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Abstract. Text-to-Image synthesis is the task of generating an image
according to a specific text description. Generative Adversarial Networks
have been considered the standard method for image synthesis virtually
since their introduction. Denoising Diffusion Probabilistic Models are re-
cently setting a new baseline, with remarkable results in Text-to-Image
synthesis, among other fields. Aside its usefulness per se, it can also
be particularly relevant as a tool for data augmentation to aid train-
ing models for other document image processing tasks. In this work, we
present a latent diffusion-based method for styled text-to-text-content-
image generation on word-level. Our proposed method is able to generate
realistic word image samples from different writer styles, by using class
index styles and text content prompts without the need of adversar-
ial training, writer recognition, or text recognition. We gauge system
performance with the Fréchet Inception Distance, writer recognition ac-
curacy, and writer retrieval. We show that the proposed model produces
samples that are aesthetically pleasing, help boosting text recognition
performance, and get similar writer retrieval score as real data. Code is
available at: https://github.com/koninik/WordStylist.

Keywords: Diffusion Models · Synthetic Image Generation · Text Con-
tent Generation · Handwriting Generation · Data Augmentation · Hand-
writing Text Recognition

1 Introduction

Image synthesis is a very challenging problem in Computer Vision, which has
gained traction with the rekindling of interest in neural networks a decade prior,
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and especially the introduction of models and concepts such as Generative Ad-
versarial Networks (GANs) [10], Variational Autoencoders (VAEs) [17] or Nor-
malizing Flows (NFs) [18]. Apart from the utility of the generated image in itself,
image synthesis has been employed as a tool to artificially augment training sets.
This is an aspect that is critical when it comes to training Deep Learning mod-
els, which are notorious for typically requiring vast amounts of data to attain
optimal performance. Annotating data is an expensive and time-consuming task
that requires a lot of human effort and expertise. A particular variant of image
synthesis is text-to-image synthesis, where the task is to generate an image given
a text description. As stated in [9], a text description can indeed give more se-
mantic and spatial information about the objects depicted in an image than a
single label. Text-to-image synthesis has been established as a whole indepen-
dent field as several applications have gained relative prominence.

Conditional Generative Adversarial Networks (cGANs) [26], the conditional
variant of GANs, have further enabled the augmentation of existing datasets by
generating data given a specific class or a specific input. With the advent of these
models, adversarial training has been established as the standard for image gen-
eration, where a minimax game is “played” between two networks, aptly named
Generator and Discriminator. The Generator is tasked with creating a sample –
in the current context, the synthesized image – while the Discriminator is tasked
with detecting instances that are outliers with respect to the training data. Un-
like GANs, which do not explicitly define a data density, other state-of-the-art
approaches have attempted to approach data generation as sampling from a
probability density function (pdf). Variational Autoencoders cast the problem
as one of estimating a latent representation for members of a given dataset, given
the prior knowledge that latent embeddings are Gaussian-distributed. They are
comprised of two network parts, named the Encoder and the Decoder. The En-
coder produces (probabilistic) latent representations given a datum, while the
Decoder is tasked with the inverse task, that is producing a sample given a latent
representation. Normalizing flows also deal with estimating the pdf of a given
set, and also assume the existence of a latent space that is to be estimated, like
VAEs. Latent data are equidimensional to the image data, and training is per-
formed by learning a series of non-linear mappings that gradually convert the
data distribution from and to a Gaussian distribution. In VAEs as in NFs, once
the model is trained, image generation can simply be performed by sampling
from the latent space and applying the learned transformation back to the im-
age / original space. The outburst of Diffusion Models, and in particular more
recent variants such as Denoising Diffusion Probabilistic Models (DDPMs) or
Latent Diffusion Models (LDM) have quickly begun to change the picture of the
state of the art with achievements that can often be described to be no less than
astonishing. The results of systems such as DALL·E-2 [30] and Imagen [34] have
prompted many researchers to experiment with their use in different applica-
tions. Diffusion models [36] are based on a probabilistic framework like VAEs or
NFs, but propose a different approach to the problem of image synthesis, cast in
its standard form as density estimation followed by sampling. Like NFs, in their
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standard form the latent space dimensionality is defined to be equal to that of
the original space, and learning is performed by estimating a series of non-linear
transformations between latent space and original space. A “forward/diffusion”
process gradually adds noise to inputs according to a predetermined schedule;
with the “reverse” process the aim is to produce an estimate of an image given
a latent, noisy sample.

