single thread.
Then the owner thread maps pages to its MicroGuard by calling mg mmap that updates the MicroGuard’s
metadata with its address space ranges. The kernel allows mappings based on the thread’s labels and free
hardware domains. If there is a free hardware domain, it maps pages to that domain and places it to Mi-
croGuards cache. When the MicroGuards already exists in the cache, further access to it is fast. When
there is no free hardware domain, we have to evict one of the MicroGuards from the cache and map the
new MicroGuard metadata to the freed hardware domain; this requires storing all the necessary information
for restoring the evicted MicroGuard, such as its permission, address space range, and tag. The caching
process can be optimized by tuning the eviction rate and suitable caching policies similar to libMPK [43].

The application uses mg malloc and the MicroGuard ID to allocate memory within the MicroGuard
boundaries (mg malloc), and mg free to deallocate memory or mg mprotect to change its permissions (see
Table 4). The owner thread can use mg lock to restrict unauthorized access to it by accident or other
malicious code; this is helpful for mitigating attacks inside a single thread. Then application developer can
allow only his trusted functions or necessary parts of the code to gain access by calling mg unlock (e.g., our
single-threaded OpenSSL use case in section 5.2).

/* create a microgaurd (i.e., mg_id) */

int mg_id = mg_create ();

/* map a memory region to the mg */

memblock = (char*) mg_mmap(mg_id , addr , len , prot , 0, 0); //

// set permissions by mg_mprotect

/* allocate memory from mg */

private_blk = (char*) mg_malloc(mg_id , priv_len);

/* make mg inaccessible */

lock_mg(mg_id);
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//... untrusted computations ....//

/* make mg accessible */

unlock_mg(mg_id);

//... trusted computations ....//

/* cleanup mg */

mg_free(private_blk);

mg_munmap(mg_id , memblock ,len);

Listing 1.3: Basic MicroGuards usage

Our current implementation of MicroGuards utilizes ARM-MDs for efficient in-process virtual memory
tagging; as a result, only code running in supervisor mode can change a domain’s access control via the DACR
register (§2.1) or remap private addresses to another domain through the TTBR domain bits. However, note
that MicroGuards abstraction is designed to support similar hardware memory tagging features such as
MTE and PAC with straightforward changes; mostly by replacing the backed for MicroGuards memory
management API (mg malloc layer) since the threading and other kernel changes are architecture-agnostic.
Our API and mappings prevent unauthorized permission changes for MicroGuards, and we also do not
provide a userspace API for direct modification of the DACR. Threads security policy enforcement is done
by adding custom security hooks in the kernel’s virtual memory management and task handling layers. It
checks access based on the correct flow of threads labels (§3.4). We extend the kernel page fault handler
for MicroGuards-specific cases. Illegal access to MicroGuards causes domain faults which our handler logs
(e.g., violating thread information) and terminates it with a signal.

4 Implementation

MicroGuards Kernel: The MicroGuards core access control enforcement and the security model is
implemented in the form of a new Linux Security Module (LSM) [42] with only four custom hooks. The LSM
initializes the required data structures, such as the label registry and includes the implementation of all access
control system calls (Table 3) for enforcing least privilege. This includes locking MicroGuards, changing
labels, transferring capabilities,authority operations, and declassification based on the labeling mechanism
(§3.4).

We modify the Linux task structure to store the metadata required to distinguish MicroGuards tasks
from regular ones. Specifically, we add fields for storing MicroGuards metadata, label/ownership as an
array data structure holding its tags (each tag is a 32-bit identification whose upper 2 bits stores plus and
minus capabilities), a capability list; all included as task credential data structure. We implemented a hash
table-based registry to make operations (e.g., store, set, get, remove) on these data structures more efficient.

The LSM also provides custom security hooks for parsing userspace labels to the kernel (copy user label),
labeling a task (set task label), checking whether the task is labeled (is task labeled), and checking if
the information flow between two tasks is allowed (check labels allowed). These security hooks are added
in various places within the kernel to MicroGuards are guarded against unauthorized access or permission
change by either the POSIX API (e.g., mmap, mprotect, fork) or the MicroGuards API. For example, fork-
ing a labeled task should not copy its labels and capability lists, and this is enforced using the MicroGuards
LSM hooks. As another example, to avoid a task performing unauthorized memory allocation into a ran-
dom MicroGuard or mapping pages to it, the security hooks are in the kernel’s virtual memory management
layer where the MicroGuards memory management engine (Table 4) can enforce correct access.

