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Abstract. The rise of Alzheimer’s Disease worldwide has prompted a search
for efficient tools which can be used to predict deterioration in cognitive decline
leading to dementia. In this paper, we explore the potential of survival machine
learning as such a tool for building models capable of predicting not only dete-
rioration but also the likely time to deterioration. We demonstrate good predic-
tive ability (0.86 C-Index), lending support to its use in clinical investigation
and prediction of Alzheimer’s Disease risk.
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1 Introduction

One of the most pressing challenges for governments and healthcare systems is the
rising number of people with dementia. More than 55 million people live with demen-
tia worldwide, and there are nearly 10 million new cases yearly, with 60-70% of all
dementias being of Alzheimer’s Disease type (AD) [1]. Recently, attention has turned
to Machine Learning (ML) as a tool for improving the predictive ability of clinical
models concerning AD and addressing clinical challenges more widely. However, of
the hundreds of clinical ML models that appear in scientific publications each year,
few have thus far been successfully embedded into existing clinical practice [2]. One
of the reasons for this is that most models only provide predictions for disease cases
without quantifying the probability of disease occurrence. This limitation restricts
clinicians' ability to accurately measure and communicate the probability of disease
development over time with the patient. [3]. Also, in the context of predicting the pro-
gression of AD in particular, many studies that use ML methods employ a classifica-
tion approach, whereby the outcome to be predicted is either a binomial or multino-
mial outcome within a specific timeframe [4] [5]. The datasets are often derived from
longitudinal studies, whereby clinical marker data is collected from participants over
months and years [6]. Thus, such data has a temporal element inherent to the method-
ology employed in the collection process. However, standard classification ML can-
not consider the predictive power of time in conjunction with other predictors. Fur-
thermore, classification models cannot handle drop-outs which are common in longi-
tudinal studies.



With this in mind, a newly emerging field of exploration seeks to build on tradi-
tional time-dependent statistical models, such as survival analysis, to develop ma-
chine learning models which can predict the time-dependent risk of developing AD
and go beyond simple classification. Survival analysis is a statistical method that aims
to predict the risk of an event's occurrence, such as death or the emergence of a dis-
ease, as a function of time. A key aspect of survival analysis is the presence of cen-
sored data, indicating that the event of interest has not occurred while the subject was
part of the study. The presence of censored data requires the use of specialised tech-
niques. Traditionally, the Cox proportional hazards model [7] has been the most
widely used technique for analysing data containing also censored records. However,
the Cox model typically works well for small data sets and does not scale well to high
dimensions [8]. ML techniques that inherently handle high-dimensional data have
been adapted to handle censored data, allowing ML to offer a more flexible alterna-
tive for analysing high-dimensional, censored, heterogeneous data [8]. Furthermore,
the ability to predict not only a binary or multinomial outcome but also the risk of
such outcomes occurring at different timepoints provides clinicians and researchers
with more information for the benefit of research and patients.

This work has several aims. First, it aims to build upon existing work demonstrat-
ing the utility of survival-based ML techniques in predicting the risk of deterioration
at different time points in AD using the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database. Secondly, it aims to explore the predictive power of these tech-
niques once the more physically intrusive biomarkers available in the dataset are re-
moved. These predictors, such as ABETA, TAU and PTAU, which are established
biomarkers for dementia, are collected via painful lumbar puncture procedures to
sample cerebrospinal fluid (CSF). Recently efforts have been made to investigate al-
ternative biomarkers such as blood metabolites which, in some studies, proved to
have comparable predictive power to the established CSF-biomarkers [9].

The rest of the paper will be ordered as follows. First, it will review existing litera-
ture on survival-based ML as applied to clinical questions in general and AD predic-
tion in particular. Next, the problem of interest will be defined. Then the proposed
methodology will be outlined. Before the results are presented, the study design of the
dataset will be described, including predictors and diagnostic criteria. A discussion of
the implications of these results will then follow.