In this work, instead of using text only as a description of the image contents,
we also use it literally as image content, in the sense of generating handwriting.
Thus, we address a task of Text-to-Text-Content-Image Synthesis. The main
contributions of this work are the following:

1. We present a method based on a conditional Latent Diffusion Model, that
takes as input a word string and a style class and generates a synthetic image
containing that word.

2. We compare qualitative results of our method with other GAN-based gen-
erative model approaches.

3. We further evaluate our results by presenting qualitative and quantitative
results for text recognition using the synthetic data. The synthetic data
is used for data augmentation, resulting in boosting the performance of a
state-of-the-art Handwriting Text Recognition (HTR) system.

4. And finally, we compare synthetic data and real handwritten paragraphs
using a writer retrieval system. We show that data produced by our method
show no significant difference in style to real data, and outperforms the other
methods by a tremendous margin.

The paper is organized as follows. In Section 2, we present an overview of
the related work. Our proposed method is introduced in Section 3, while Section
4 includes the evaluation process and results. Section 5 presents limitations and
possible future directions. Finally, we discuss conclusions in Section 6.

2 Related Work

Text-to-Text-Content-Image synthesis refers to the task of generating an
image that depicts a specific text, whether it is on the character-, word-, sentence-
, or page-level, given that text as the input condition. A field directly related
to this task is Document Image Analysis and Recognition, notably one of the
resource-constrained domains with respect to the availability of annotated data,
at least compared to the current state in natural image-related tasks [7,20].

Most existing works focus on conditioning on a string prompt and a writer
style to generate images of realistic handwritten text using GAN-based ap-
proaches. GANwriting [15] creates realistic handwritten word images conditioned
on text and writer style by guiding the generator. The method is able to pro-
duce out-of-vocabulary words. The authors extend this work in [14], generating
realistic handwritten text-lines. SmartPatch [25] fixes artifact issues that GAN-
writing faces by deploying a patch discriminator loss. ScrabbleGAN [35] uses
a semi-supervised method to generate long handwritten sentences of different
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style and content. A Transformer-based method is presented in [2], using a typi-
cal Transformer Encoder-Decoder architecture that takes as inputs style features
of handwritten sentence images extracted by a CNN encoder and a query text in
the decoding part. The model is trained with a four-part loss function, including
an adversarial loss, a text recognition loss, a cycle loss, and a reconstruction loss.

Related to Historical Document Analysis [21,28], the work presented in [29]
initially generates modern documents using LATEX and then attempts to convert
them into a historical style with the use of CycleGAN [40]. The work is fur-
ther extended in [39], by adding text recognition to the framework and the loss
function, which gives better readable text in the image synthesis.

3 Method

In this section, we present some general background information for the standard
Diffusion and Latent Diffusion Models. We then illustrate in detail the proposed
method that includes the forward process, model components, sampling and
experimental setup for training and sampling from the model.

3.1 Diffusion Models Background

Denoising Diffusion Probabilistic Models (DDPM). Diffusion Models
are a type of generative model that employ Markov chains to add noise and
disrupt the structure of data. The models then learn to reverse this process and
reconstruct the data. Inspired by Thermodynamics [36], Diffusion Models have
gained popularity in the field of image synthesis due to their ability to generate
high quality samples.

The Diffusion Model consists of two phases: the forward (diffusion) process
and the reverse (denoising) process. In the forward process, a sample x0 is ini-
tially drawn from a distribution x0 ∼ q(x0) corresponding to the observed data.
This is subjected to Gaussian noise, which produces a latent variable x1; noise
is again added to x1, giving latent variable x2, and so on, until some predefined
hyper-parameter T . This process forms a series of latent variables x1, x2, ·, xT ,
Formally, we can write:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), q(xt|xt−1) = N(xt;
√

1− βtxt−1, βtI), (1)

where we have βi ∈ [0, 1],∀i ∈ [1, T ]. Hyper-parameters β1, β2, ..., βT collectively
form a noise variance schedule, used to control the amount of noise added at each
timestep. In the final timestep, given large enough T and suitable noise schedule,
we will have q(xT |x0) = q(xT ) ≈ N(0, I), i.e. the end result becomes practically
a pure Gaussian noise sample with no structure. In the reverse (denoising) phase,
a neural network learns to gradually remove the noise from the sampled by a
stationary distribution until ending up with actual data. Hence, image synthesis
will be performed according to an ancestral sampling scheme. This means that
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first we need to sample from q(xT ), then we sample by the previous time-step
conditioned on the sampled value of xT , and so and so forth until we sample the
required x0.