The MicroGuards virtual memory abstraction is implemented as a set of kernel functions similar to their
Linux equivalents (e.g., do mmap, do munmap and do mprotect) with similar semantics but with additional
arguments that are required for enforcing the least privilege on MicroGuards. When an application creates
a MicroGuard by calling mg create (or mg mmap for the first time), a MicroGuard ID passed as an argument
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that is associated with in-kernel metadata, together with the MicroGuard tag, and its capabilities that would
be added to the task credentials.

When MicroGuards are mapped to hardware domains, the exact physical domain number is hidden from
the userspace code to avoid possible misuse of the API. The mappings between MicroGuards and hardware
domains are maintained through a cache-like structure similar to libmpk [43]. A MicroGuard is inside the
cache if it is already associated with a hardware domain; otherwise, it evicts another MicroGuards based on
the least recently used (LRU) caching policy while saving all require metadata for restoring the MicroGuard
mapping and permission flags.

Users can get their MicroGuards permissions by calling mg get, and quickly change its permission through
mg mprotect if the requested permission change matches one of the domain’s supported options (Table 2) or
undergo the small overhead of a dynamic security check otherwise. Any violation of MicroGuards permissions
causes a MicroGuards fault that leads to the violating thread being terminated. To protect MicroGuards
against API attacks, all memory management system calls check whether the caller thread has the appropriate
capabilities using the security hooks.

Creating a MicroGuard adds a new tag and owner capabilities to the task credential, and the userspace li-
brary also provides a management API for modifying labels and capabilities. Each thread can use mg transfer caps

for passing the plus capabilities to other threads, mg grant revoke for handling authorities, mg lock to pro-
hibit access to a MicroGuard, and mg unlock to restore access. The mg lock/unlock operations are helpful
in limiting in-process buggy code from accessing MicroGuards content.

Userspace: To reduce the size of the TCB, we did not modify existing system libraries and instead
provided a userspace library to invoke MicroGuards system calls. This library supports a familiar API for
memory management within a MicroGuard, including mg malloc and mg free for memory management.
We provide a custom memory allocator similar to HeapLayer [15] that allocates memory from an already
mapped MicroGuard. For each MicroGuard, there is a memory domain metadata structure that keeps
essential information such as the MicroGuard address space range (base and length) and the two lists of
free blocks from the head and tails of the MicroGuard region that is used when searching for free memory.

5 Evaluation

We evaluated our implementation of MicroGuards on a Raspberry Pi 3 Model B [3] that uses a Broadcom
BCM2837 SoC with a 1.2 GHz 64-bit quad-core ARM Cortex-A53 processor with 32KB L1 and 512KB
L2 cache memory, running a 32-bit unmodified Linux kernel version 4.19.42 and glibc version 2.28 as the
baseline. We use microbenchmarks and modified applications to evaluate MicroGuards in terms of security,
performance, and usability (section 3.1 and section 2.1) by answering the following questions:

– What is the initialization and runtime overhead of MicroGuards? How does using hardware domains
impact performance?

– Are MicroGuards practical and adaptable for real-world applications? How much application change
and programming effort is required? What is the performance impact? How does it perform in a multi-
threaded environment?

– What is the memory footprint of MicroGuards? How much memory does it add (statically and dynam-
ically) to both the kernel and userspace?

5.1 Microbenchmarks

Creating MicroGuards: Table 5 tests the cost of creating and mapping pages to MicroGuards us-
ing mg mmap when MicroGuards are directly mapped to hardware domains, 1MB aligned memory regions
with only 16 MicroGuards support, as compared to virtualized MicroGuards when there is no free hard-
ware domain and requires evicting MicroGuards from the cache. The results show that the direct use of
hardware domains improves MicroGuards performance by 4.9% compare to the virtualized one. Note that
creating MicroGuards is usually a one-time operation at the initial phase of an application.
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Fig. 3: Cost of MicroGuards memory allocation (malloc & free). On average mg malloc outperforms malloc
by a small rate (0.03%).