2 Related Work

Spooner et al. [8] systematically compared the performance and stability of ML algo-
rithms and feature selection methods suitable for high-dimensional, heterogeneous,
censored clinical data, in the context of cognitive ageing and AD, by predicting the
risk of AD over time [8]. The authors assessed ten survival-based machine-learning
techniques alongside the standard Cox proportional hazard model. The Sydney Mem-
ory and Aging Study (MAS) dataset and Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) dataset were utilised. All algorithms evaluated performed well on both
data sets and outperformed the standard Cox proportional hazards model.



Another paper that explores the clinical utility of survival modelling within the do-
main of AD research comes from [10], which looked at the interaction between so-
cioeconomic features and polygenic hazard scores on the timing of Alzheimer's diag-
nosis using Cox proportional hazard survival analysis. Only the standard Cox PH
technique was used. The authors could demonstrate the clinical utility of using socioe-
conomic markers and the presence of the APOE4 gene expression to predict the time
to AD diagnosis. Although a small study focusing on only one model, this work
demonstrated the utility of survival-based models in AD prediction. However, more
work was needed to build upon these results using ML methods. This was achieved in
[11] using ML survival-based methods to predict the risk of developing AD in the
English Longitudinal Study of Aging (ELSA) dataset. This work again found that
Survival ML outperformed Cox methods.

On the other hand, [12] found the standard Cox regression and two ML models
(Survival Random Forest and Extreme Gradient Boosting) had comparable predictive
accuracy across three different performance metrics, when applied to the Prospective
Registry For Persons with Memory Symptoms (PROMPT) dataset [13]. The authors
concluded that survival ML did not perform better than standard survival methods.

In comparison, [14] found that multi-modal survival-based deep learning methods
produced good results when applied to the ADNI dataset, comparable to [8]. In this
context, our present work serves as an example of including neural network models,
as these methods have hitherto seldom been explored in a survival context.

Despite the scarcity of survival modelling papers in relation to AD prediction, re-
cent examples have shown promise in attempting to outperform the classic Cox pro-
portional hazard model, using survival ML and survival neural networks/ deep learn-
ing on clinical datasets. This supports the continued exploration of survival ML as a
predictive tool for clinical risk problems [11].

3 Problem Definition

This study uses survival-based ML methods to predict the risk of deterioration, de-
fined as receiving a worse diagnosis at their final visit to the data collection centre be-
fore leaving the study, compared to baseline diagnosis. Furthermore, the study aims to
build models to predict the risk of receiving a worse diagnosis within the data collec-
tion period using survival-based ML. These models will then be tested for stability,
and two estimations of the general test error will be calculated based on C-Index and
Calibration scores [15].

A secondary aim is to explore the predictive power of these models when predic-
tors derived from invasive CSF collections are removed from the dataset.

4 Methodology
4.1 Data Description

Alzheimer’s Disease Neuroimaging Initiative.
The data used in this paper was derived from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database [6]. This longitudinal case-control study was initiated



in 2004 by the National Institute of Aging (NIA), The National Institute of Biomedi-
cal Imaging and Bioengineering (NIBIB), The Food and Drug Administration (FDA),
as well as elements of the private and non-profit sectors. The initial protocol, ADNI1,
was conducted over six years, recruiting 400 subjects diagnosed with Mild Cognitive
Impairment (MCI), 200 subjects with Alzheimer’s (AD), and 200 healthy controls
(CN). The initial goal of the ADNI study was to test whether repeated collections of
neuroimaging, biomarker, genetic, and clinical and neuropsychological data could be
combined to contribute in an impactful way to research dementia [6].

Data for the present paper was downloaded on the 1st of October 2022 through the
ADNIMERGE package in R. This package combines predictors from the different
ADNI protocols. The final combined dataset contains 115 variables and 15,157 obser-
vations, which included multiple observations per participant. These observations rep-
resent data collection events where participants made up to 23 visits to study sites.
The data used for this work is a subset of the full dataset, containing only information
from the original ADNI2 study. After some initial cleaning, the resulting data con-
tained 607 observations and 52 variables consisting of 50 input attributes, 1 time at-
tribute (defined as the time in months until the participant visited the data collection
centre for the last time), and 1 outcome attribute. The outcome attribute consisted of
three diagnostic classes received at their final visit to the data collection centre: those
who received a diagnosis of Cognitively Normal (CN), those who received a diagno-
sis of Mild Cognitive Impairment (MCI), and those who received a diagnosis of
Alzheimer’s Disease (AD) [4].