The noise is gradually removed in reverse timesteps using the following tran-
sition:

pθ(x0:T ) = p(xT )
∏T
t=1 pθ(xt−1|xt), pθ(xt−1|xt) = N(xt−1;µθ(xt, t), Σθ(xt, t)). (2)

The network is trained by optimizing the variational lower bound between the
forward process posterior and the joint distribution of the reverse process pθ.
The training loss

L = Ex0,t,ε[||ε− εθ(xt, t)||2] (3)

is calculated as the reconstruction error between the actual noise, ε, and the
estimated noise, εθ. In the case of Latent Diffusion models the loss will be adapted
to the latent representation zt.

Latent Diffusion Models (LDM). Diffusion Models have demonstrated re-
markable performance in image generation and transformation tasks [13,16,19,27].
However, their computational cost is high due to the size of the input data and
the use of cross-attention in images. To address this issue, Latent Diffusion Mod-
els were introduced in [32] to model the data distribution in a lower-dimensional
latent representation space. This is accomplished by mapping the input images
to a latent representation using an encoder, and then decoding the sampled la-
tents back into an image using a decoder, both from a variational autoencoder
architecture.

3.2 Proposed Approach

The goal of this work is to generate synthetic word-image samples given a word
string and a style class as conditions from a known distribution. We approach this
problem with the use of latent diffusion models to minimize training time and
computational cost. To move to the latent space we use the pre-trained “stable-
diffusion” VAE implementation from the Hugging Face repository6. Figure 1
presents the overall architecture of the proposed method.

Forward Process and Training. For the forward process, the VAE encoder
VE initially transforms an input image to a latent representation z. A diffu-
sion model pθ(x|Y, cτ ) is learned on the style Y and text-condition cτ pairs.
Timesteps t are sampled from a uniform distribution and the latent representa-
tion z gets gradually corrupted by the diffusion process in every timestep. For the
noise prediction, we use a U-Net architecture [33] with Residual Blocks [12] and
intermediate Transformer Blocks [38] to add the text condition to the model,

6 https://huggingface.co/CompVis/stable-diffusion

https://huggingface.co/CompVis/stable-diffusion
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Diffusion process

UNet
Embedding

Positional Encoding

Self-Attention

Training

Sampling

Pixel Space Latent Space

Fig. 1: The overall architecture. During training, an input image is fed to
the encoder VE to create a latent representation z, then noise is added to the
latent. The noisy latent zt is then fed to the U-Net noise predictor along with a
style class index for the writer style and an encoded word as the content. The
UNet predicts the noise of the noisy latent zt−1 where t− 1 is the corresponding
timestep. During sampling, a random noise latent zT is given to predict its noise.
Then the model uses the two noise predictions to reconstruct the latent of the
image z0 that is finally decoded by the decoder VD that creates the synthetic
image.

as typically used by Ho et al. [13]. The network takes as input the noisy im-
age latents, the corresponding timestep, and the desired conditions Y and τ .
Timesteps are encoded using a sinusoidal position embedding, similar to [38] to
inform the model about each particular timestep that is operating. The training
objective is to minimize the reconstruction error between the network’s noise
prediction and the noise present in the image. For the diffusion process, a noise
scheduler increases the amount of noise linearly from β1 = 10−4 to βT = 0.02 for
T = 1000 timesteps. While most works use multiple ResNet blocks within the
U-Net components, in the context of the current problem we need to take into
account that we must work with scarce data compared to other use-cases; larger
models correspond to larger parameter spaces, which are exponentially harder to
explore. Hence, we use 1 ResNet block in every module of the U-Net. To further
reduce the parameters and complexity of the network we use an inner model
dimension of 320 and 4 heads in the Multi-Headed Attention layers within the
U-Net.