Operation Overhead stddev

Direct mg mmap/munmap 4.8% +- 0.17%

Virtualised mg mmap/munmap 10.01% +- 0.15%
Table 5: Cost of creating MicroGuards when directly mapped to hardware domains vs virualised mapping
that requires MicroGuards caching. The results are average of 10000 runs.

Memory protection & allocation:
We measure the cost of memory protection for baseline Linux where protection is per-process, and on

MicroGuard threads where protection is per-thread and either implemented in software or hardware.
Graph ?? shows the average results of 10000 runs of our microbenchmark comparing the cost of mg mprotect

with mprotect on baseline kernel. The results show mg mprotect is 1.12x slower than mprotect, but the
MD-backed mg mprotect is 1.14x faster than baseline for some permissions (none and r/w) that supported
by DACR register and do not need a TLB flush. Note that since hardware memory domains do not have
flexible access control options, we cannot benefit from a control switch of domains using the DACR register
for all possible permission flags such as the RO, WO, and EO variants.

RO WO EO R/W NO-ACC
0

1

2

3

L
a
te
n
cy
(µ
s)

mprotect mg mprotect hw mg mprotect

13



mg-clone pthread fork
100

101

102

103

L
a
te
n
cy
(m

s)

Lunch(1MB) Lunch(2MB)

Join(1MB) Join(2MB)

Fig. 4: Overhead of creating MicroGuard-enabled threads: the results are the average of 100000 runs with
1MB and 2MB heap sizes. On average, mg clone latency is 5.39% lower than of pthread create.

Overhead Linux Kernel Userspace

Added LoC 3023 2405

Static Memory footprint static(7KB) slab(204KB) Static(10KB)
Table 6: Memory overhead of MicroGuards in Linux Kernel and userspace

Allocating memory using mg malloc is on average 1.08x faster than glibc malloc for blocks ≤ 64KB and
introduces a small overhead (8.3%) for blocks greater than 64KB (see Figure 3). This cost can be optimised
by using high-performance memory allocators. The results are average of running microbenchmarks 20000
times, and shows using MicroGuards provides reasonable overhead for memory allocation and permission
changes.

Threading: We tested the cost of MicroGuard threading operations (creating and joining) through
mg clone that creates MicroGuard-aware threads. The test uses the clone syscall with minor modifications
to restrict any credential sharing with the child by default (instead it provides additional clone options for
passing parent’s capabilities to its child). We implemented mg join using waitpid. Table 4 shows mg clone

outperforms pthread create by 0.56% and fork by 83.01%. This gain is attributed to the MicroGuard
operations simply doing less work for initializing new threads.

Codebase overhead: Another factor towards the usability of MicroGuards is the size of the codebase,
which is important both from a security perspective and the resource limitations of small devices. We
implemented MicroGuards as a Linux kernel patch with no dependency on any userspace libraries. As
Table 6 shows it adds less than 5.5K LoC in total to both the kernel (≈ 3K LoC) and userspace (2.5K
LoC). It adds 7KB to the kernel image size and adds 204KB for kernel slabs at runtime. The userspace
library only needs ≈ 10KB of memory. These results show the MicroGuards memory footprint is small and
suitable for many resource-constrained uses.

5.2 OpenSSL

Cryptographic libraries are responsible for securing all connected devices and network communication, yet
have been a source or victim of severe vulnerabilities. Given these libraries’ critical role, a single vulner-
ability can have a tremendous security impact. The well-known OpenSSL’s Heartbleed vulnerability [23],
for example, enabled attackers to access many servers’ private data (up to 66% of all websites were vul-
nerable). More recently, GnuTLS suffered a significant vulnerability allowing anyone to passively decrypt
traffic (CVE-2020-13777). Lazar et al. [36] studied 269 cryptographic vulnerabilities, finding that only 17%
of the vulnerabilities they studied originated inside the cryptographic libraries, with the majority coming
from improper uses of the libraries or interactions with other codebases. However, recent studies show that
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about 27% of vulnerabilities in cryptographic software are cryptographic issues, and the rest are system-level
issues, including memory corruption and interactions with the host or other applications/libraries [17].

