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Abstract. Sentence-by-sentence information extraction from long doc-
uments is an exhausting and error-prone task. As the indicator of doc-
ument skeleton, catalogs naturally chunk documents into segments and
provide informative cascade semantics, which can help to reduce the
search space. Despite their usefulness, catalogs are hard to be extracted
without the assist from external knowledge. For documents that adhere
to a specific template, regular expressions are practical to extract cata-
logs. However, handcrafted heuristics are not applicable when processing
documents from different sources with diverse formats. To address this
problem, we build a large manually annotated corpus, which is the first
dataset for the Catalog Extraction from Documents (CED) task. Based
on this corpus, we propose a transition-based framework for parsing doc-
uments into catalog trees. The experimental results demonstrate that our
proposed method outperforms baseline systems and shows a good abil-
ity to transfer. We believe the CED task could fill the gap between raw
text segments and information extraction tasks on extremely long doc-
uments. Data and code are available at https://github.com/Spico197/
CatalogExtraction

Keywords: Catalog Extraction · Information Extraction · Intelligent
Document Processing.

1 Introduction

Information in long documents is usually sparsely distributed [13,21], so a prepro-
cessing step that distills the structure is necessary to help reduce the search space
for subsequent processes. Catalogs, as the skeleton of documents, can naturally
locate coarse information by searching the leading section titles. As exemplified
in Figure 1, the debt balance “474.860 billion yuan” appears in only one segment
in the credit rating report that is 30 to 40 pages long. Taking the whole document
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Fig. 1. An example of catalog extraction. The text segments on the left are converted
to a catalog tree on the right. The third and the fourth segments are concatenated
after catalog extraction.

into Information Extraction (IE) systems is not practical in this condition. By
searching the catalog tree, this entity can be located in the “Government Debt
Situation” section with prior knowledge. Unfortunately, most documents are in
plain text and do not contain catalogs in an easily accessible format. Thus, we
propose the Catalog Extraction from Documents (CED) task as a preliminary
step to any extremely long document-level IE tasks. In this manner, fine-grained
entities, relations, and events can be further extracted within paragraphs instead
of the entire document, which is pragmatic in document-level entity relationship
extraction [12,15,14] and document-level event extraction [1].

Designing handcrafted heuristics may be a partial solution to the automatic
catalog extraction problem. However, the performance is limited due to three
major challenges: 1) Section titles vary across documents, and there are almost
no common rules. For documents that are in the same format or inherited from
the same template, the patterns of section titles are relatively fixed. Therefore,
it is common to use regular expression matching to obtain the whole catalog.
However, such handcrafted heuristics are not reusable when the formats of docu-
ments change, and researchers have to design new patterns from scratch, making
catalog extraction laborious. 2) Catalogs have deep hierarchies with five- to six-
level section headings. As the level of section headings deepens, titles become
increasingly complex, and simple rule systems usually cannot handle fine-grained
deep section headings well. 3) A complete sentence may be cut into multiple seg-
ments due to mistakes in data acquisition tools. For example, Optical Character
Recognition (OCR) systems are commonly used for obtaining document texts.
However, these systems often make mistakes, and sentences may be incorrectly
cut into several segments by line breaks. These challenges increase the difficulties
of using handcrafted rules.

To address the CED task, we first construct a corpus with a total of 650 man-
ually annotated documents. The corpus includes bid announcements, financial
announcements, and credit rating reports. These three types of documents vary
in length and catalog complexity. This corpus is able to serve as a benchmark
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for the evaluation of CED systems. Among these three sources, bid announce-
ments are the shortest in length with simple catalog structures, and financial
announcements contain multifarious heading formats, while credit rating reports
have deep and nested catalog structures. In addition, we collect documents from
Wikipedia with catalog structures as a large-scale corpus for general model pre-
training to enhance the transfer learning ability. These four types of data cover
the first two challenges in catalog extraction. We also chunk sentences to simu-
late the incorrect segmentation problem observed in OCR systems, which covers
the third challenge in CED.

Based on the constructed dataset, we design a transition-based framework
for the CED task. The catalog tree is formulated as a stack and texts are encased
in an input queue. These two buffers are used to help make action predictions,
where each action stands for a control signal that manipulates the composition of
a catalog tree. By constantly comparing the top element of the catalog stack with
one text piece from the input queue, the catalog tree is constructed while action
predictions are obtained. The final experimental results show that our method
achieves promising results and outperforms other baseline systems. Besides, the
model pre-trained on Wikipedia data is able to transfer the learned information
to other domains when training data are limited.

Our contributions are summarized as follows:

– We propose a new task to extract catalogs from long documents.
– We build a manually annotated corpus for the CED task, together with a

large-scale Wikipedia corpus with catalog structures for pre-training. The
experimental results show the efficacy of low-resource transfer.

– We design a transition-based framework for the task. To the best of our
knowledge, this is the first system that extracts catalogs from plain text
segments without handcrafted patterns.

2 Related Work

Since CED is a new task that has not been widely studied, in this section, we
mainly introduce approaches applied to similar tasks below.

Parsing Problems: Similar to other text-to-structure tasks, CED can be
recognized as a parsing problem. A common practice to build syntactic parsers is
biaffine-based frameworks with delicate decoding algorithms (e.g., CKY, Eisner,
MST) to obtain global optima [4,19]. However, when the problem shifts from sen-
tences to documents, former token-wise encoding and decoding methods become
less applicable. As to documents, there are also many popular discourse parsing
theories [8,11,6], which aim to extract the inner semantics among Elementary
Discourse Units (EDU). However, the number of EDUs in current corpora is
small. For instance, in the popular RST-DT corpus, the average number of EDU
is only 55.6 per document [17]. When the number of EDUs grows larger, the
transition-based method becomes a popular choice [7]. Our proposed CED task
is based on naive catalog structures that are similar to syntactic structures,
but some traditional parsing mechanisms are not suitable since one document
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may contain thousands of segments. To this end, we utilize the transition-based
method to deal with the CED task.