Sampling. We generate synthetic samples by deploying the reverse denoising
process learned from the model. To this end, the noise of a random noisy sam-
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ple zT is predicted by the learned network pθ and gradually removed in every
timestep of the reversed process starting from T to t = 0. One of the main
challenges associated with DDPM is the time required for sampling. Our ex-
periments indicate that reducing the number of time steps from 1,000 to 600
does not compromise the quality of the generated samples. The final image is
obtained in pixel space by decoding the denoised latent variable using decoder
VD. We demonstrate how the reduction of timesteps affects the quality of the
generated sample in Figure 2. The figure shows that below 500 timesteps the
quality of the images is really affected, thus to make sure the generated samples
are not affected dramatically we proceed with a value of 600.

T = 100 T = 200 T = 300 T = 400 T = 500

T = 600 T = 700 T = 800 T = 900 T = 1000

Fig. 2: Sampling outputs using various timesteps values in the reverse denoising
process.

Style and Text Conditions. The input style condition Y is processed with
an embedding layer and then added to the timestep embedding. For the text
condition, a content encoder CE is used to transform an input string τ into a
meaningful context representation cτ = CE(τ) for the model. Initially, the string
is tokenized using a unique index for each letter and then passed through an em-
bedding layer to transform it to an appropriate embedding dimension according
to the vocabulary size which is the number of characters present in the training
set. Then, positional encodings similar to [38] are used to inform the model about
the character position in the sequence with the use of sine and cosine functions
as PEpos,i = sin(pos/1000i/emb dim) and PEpos,i+1 = sin(pos/1000i/emb dim),
where pos is the position of each letter in the sequence and emb dim is 320 as
mentioned previously. Finally, to create the text input condition cτ a dot-product

attention layer is used, defined as Att(Q,K, V ) = softmax(QK
T

√
dk

)V , to create

a weighted sum of the character representations. To support the choice of the
positional text encoding we present a few samples as ablation with and without
the positional encoding and self-attention layers in Figure 3.

3.3 Experimental Setup

We conducted extensive experiments using the IAM offline handwriting database
on word-level [24]. Similar to [25] and [15], we used the Aachen split train set
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and included words of 2-7 characters to train the diffusion model. Thus, dur-
ing training the model sees 339 writer styles and approximately 45K words.
For consistency, all images were resized to a fixed height of 64 pixels, retaining
their aspect ratio. To handle variations in width, images of width smaller than
256 pixels were center-padded, while larger ones were resized to the maximum
width. Since the maximum number of characters is 7, this resizing did not cause
significant distortions in the images. Moreover, these images were intended for
training other models, which could eventually lead to resizing or modifications
of the original images. AdamW [22] is used as the optimizer during training
with a learning rate of 10−4. To better understand the nature of the model, no
augmentation is used on the images during training. Each model was trained for
1K epochs with a batch size of 224 on a single A100 SXM GPU.

Word τ "cool" "About" "kraut"

- CE

+ CE

Fig. 3: Comparison of generated images with (top row) and without (bottom
row) the positional encoding and self-attention layer of the context encoder CE .
All image pairs (top-bottom) share the same style condition.

4 Evaluation and Results

We evaluate the quality of the generated word-images using our method in three
aspects: visual quality, text quality, and style quality. To assess visual quality, we
compute the commonly used Fréchet Inception Distance (FID) score and pro-
vide examples of in-vocabulary and out-of-vocabulary words. Additionally, we
demonstrate the results of blending two distinct writer styles through interpola-
tion. To determine the effectiveness and text quality of our approach, we create
a pseudo training set from the IAM database and conduct several experiments
for handwriting text recognition (HTR). For comparison with other methods, we
perform the same experiments using two GAN-based approaches, SmartPatch
and GANwriting. Finally, we evaluate style quality in two ways. First, we train
a standard Convolutional Neural Network (CNN) on the real IAM database for
style classification and test it on the generated samples. Second, we apply a
writer retrieval method and compare its performances using real or synthetic
data. This enables us to measure the extent to which our method accurately
captures the style of the original IAM database.
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4.1 Qualitative Results

A comparative qualitative evaluation can be found in Figure 4, where both
SmartPatch and GANwriting methods have been used to generate a set of word
images. Specifically, the goal was to recreate the original images (further left
column). As we can see, all methods generate “readable” words without no-
table artifacts/deformations. Nonetheless, SmartPatch has a smoother appear-
ance compared to GANwriting, as it was designed to do, while the proposed
Diffusion approach retains the original style to an outstanding degree.