Hence, we modified OpenSSL to utilize MicroGuards for protecting private keys from potential informa-
tion leakage by storing the keys in protected memory pages inside a single MicroGuard or multiple Micro-
Guards assigned per private key. Using multiple MicroGuards provides stronger security while adding more
overhead due to the cost of caching MicroGuards.

To enable MicroGuards inside OpenSSL, all the data structures that store private keys such as EVP PKEY

needed protected heap memory allocation. This meant replacing OpenSSL malloc wit mg malloc and us-
ing mg mmap at the initialization phase for creating one or multiple (per session) MicroGuards to store
private keys. After storing the keys, access to MicroGuards is disabled by calling mg lock. Only trusted
functions that require access to private keys (e.g., EVP EncryptUpdate or pkey rsa encrypt/decrypt) can
access MicroGuards by calling mg unlock. Modifying OpenSSL required fairly small code changes, and
added 281 lines-of-code.

We measured the performance overhead of MicroGuards-enabled OpenSSL by evaluating it on the
Apache HTTP server (httpd) that uses OpenSSL to implement HTTPS. Table 5 shows the overhead of
ApacheBench httpd with both the original OpenSSL library and the secured one with MicroGuards.
ApacheBench is launched 100 times with various request parameters. We choose the TLS1.2 DHE-RSA-
AES256-GCM-SHA384 algorithm with 2048-bit keys as a cipher suite in the evaluation.

The results show that on average MicroGuards introduces 0.47% performance overhead in terms of
latency when using a single MicroGuard for protecting all keys, and 3.67% overhead when using a sepa-
rate MicroGuard per session key. In the single MicroGuard case, the negligible overhead is mainly caused by
in-kernel data structure maintenance for enforcing privilage separation and handling MicroGuards metadata.
In the multiple- MicroGuards case, since httpd utilizes more than 16 MicroGuards (allocates a new Micro-
Guard per session), it causes higher overhead due to the caching costs within the kernel.
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Fig. 5: Overhead of httpd on unmodified OpenSSL vs MicroGuards-enabled one.

5.3 LevelDB

Google’s LevelDB is a fast key-value store and storage engine used by many applications as a backend
database. It supports multithreading for both concurrent writers to safely insert data into the database
as well as concurrent read to improve its performance. However, there is no privilege separation between
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threads, so each could have its private content isolated from other threads. We modified LevelDB to evaluate
performance overhead of using the MicroGuards threading model when each thread has its own private
storage that cannot be accessed by other threads.

We replaced the LevelDB threading backend (env posix) that uses pthreads with MicroGuards-aware
threading, where each thread creates an isolated MicroGuard as its private storage and computation. We used
the LevelDB db bench tool (without modification) for measuring the performance overhead of MicroGuards.

We generate a database with 400K records with 16-byte keys and 100-byte values (a raw size of 44.3MB).
The number of reader threads is set to 1, 2, 4, 8, 16, and 32 threads for each successive run. The threads
operate on randomly selected records in the database. The results in Figures 6 and 7 show how multithreading
can improve the performance of LevelDB, and utilising MicroGuards adds a small overhead on write (5%)
and read (1.98%) throughput. As with OpenSSL previously, modifying LevelDB required only adding 157
lines-of-code around the codebase.
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Fig. 6: LevelDB: performance overhead of MicroGuards-based multithreading compare to pthread-based in
terms of write throughput (5%).
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Fig. 7: LevelDB: performance overhead of MicroGuards-based multithreading compare to pthread-based in
terms of read throughput (1.98%).
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6 Discussion & Conclusion

We have shown that MicroGuards provides a practical and efficient mechanism for intra-process isolation and
inter-thread privilege separation on data objects. It adds small performance overhead and minimal memory
footprint, which in essential for mobile and resource-constrained devices. However, the mechanism can still
be taken further.

6.1 Address Space Protection Limitations

For single-threaded scenarios (e.g., event-driven servers), although MicroGuards can protect sensitive content
from unsafe libraries or untrusted parts of the applications, it can be vulnerable if the untrusted modules
are also MicroGuards-aware and already use the MicroGuards APIs. The application can use mg get to
query MicroGuard information and use the API to access them. This is not an issue when the untrusted
code is running in a separate thread since the kernel does not provide it the capabilities required for accessing
the other MicroGuards. It should be possible to modify popular event-driven libraries (e.g., libuv) to use
threads purely to separate sensitive information such as key material, but we have not yet implemented this.