4.2 Predictors

* Baselines Demographics: age, gender, ethnicity, race, marital status, and ed-
ucation level were included in the original dataset.

*  Neuropsychological test results, including those from the Functional Activi-
ties Questionnaire (FAQ), the Mini-Mental State Exam (MMSE), and Rey's
Auditory Verbal Learning Test (RAVLT), were included in the data. This
numeric data is well-validated as a tool for identifying cognitive impairment
in general and AD-related cognitive impairment in particular. Full details of
the tests included can be found at [16].

*  Positron Emission Tomography (PET) measurements (FDG, PIB, AV45) are
indirect measures of brain function using the Positron Emission Tomography
neuroimaging modality.

* Magnetic Resonance Imaging (MRI) measurements (Hippocampus, intracra-
nial volume (ICV), MidTemp, Fusiform, Ventricles, Entorhinal and Whole-
Brain) are structural measurements of a participant’s brain derived from the
Magnetic Resonance Imaging neuroimaging modality.



* APOE4 is an integer measurement representing the appearance of the epsilon
4 allele of the APOE gene. This allele has been implicated as a risk factor for
AD [17]

* ABETA, TAU, and PTAU are cerebrospinal fluid (CSF) biomarker measure-
ments. These biomarkers are collected via lumbar puncture. These predictors
were removed from the model-building process for the second set of models.

* Last Visit is defined for this paper as the number of months from baseline
data collection to the subject’s last visit at a data collection centre. This vari-
able was added to explicitly define a time predictor for survival-based ML
modelling.

4.3 Data Preprocessing

Boolean variables were created, indicating the location of missing data for each pre-
dictor. Variables with missingness at 90% or greater of the total rows for that predic-
tor were removed. All nominal predictors were dummy-coded.

The data was split into two groups to predict deterioration using survival-based
ML. The first group contained only those diagnosed as cognitively normal (CN) on
their first visit to the data collection centre. The second group contained only those di-
agnosed with Mild Cognitive Impairment (MCI) on their first visit to the data collec-
tion centre. Deterioration was defined as receiving a worse diagnosis on their final
visit to the data collection centre. The resultant two datasets had 285 and 322 observa-
tions respectively and 98 variables with CSF-derived biomarkers included/92 without
(See Tables 1, 2, 3).

Table 1. Those who received a cognitively normal (CN) diagnosis at baseline were the only
group included. The models predicted the diagnoses these participants received at the final
visit, defined here.

Outcome Definition

CN Those diagnosed with CN at baseline who received the same diagnosis
at their last visit.

MCI/AD Those having received a diagnosis of CN at baseline either received a
diagnosis of AD or MCI at their last visit.




Table 2. Those diagnosed with Mild Cognitive Impairment (MCI) at baseline were the only
group included. The models predicted the diagnoses these participants received at the final
visit, defined here.

Out- Definition
come

CN/MCI | Those who had received a diagnosis of MCI at baseline either received the
same diagnosis at their last visit or a more favourable diagnosis of CN.

AD Those diagnosed with MCI at baseline received a diagnosis of AD at their
last visit.

Table 3. The final dimensions of the two datasets after preprocessing.

Dataset Variables Observations
CN at baseline 98/92 (with/without CSF predictors) 285
MCI at baseline | 98/92 (with/without CSF predictors) 322

44  Model Development

Model development, evaluation, and validation were carried out according to method-
ological guidelines outlined by [18]; results were reported according to the Transpar-
ent Reporting of a multivariable prediction model for Individual Prognosis or Diagno-
sis (TRIPOD) guidelines [19]. This paper explored three algorithms:

Cox Proportional Hazard Model (Cox PH) - The Cox model is expressed by the haz-
ard function, which is the risk of an event occurring at time as follows:

h(t):hom * eXp(ﬁ1X1+ﬁ2X2+Bpo) 1

wheretrepresents the survival time,h [t)is the hazard function,X 15 X gpees X pare
the values of the p covariates, ,81, B geee B pare the coefficients that measure the effect

of the covariates on the survival time and h, (t] is the baseline hazard function, which
is unspecified. The regression coefficients are estimated by maximising the partial
likelihood [8], and hence the model does not require tuning.