Furthermore, to validate the variety of styles and the ability to generalize
beyond already seen words, in Figure 5 we present generated samples using our
method of In-Vocabulary (IV) and Out-of-Vocabulary (OOV) words and random
styles picked from the IAM training set. We can observe a notable variety over
the writing style, indicating the good behavior of the proposed method, even for
the case of OOV words that were never met in the training phase.

Real IAM WordStylist (ours) SmartPatch GANwriting

Fig. 4: Comparison of (in-vocabulary) real word images and synthetic versions
of these words.

Towards measuring the quality of the generation, a metric commonly used to
evaluate generative models is the Fréchet Inception Distance (FID) score [8]. The
metric computes the distance between two dataset feature vectors extracted by
an InceptionV3 network [37] pre-trained on ImageNet [7]. Our approach achieves
an FID score of 22.74, which is comparable to SmartPatch’s score of 22.55.
GANwriting performs with an FID of 29.94. While FID is a widely used metric
for evaluating generative models, it may not be appropriate for tasks that do
not involve natural images similar to those in ImageNet, on which the network
was trained. In fact, this domain shift between natural images and handwritten
documents lessens the fidelity of the evaluation protocol, but adapting this met-
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In-Vocabulary (IV) Generated Words Out-of-Vocabulary (OOV) Generated Words

Fig. 5: Qualitative results from WordStylist of random writer styles from In-
Vocabulary (IV) (left) and Out-of-Vocabulary (OOV) (right) word generation.
All writer styles are randomly selected to produce each word meaning that the
IV samples may not appear in the training set with the presented style-text
combination.

ric, by fine-tuning the FID network on document images, is out of the scope of
this work. Despite this, the FID metric is still an indication of realistic images.

4.2 Latent Space Interpolation

Following the paradigm of GANwriting [15], we further interpolate between two
writer styles YA and YB by a weight λAB to create mixed styles. Using a weighted
average YAB = (1− λAB)YA + λABYB , we interpolate between YA and YB for a
fixed text condition. Figure 6 shows the results on fixed words with interpolation
between two writing styles with various λAB values. One can observe the smooth
progression between styles as the mix parameter λAB increases. This interpola-
tion concept could be a useful tool for generating words of unseen/unknown style,
especially if the goal is to create an augmented dataset for training document
analysis methods.

YA 0.0 0.2 0.4 0.6 0.8 1.0 YB

Real A Real B

Fig. 6: Interpolation results between writer styles with various weights.
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4.3 Handwriting Text Recognition (HTR)

We evaluate the generated data on the task of Handwriting Text Recognition
and assess the usefulness of the data on a standard downstream task. We use
the HTR system presented in [31]. Specifically, the used HTR system is a hybrid
CNN-LSTM network with a ResNet-like CNN backbone followed by a 3-layers
bi-directional LSTM head, trained with Connectionist Temporal Classification
(CTC) loss [11]. We followed the modifications proposed in [31] and used a
column-wise max-pooling operation between the CNN backbone and the recur-
rent head, as well as a CTC shortcut of a shallow 1D CNN head. This shortcut
module, as described in the initial work, is discarded during testing and is used
only for assisting the training procedure. Input word images have a fixed size
of 64 × 256 by performing a padding operation (or resized if they exceed the
pre-defined size).

For comparison with the related work on word-image generation, we further
evaluate GANwriting and SmartPatch on the HTR task with the same model.

Using the generated images to train an HTR system and then evaluate the
trained system on the original test set of real images aims to a multifaceted
insight on the quality of the data; Achieving good results in the test set trans-
lates to “readable” words (at least in their majority), so that the system can
understand the existing characters during training with CTC, as well as to a
variability in writing styles, so that the training system could generalize well in
the test set of unseen writing styles. The ideal generative model should abide
to both these properties and thus can be used to train a well-performing HTR
system.