Various covert attacks [47] and side-channel attacks such as Meltdown [37] and Spectre [32] demonstrate
how hardware and kernel isolation can be bypassed [30]. MicroGuards are currently vulnerable to these
class of attacks, although the existing countermeasures within the Linux kernel are sufficient protection. We
believe these types of attacks are important security threats, and hardening MicroGuards against them
could be significant future work.

6.2 Compatibility Limitations

Providing a solution that is compatible with various operating systems and heterogeneous hardware is chal-
lenging. Though we picked our base kernel on Linux and built the abstraction with minimal dependencies,
some application modification is still required. We believe that building more compatibility layers into our
existing userspace implementation is possible and are open-sourcing our code to gather further feedback and
patches from the relevant upstream projects we have modified.

Although Linux is the most widespread general-purpose kernel for embedded devices, as well as being the
base for Android, still many even smaller devices depend on operating systems such as FreeRTOS. These often
use ARM Cortex-M based hardware features for isolation (such as memory protection units (MPUs) [54,8]),
or more modern CPUs with memory tagging extension [11]. We plan to explore the implementation of
the MicroGuards kernel memory management on these single-address space operating systems, as well as
broadening the port to Intel and PowerPC architectures on Linux (where the memory domains support is
generally simpler to use than on ARM).

7 Related work

There are many software or hardware-based techniques for providing process and in-process memory protec-
tion.

OS/hypervisor-based solutions: Hardware virtualization features are used for in-process data encap-
sulation by Dune [14] by using the Intel VT-x virtualization extensions to isolate compartments within user
processes. However, overall, the overheads of such virtualization-based encapsulation are more heavy-weight
than MicroGuards. ERIM [55], light-weight contexts (lwCs) [38] and secure memory views (SMVs) [29] all
provide in-process memory isolation and have reduced the overhead of sensitive data encapsulation on x86
platforms. The MicroGuards provides stronger security guarantees and privilege separation, allows more
flexible ways of defining security policies for legacy code – e.g., without the use of threads as in our OpenSSL
example, its small memory footprint makes it suitable for smaller devices, and it takes advantage of efficient
virtual memory tagging by using hardware domains to reduce overhead. Burow et al. [19] leverage the In-
tel MPK and memory protection extensions (MPX) to efficiently isolate the shadow stack. Our efforts to
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provide an OS abstraction for in-process memory protection is orthogonal to these studies, which all have
potential use cases for MicroGuards. Our focus has also been on lowering the resource cost to work well on
embedded and IoT devices, while these projects are also currently x86-only. HiStar [59] is a DIFC-based OS
that supports fine-grained in-process address space isolation, which influenced our work, but we focused on
providing a more general-purpose solution for small devices by basing our work on the Linux kernel instead
of a custom operating system. Flume [34] proposed process-level DIFC as a minimal extension to the Linux
kernel, making DIFC work with the languages, tools, and OS abstractions already familiar to programmers.
It also introduced a cleaner label system (which HiStar have later adopted). Likewise, other DIFC-based
systems only support per-process protection. They also add large overhead [57,34] or need specific program-
ming language support [45]. MicroGuards, however, do no aim to enforce dataflow protection on all system
objects, but only focuses on threads and address space objects to enable very lightweight privilege separation.

Compiler & Language Runtime: Various compiler techniques introduce memory isolation as part of
a memory-safe programming language. These approaches are fine-grained and efficient if the checks can be
done statically [24]. However, such isolation is language-specific, relies on the compiler and runtime, and not
effective when applications are co-linked with libraries written in unsafe languages. MicroGuards abstractions
are fine-grained enough to be useful to these tools, for example, to isolate unsafe bindings. Software fault
isolation (SFI) [56,46] uses runtime memory access checks inserted by the compiler or by rewriting binaries
to provide memory isolation in unsafe languages with substantial overhead. Bounds checks impose overhead
on the execution of all components (even untrusted ones), and additional overhead is required to prevent
control-flow hijacks, which could bypass the bounds checks [33]. ARMLock [62] is an SFI-based solution
that offers lower overhead utilizing ARM MDs. Similarly, Shreds [20] provides new programming primitives
for in-process private memory support. MicroGuards also uses ARM MDs for improving the performance
of intra-process memory protection, but is a more flexible solution for intra-process privilege separation;
it provides a new threading model for dynamic fine-grained access control over the address space with no
dependency on a binary rewriter, specific compiler or programming language.