Survival Random Forest (SRF) - Random Forests seek to grow many trees using
bootstrapped aggregation and splitting on a random subsection of predictors for each
split point. The split points are chosen based on some criteria (such as entropy or pu-
rity of the node), which seeks to allocate classifications of one type within each termi-
nal node. In a Survival Random Forest, the feature and split point chosen is the one
that maximises the survival difference (in terms of the hazard function) between sub-
sequent nodes [8] [20]. In the tuning grid for this model, the values of mtry varied be-
tween 1 and 20, with a step of 1, while the values for minimum node size in the grid



were 10, 20, 30, 40, and 50. SRF comprised 1000 trees. The number of trees promotes
model convergence (large is better) and generally is not tuned.

Survival Deep Hit Neural Networks (SNN) - Deep Hit is a multi-task neural net-
work comprising a shared sub-network and K cause-specific sub-networks. The archi-
tecture differs from a conventional multi-task neural network in two ways. First, it
utilises a single softmax layer as the output layer of Deep Hit to ensure that the net-
work learns the joint distribution of K possible outcomes, not the marginal distribu-
tions of each outcome. Second, it maintains a residual connection from the input co-
variates into the input of each cause-specific sub-network. The full technical descrip-
tion of this model can be found in [21]. In the tuning grid for this model, the number
of nodes was between 2 and 300, the epochs were between 10 and 400, and the batch
sizes was 32. The learning rates were 0.001, and 0.01, the activation functions were
‘relu’, ‘elu’ and ‘leakyrelu’, and the optimisers were ‘adam’ and ‘adamw’. 10% of the
training dataset was held aside for validation in the early stopping procedure, with pa-
tience at either 10, or 150 epochs.

4.5 Nested Cross-Validation and Monte Carlo Simulation

A Nested Cross-Validation procedure was implemented to tune and evaluate the mod-
els so precise estimates of the model’s performance of unseen cases (internal valida-
tion) could be gathered [4]. Nested Cross-Validation consisted of an outer 5-fold CV
(model assessment) and an inner 5-fold CV (model tuning). We conducted a Monte
Carlo procedure of 100 repetitions of the nested CV using different random splits per
model to assess the models' stability. Performance statistics were recorded for each
model produced by each iteration. Each performance statistic's mean and standard de-
viation across all iterations were recorded when the MC was complete. To ensure the
representativeness of training and test samples in both procedures, the data splitting
was stratified based on the AD cases variable.

4.6 Performance Metrics

To assess model performance, two statistics were recorded. Discrimination was as-
sessed using the Concordance index or C-index [18]. This metric, also called Harrel’s
C-index, provides a global assessment of the model and can be considered a more
general form of the AUCROC measure typically used in binary classification tasks.
The C-index computes the percentage of comparable pairs within the dataset whose
risk score was correctly identified by the model. Comparable pairs are defined as a se-
lection of two observations, which can be compared in terms of survival time pre-
dicted by the model. If both are censored, then they are not included in the computa-
tion for this metric. A pair is considered concordant if the observation who experi-
ences the earlier event is identified as having greater risk and discordant otherwise.
Thus the total concordance score for a model is the ratio of concordant pairs within
the dataset divided by the total number of observations [15].

Secondly, calibration was assessed using Van Houwelingen's Alpha Survival Mea-
sure of non-proportional hazards models [15]. This metric is defined as:
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Where O is the true censoring indicator observed from the test data, H,; is the

cumulative hazard predicted by the model, and ; is the observed survival time.