Following the protocol of [25], for this recognition task, we discarded, both
from the training and the test set, words containing non-alphanumeric charac-
ters, as well as words with more than 10 characters, since the generative models
have been trained considering the same setup. We used the generative models
to recreate the train set, both in text and in style. The results of this experi-
ment are reported in Table 1, where we present the character error and word
error rates (CER/WER) for the initial IAM train set, the recreated sets of the
generative models (i.e., GANwriting, SmartPatch and our proposed Diffusion
approach), as well as the combination of the original set with each one of the
recreated (i.e., with ×2 training images, compared to the initial set). The re-
ported results correspond to the mean value and the standard deviation over 3
different training/evaluation runs for each setup. The following observations can
be made:

– The generated synthetic datasets under-perform with respect to the original
IAM dataset. However, both GANwriting and SmartPatch approaches lead
to a notable decrease in performance, indicating lack of writing style vari-
ability. On the other hand, the proposed method achieves considerably low
error rates, but not on par with the real data.

– Combining the synthetic datasets with the real IAM train set, the perfor-
mance is improved compared to training only on the original IAM set, with
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the exception of GANwriting and the CER metric, which is practically on
par with the baseline model.

– SmartPatch, despite visually improving the results of GANwriting, does little
to improve the HTR performance.

– The synthetic set, generated by our proposed method, along with the real
set, considerably outperforms all other settings and is statistically significant
with a p value of 0.035.

Table 1: HTR results, reporting the Character Error Rate (CER) and Word
Error Rate (WER). For both metrics, the lower the better.

Training Data CER (%) ↓ WER (%) ↓
Real IAM 4.86± 0.07 14.11± 0.12

GANwriting IAM 38.74± 0.57 68.47± 0.32

SmartPatch IAM 36.63± 0.71 65.25± 1.02

WordStylist IAM (Ours) 8.80± 0.12 21.93± 0.17

Real IAM + GANwriting IAM 4.87± 0.09 13.88± 0.10

Real IAM + SmartPatch IAM 4.83± 0.08 13.90± 0.22

Real IAM + WordStylist IAM (Ours) 4.67± 0.08 13.28± 0.20

4.4 Handwriting Style Evaluation

Qualitative results show that our proposed method is able to nicely capture
the style of each writer present in the IAM database. In order to quantify this
property, we employ an implicit evaluation via writer identification.

The most straightforward way to address this is via a writer classification for-
mulation. Specifically, to evaluate the generated styles, we finetuned a ResNet18
CNN [12], pre-trained on ImageNet, on the IAM database for the task of writer
classification. Then, we use the generated datasets from the three generative
methods as test sets and present the obtained accuracy in Table 2. The network
manages to successfully classify most of the generated samples from our pro-
posed method with an accuracy of 70.67%, while it fails to recognize classes on
samples from the other two methods. This result comes as no surprise since the
proposed method learns explicitly the existing styles, while both the GAN-based
approaches adapt the style based on a few-shot scheme. Furthermore, we use
the features extracted by the model to plot t-SNE embeddings on the different
datasets in Figure 7. In more detail, we used the 512-dimensional feature vector
extracted by the second-to-last layer, trying to simulate a style-based representa-
tion space. Again, the resulted projection of the data generated by our Diffusion



WordStylist: Styled Verbatim Handwritten Text Generation with LDM 13

Table 2: Classification accuracy of a ResNet18 trained for writer identification
on real data.

Test Set Accuracy (%)↑

GANwriting 4.81

SmartPatch 4.09

WordStylist (Ours) 70.67

approach appears to be much closer to the real data. On the contrary, the GAN-
based methods create “noisy“ visualization with no distinct style neighborhoods.
In fact, even the proposed method seems to have a similar noisy behavior (in
the center of the plot) but to a much lesser extent. This phenomenon is in line
with the HTR results, where the diffusion method provided results much closer
to the real IAM, but not on par.

As an alternative to the straightforward implementation of writer classifi-
cation, we also use a classic writer retrieval pipeline consisting of local feature
extraction and computing a global feature representation [3,4,6]. While the local
descriptors can also be trained in a self-supervised [5], we just use SIFT [23]
descriptors extracted on SIFT keypoints. The descriptors are normalized using
Hellinger normalization [1] (a. k. a. as RootSIFT) and are subsequently jointly
whitened and dimensionality-reduced using PCA [4]. The global feature repre-
sentation is computed using multi-VLAD [3], where the individual VLAD rep-
resentations use generalized max-pooling [6].