Hardware-enforced techniques: A wide range of systems use hardware enclaves/TEEs such as Intel’s
SGX [7] or ARM’s TrustZone [10] to provide a trusted execution environment for applications that against
malicious kernel or hypervisor [28,26,12,52,40]. The trust model exposed by these hardware features is very
fixed, and usually results in porting monolithic codebases to execute within the enclaves. Hence, there are
wide ranges of attack vectors, which many are memory vulnerabilities inside enclaves or their untrusted
interface, in such systems [48,50]. EnclaveDom [39] utilizes Intel MPK to provide in-enclave privilege sepa-
ration. MicroGuards provide better performance and more general solutions with no dependency on these
hardware features; hence it can be used for in-enclave isolation and secure multi-threading to improves both
security and performance of enclave-assisted applications [51]. Ultimately, dedicated hardware support for
tagged memory and capabilities would be the ideal platform to run MicroGuards on [60]. We are planning
on supporting more of these hardware features as future work, with a view to analyzing if the overall increase
in hardware complexity offsets the resource usage in software for embedded systems.
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35. Lamowski, B., Weinhold, C., Lackorzynski, A., Härtig, H.: Sandcrust: Automatic sandboxing of unsafe compo-
nents in Rust. In: Proceedings of the 9th Workshop on Programming Languages and Operating Systems. pp.
51–57. ACM (2017)

36. Lazar, D., Chen, H., Wang, X., Zeldovich, N.: Why does cryptographic software fail? a case study and open
problems. In: Proceedings of 5th Asia-Pacific Workshop on Systems. pp. 1–7 (2014)

37. Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Mangard, S., Kocher, P., Genkin, D., Yarom, Y.,
Hamburg, M.: Meltdown. arXiv preprint arXiv:1801.01207 (2018)

38. Litton, J., Vahldiek-Oberwagner, A., Elnikety, E., Garg, D., Bhattacharjee, B., Druschel, P.: Light-weight con-
texts: An OS abstraction for safety and performance. In: 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16). pp. 49–64 (2016)

39. Melara, M.S., Freedman, M.J., Bowman, M.: Enclavedom: Privilege separation for large-tcb applications in trusted
execution environments. arXiv preprint arXiv:1907.13245 (2019)

40. Mo, F., Tarkhani, Z., Haddadi, H.: Sok: Machine learning with confidential computing. arXiv preprint
arXiv:2208.10134 (2022)

41. Morgan, L.: List of data breaches and cyber attacks in October 2017 – 55 million records leaked. https://www.
itgovernance.co.uk/blog/list-of-data-breaches-and-cyber-attacks-in-october-2017-55-million-records-leaked/

(2017)
42. Morris, J., Smalley, S., Kroah-Hartman, G.: Linux security modules: General security support for the linux kernel.

In: USENIX Security Symposium. pp. 17–31. ACM Berkeley, CA (2002)
43. Park, S., Lee, S., Xu, W., Moon, H., Kim, T.: libmpk: Software abstraction for intel memory protection keys.

arXiv preprint arXiv:1811.07276 (2018)
44. Provos, N., Friedl, M., Honeyman, P.: Preventing privilege escalation. In: USENIX Security Symposium (2003)
45. Roy, I., Porter, D.E., Bond, M.D., McKinley, K.S., Witchel, E.: Laminar: Practical fine-grained decentralized

information flow control, vol. 44. ACM (2009)
46. Sehr, D., Muth, R., Biffle, C.L., Khimenko, V., Pasko, E., Yee, B., Schimpf, K., Chen, B.: Adapting software

fault isolation to contemporary cpu architectures (2010)
47. Sigurbjarnarson, H., Nelson, L., Castro-Karney, B., Bornholt, J., Torlak, E., Wang, X.: Nickel: a framework for

design and verification of information flow control systems. In: 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18). pp. 287–305 (2018)