The model is well calibrated if the estimated a is equal or close to 1. Calibration is a
formal comparison between the probability distribution and resultant survival in-
stances observed in the test data and the probability distribution and resultant survival
predictions generated by the model. A full exploration of this metric can be found in
[22].

4.7 Software and Hardware

The data analysis was conducted using the R language [23]. Initial data cleaning was
performed using base R functions and the Tidyverse R package [24]. The creation of
dummy variables was performed using the Caret R package [25]. The nested cross-
validation procedure, including training, tuning and evaluation, was performed on the
Cox PH, SRF, and SNN models using the mlr3 R package [26]. The hardware con-
sisted of 3 servers running Linux, with Xeon processors and 64GB of RAM.

5 Results

The nested cross-validation C-index and Calibration performance for each model type
is detailed below. Figures for the two groups’ C-indexes, with CSF-derived biomark-
ers included in the models, can be found in Fig. 2.

Table 4. CN group with CSF-derived biomarkers included / removed.

Model | C-index CSF included / removed Calibration CSF included / removed
Cox 0.71/0.59 0.01/0.01

PH

SRF 0.84/0.86 0.80/1.02

SNN 0.80/0.70 0.64/0.60

The best-performing model for the CN group with CSF-derived biomarkers in-
cluded was SRF, followed by SNN, followed by Cox PH model. Thus, the SRF and
SNN outperformed the conventional statistical model Cox in the CN group with CSF-
derived biomarkers included in the Calibration and the C-index metric.

Once the CSF-derived biomarkers were removed, for the CN group, both the Cox
PH and the SNN reported worse predictive power. However, as the C-Index and Cali-
bration estimated, the SRF retained its predictive ability, even significantly improving
its calibration score.



Table 5. MCI group with CSF-derived biomarkers included / removed.

Model | C-index CSF included / removed Calibration CSF included / removed
Cox 0.78/0.78 0.29/0.25

PH

SRF 0.84/0.84 0.98/0.99

SNN 0.83/0.77 1.16/0.91

When considering the C-index, the best-performing model for the MCI group, with
CSF-derived biomarkers included, was SRF, followed by Cox PH model, followed by
SNN. Calibration was again almost perfect for SRF followed by SNN and CoxPH.

Once the CSF-derived biomarkers were removed, for the MCI group, only the
SNN reported worse predictive power, as measured by the C-Index. When consider-
ing calibration, however, the SNN and Cox PH models deteriorated when the CSF-de-
rived biomarkers were removed, while SRF remained close to 1.

The datasets with the CSF-derived biomarkers removed were then taken forward
for all models to undergo a Monte Carlo simulation with 100 iterations of the nested
cross-validation procedure.

Table 6. Cox PH Monte Carlo at 100 iterations.

Group (Model) Mean C-index (sd) Mean Calibration (sd)
MCI (Cox PH) 0.78(0.02) 0.33(0.08)
CN (Cox PH) 0.59(0.06) 0.03(0.02)

Table 7. SNN Monte Carlo.

Group Mean C-index (sd) Mean Calibration (sd)
MCI (SNN) 0.77(0.02) 0.91(0.1)
CN (SNN) 0.7(0.06) 0.6(0.03)

Table 8. SRF Monte Carlo.

Group Mean C-index (sd) Mean Calibration (sd)

MCI (SRF) 0.84(0.008) 0.99(0.02)

CN (SRF) 0.83(0.01) 1.02(0.02)
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The SRF model results on both the C-Index and Calibration proved the most stable
upon repeated testing, with standard deviations at less than 0.03. The SNN model was
less stable and reported less predictive power, as measured by both the C-Index and
Calibration.

Group [ CN [ MCI

0.83 0.84 0.84

08 } 0.8

086

0.2

0.0

Cox_PH SNN SRF
- Model

Fig. 1. C-indexes for models applied to the two groups with CSF-derived biomarkers included
in the models.

6 Discussion

This study aimed to further explore the potential of survival-based ML as a tool for
predicting time to AD diagnosis. This paper demonstrates the clear utility of such
methods when predicting on the ADNI2 dataset. This provides further evidence for
the continued exploration of the utility of survival ML in this context.