This pipeline needs paragraphs as input in order to gather a sufficient amount
of information. To produce synthetic text paragraphs, we paste randomly-selected
synthetic words on a blank background, following a similar structure as the
printed text of IAM: same number of lines, similar number of characters per
line. Thus, no information from the handwritten text is used. Line spacing is
constant, and a small randomness is added to word spacing.

We use a leave-one-image-out cross-validation, i. e., each sample is used as
query and the results are averaged. As metrics, we give the top-1 accuracy and
mean average precision (mAP). For our experiment, we use two paragraphs of
157 writers (IAM + IAM). In subsequent experiments, we replace the second
paragraph by the synthesizers (GANWriting, SmartPatch, WordStylist). In this
way, the query sample is either an original sample and the closest match should
be the synthetic one or vice-versa.

The results, given in Table 3, show little difference between real data (IAM
+ IAM) and data produced by our method (IAM + WordStylist). Thus, our
method produces persistent writing styles that are nearly indistinguishable for
the writer retrieval pipeline. It is able to imitate handwriting much better than
GANwriting and SmartPatch, which both achieve significantly lower scores in
this experiment.
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(a) Real IAM. (b) WordStylist IAM (ours).

(c) SmartPatch IAM. (d) GANwriting IAM.

Fig. 7: T-SNE projections of the feature vector produced by the ResNet18 trained
for writer identification, as described in Section 4.4.

5 Limitations and Future Work

Here, we address the limitations of the proposed method that pave the way
towards future directions. We identified two main limitations in the proposed
method:

– Style Adaptation: Our proposed method, contrary to the compared GAN-
based methods [15,25], explicitly takes the writing style as an input em-
bedding. This way, the model can learn to recreate such styles accurately.
Nonetheless, adaptation to new styles is not straightforward with this pipeline.
The interpolation concept is a work-around to generate “new” styles, and
can be extended to even interpolating K different styles. Nonetheless, even
such ideas do not provide the ability to adapt to a specific given style via
few word examples, as done in [15]. An interesting future direction is the
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Table 3: Writer retrieval results using a 157 writers subset of IAM.

Top-1 [%] ↑mAP [%] ↑

IAM + IAM 97.45 97.61

IAM + GANwriting 3.18 7.23
IAM + SmartPatch 3.18 7.72
IAM + WordStylist (Ours) 97.13 97.84

projection of different style embeddings to a common style representation
space, using deep features extracted by a writer classification model as done
in Section 4.

– Sampling Complexity: Generating realistic examples requires many iterations
(timesteps) in the sampling process. To generate a single image requires
∼ 12 sec, when using T = 600, making the creation of large-scale datasets
impractical. We aim to explore ways to assist the generation of quality images
in fewer steps, while also utilizing a more lightweight network to further
reduce the time requirements of a single step.

– Fixed Image Size: As the generation process is initiated by sampling a latent
Gaussian noise of a fixed shape, our proposed method currently generates
images of a fixed shape. Generating text images of arbitrary shapes is a
possible future direction to explore.

6 Conclusion

We presented WordStylist, a latent diffusion-based system for styled text-to-
text-content image generation on word-level. Our model manages to capture the
style and content without the use of any adversarial training, text recognition
and writer identification. Qualitative and quantitative evaluation results show
that our method produces high quality images which outperform significantly
the state-of-art systems used for comparison. Also we show that our synthetic
word images can be used as extra training data to improve HTR accuracy. The
verisimilitude of the synthetic handwriting styles is proven by two experiments.
Using a CNN for writer identification, we obtain a classification accuracy of 70%
with our synthetic data, while the other generative methods used for compari-
son do not get higher than 5%. Also, t-SNE projections of the features learned
by the CNN exhibit structures very similar to real data in the case of the pro-
posed method only. Moreover, we showed that using a recognized writer retrieval
pipeline, there is no significant difference between results on our synthetic data
and real data, both having a mAP slightly below 98%. The other generative
methods do not perform as well, obtaining mAP below 8%. For future work, we
aim to investigate the parameters and sampling of the model. We further plan on
extending this work for sentences and whole pages, focusing also on the layout
of the document.
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