48. Singh, J., Cobbe, J., Quoc, D.L., Tarkhani, Z.: Enclaves in the clouds: Legal considerations and broader impli-
cations. Communications of the ACM 64(5), 42–51 (2021)

49. StewardJack, J.: The ultimate list of internet of things statistics for 2022. https://findstack.com/

internet-of-things-statistics/ (2021)
50. Tarkhani, Z.: Secure Programming with Dispersed Compartments. Ph.D. thesis, University of Cambridge (2022)
51. Tarkhani, Z., Madhavapeddy, A.: Enclave-aware compartmentalization and secure sharing with sirius. arXiv

preprint arXiv:2009.01869 (2020)
52. Tarkhani, Z., Madhavapeddy, A., Mortier, R.: Snape: The dark art of handling heterogeneous enclaves. In:

Proceedings of the 2nd International Workshop on Edge Systems, Analytics and Networking. pp. 48–53 (2019)
53. Tarkhani, Z., Qendro, L., Brown, M.O., Hill, O., Mascolo, C., Madhavapeddy, A.: Enhancing the security &

privacy of wearable brain-computer interfaces. arXiv preprint arXiv:2201.07711 (2022)
54. tock: Finer grained memory protection on cortex-m3 mpus. https://github.com/tock/tock/issues/1532
55. Vahldiek-Oberwagner, A., Elnikety, E., Duarte, N.O., Sammler, M., Druschel, P., Garg, D.: ERIM: Secure, efficient

in-process isolation with protection keys (MPK). In: 28th USENIX Security Symposium (USENIX Security 19).
pp. 1221–1238 (2019)

56. Wahbe, R., Lucco, S., Anderson, T.E., Graham, S.L.: Efficient software-based fault isolation. In: ACM SIGOPS
Operating Systems Review. vol. 27, pp. 203–216. ACM (1994)

57. Wang, J., Xiong, X., Liu, P.: Between mutual trust and mutual distrust: practical fine-grained privilege separation
in multithreaded applications. In: 2015 USENIX Annual Technical Conference (USENIX ATC 15). pp. 361–373
(2015)

58. Watson, R.N., Laurie, B., Murdoch, S.J., Norton, R., Roe, M., Son, S., Vadera, M., Woodruff, J., Neumann, P.G.,
Moore, S.W., et al.: Cheri: A hybrid capability-system architecture for scalable software compartmentalization.
In: 2015 IEEE Symposium on Security and Privacy (SP). pp. 20–37. IEEE (2015)

59. Zeldovich, N., Boyd-Wickizer, S., Kohler, E., Mazières, D.: Making information flow explicit in histar. In: Proceed-
ings of the 7th symposium on Operating systems design and implementation. pp. 263–278. USENIX Association
(2006)

20

https://www.itgovernance.co.uk/blog/list-of-data-breaches-and-cyber-attacks-in-october-2017-55-million-records-leaked/
https://www.itgovernance.co.uk/blog/list-of-data-breaches-and-cyber-attacks-in-october-2017-55-million-records-leaked/
https://findstack.com/internet-of-things-statistics/
https://findstack.com/internet-of-things-statistics/
https://github.com/tock/tock/issues/1532


60. Zeldovich, N., Kannan, H., Dalton, M., Kozyrakis, C.: Hardware enforcement of application security policies
using tagged memory. In: OSDI. vol. 8, pp. 225–240 (2008)

61. Zero, P.: Introduction: Bugs in memory management code (2019), https://googleprojectzero.blogspot.com/
2019/01/taking-page-from-kernels-book-tlb-issue.html

62. Zhou, Y., Wang, X., Chen, Y., Wang, Z.: Armlock: Hardware-based fault isolation for ARM. In: Proceedings of
the 2014 ACM SIGSAC conference on computer and communications security. pp. 558–569. ACM (2014)

21

https://googleprojectzero.blogspot.com/2019/01/taking-page-from-kernels-book-tlb-issue.html
https://googleprojectzero.blogspot.com/2019/01/taking-page-from-kernels-book-tlb-issue.html

	Enabling Lightweight Privilege Separation in Applications with MicroGuards