Several results reported here are worthy of note. Firstly, we demonstrated good
predictive power for SRF with very good discrimination and excellent calibration,
which was superior to both the standard Cox PH model and the SNN model. Good
discrimination and calibration are essential in survival ML models to obtain accurate
risk estimations at specific time periods of interest, which is not possible with tradi-
tional classification ML models. This allows for informed decision-making, person-
alised interventions, and timely allocation of resources for the prevention, early detec-
tion, or management of dementia. Our results support the work of [11] but disagrees
with [20], which found that the standard Cox model was superior to tree-based en-
semble methods. This is possibly due also to the way in which the Survival trees were
constructed, with [18] using probabilities derived from a Cox model to construct a
Random Forest. In comparison, the SRF presented here sought to create trees whose
splits aimed to maximise the difference in survival between the resultant nodes. With
the present study indicating strong results using this approach, it may be that the latter
technique produces better models. However, we should note that these results were
obtained on datasets other than the one used in this study, ADNI.
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With the removal of the CSF-derived biomarkers, performance deterioration was
seen for SNN but not SRF or the Cox PH. The choice to investigate an SNN was de -
rived, in part, from the work of [14], whose best model achieved a C-index of 0.83 on
the ADNI dataset. In comparison, the best model found by the present study, using
SNN, achieved a C-index of 0.77. However, we should note that [13] did not provide
a comparison between the Survival Neural Network models used and either a standard
Cox PH model or any other survival ML algorithm. Another point of consideration is
that the authors used a slightly different Neural Network algorithm to the one de-
scribed here. Thus, an important next step would be directly comparing the DeepSurv
model and the Deep Hit model described here.

SNN had worse stability than the SRF and Cox PH models, as measured by the
standard deviations of the C-index and Calibration scores for these models. This
would suggest that this algorithm produces unstable models with unreliable predic-
tions. Neural Networks usually perform best in complex problems that require discov-
ering hidden patterns in the data between a large number of interdependent variables.
Furthermore, Neural Networks usually perform better on image and audio classifica-
tion rather than tabular data, such as the dataset used in this study [27]. Therefore, it
may be the case that a simpler model such as Random Forest might be better suited
for the kind of limited datasets presented here. It may also be the case that the SNN
model overfit the comparatively small dataset presented here.

Finally, the results in this work suggest that CSF-derived biomarkers did not have a
clear contribution in this setting, for building models capable of accurately predicting
the time to AD diagnosis on our considered ADNI sample. Although both the Cox PH
and SNN models variously suffered from the removal of these predictors, the RSF
model did not. This is important, as collecting biomarkers from CSF is an invasive
and painful process for participants, which involves a lumbar puncture. Recent analy-
ses conducted on EMIF-AD data [9] established that predictors such as metabolites in
blood showed similar predictive power to the well-established but more invasive CSF
biomarkers.

Despite the results obtained by this work, there are a number of limitations to the
present paper that need to be considered. Firstly, the ADNI2 data is comparatively
small, and future work is required to validate the models created here using external
data. A related point is the lack of diversity within this data, which heavily skews to-
wards white North-American participants. To validate the models created here, they
must be tested on non-white, non-western participants such that evidence of model
performance be gathered for a wider group of people.

A further limitation is that the choice of hyper-parameters for the grid search pro-
cedure for each model is finite. We were unable to conduct an exhaustive search over
a larger set of combinations of hyperparameter values due to time constraints and
computational cost. Therefore it is entirely possible that better results for these models
can be found using hyperparameters not explored here.
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7 Conclusion

This paper proposed a survival ML approach to predict the time to Alzheimer’s Dis-
ease diagnosis accurately. It was compared with one of the most used statistical mod-
els for survival analysis, namely Cox PH. In our framework proposed by using the
ADNI cohort, the Machine Learning based approach proved to be more accurate than
the statistical approach, which was the case also in a recent study conducted on differ-
ent clinical data [11].
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