Transition-based Applications: The transition-based method parses texts
to structured trees in a bottom-up style, which is fast and applicable for ex-
tremely long documents. Despite the successful applications in syntactic and
discourse parsing [20,7,5], transition-based methods are widely used in informa-
tion extraction tasks with particular actions, such as Chinese word segmentation
[18], discontinuous named entity recognition [3] and event extraction [16]. Con-
sidering all the characteristics of the CED task, we propose a transition-based
method to parse documents into catalog trees.

3 Dataset Construction

In this section, we introduce our constructed dataset, the ChCatExt. Specifi-
cally, we first elaborate on the pre-processing, annotation and post-processing
methods, then we provide detailed data statistics.

3.1 Processing & Annotation

We collect three types of documents to construct the proposed dataset, including
bid announcements3, financial announcements4 and credit rating reports5. We
adopt Acrobat PDF reader to convert PDF files into docx format and use Office
Word to make annotations. Annotators are required to: 1) remove running titles,
footers (e.g., page numbers), tables and figures; 2) annotate all headings with
different outline styles; and 3) merge mis-segmented paragraphs. To reduce the
annotation bias, each document is assigned to two annotators, and an expert
will check the annotations and make final decisions in case of any disagreement.
Due to the length and structure variations, one document may take up to twenty
minutes for an annotator to label.

After the annotation process, we use pandoc6 and additional scripts to parse
these files into program-friendly JSON objects. We insert a pseudo root node
before each object to ensure that every document object has only one root. In real
applications, documents are usually in PDF formats, which are immutable and
often image-based. Using OCR tools to extract text contents from those files
is a common practice. However, the OCR tools often split a natural sentence
apart when a sentence is physically cut by line breaks or page turnings in PDF,
as shown in Figure 1. To simulate real-world scenarios, we randomly sample
some paragraphs with a probability of 50% and chunk them into segments. For
heading strings, we chunk them into segments with lengths of 7 to 20 with jieba7

assistance. This makes heading segmenting more natural, for example, “招标

3 http://ggzy.hebei.gov.cn/hbjyzx
4 http://www.cninfo.com.cn
5 https://www.chinaratings.com.cn and https://www.dfratings.com
6 https://pandoc.org
7 https://github.com/fxsjy/jieba

http://ggzy.hebei.gov.cn/hbjyzx
http://www.cninfo.com.cn
https://www.chinaratings.com.cn
https://www.dfratings.com
https://pandoc.org
https://github.com/fxsjy/jieba
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Table 1. Data statistics. BidAnn refers to bid announcements, FinAnn is financial
announcements and CreRat is credit rating reports. One node may contain multiple
segments in its content, and we list the number of nodes here. Depth represents the
depth of the document catalog tree (text nodes are also included). Length is obtained
by counting the number of document characters.

Source #Docs Avg.Length
Avg.#Nodes

Avg.Depth
Heading Text Total

BidAnn 100 1,756.76 8.04 30.61 38.65 3.00
FinAnn 300 3,504.22 12.09 52.31 64.40 3.79
CreRat 250 15,003.81 27.70 81.07 108.77 4.59

Total ChCatExt 650 7,658.30 17.47 60.03 77.50 3.98

Wiki 214,989 1,960.41 11.07 19.34 30.41 3.86

公告” will be split into “招标 (zhao biao)” and “公告 (gong gao)” instead
of “招 (zhao)” and “标公告 (biao gong gao)” . For other normal texts, we split
them into random target lengths between 70 and 100. Since the workflow is
rather complicated, we will open-source all the processing scripts to help further
development.

In addition to the above manually annotated data, we collect 665,355 doc-
uments from Wikipedia8 for model pre-training. Most of these documents are
shallow in catalog structures and short in text lengths. We keep documents with
a catalog depth from 2 to 4 to reach higher data complexity, so that these doc-
uments are more similar to the manually annotated ones. After that, 214,989
documents are obtained. We chunk these documents in the same way as the
manually annotated ones to simulate OCR segmentation.

3.2 Data Statistics

Table 1 lists the statistics of the whole dataset. Among the three types, BidAnn
has the shortest length and the shallowest structure, and the headings are similar
to each other. FinAnn is more complex in structure than BidAnn and contains
more nodes. Moreover, there are many forms of headings in FinAnn without
obvious patterns, which increases the difficulty of catalog extraction. CreRat is
the most sophisticated one among all types of data. Its average length is 8.5 times
longer than BidAnn while the average depth is 4.59. However, it contains fewer
variations in headings, which may be easier for models to locate. Compared to
manually annotated domain-specific data, Wiki is easy to obtain. The structure
depth is similar to that of FinAnn while its length is 1.5k shorter. Because of the
large size, Wiki is well suited for model pre-training and parameter initializing.

It is worth noting that leaf nodes can be heading or normal texts in catalog
trees. Since normal texts cannot lead a section, all texts are leaf nodes in catalogs.
However, headings could also be leaf nodes if the leading section has no children.
Such a phenomenon appears in approximately 24% of documents. Therefore one

8 https://dumps.wikimedia.org/zhwiki/20211220/

https://dumps.wikimedia.org/zhwiki/20211220/
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Table 2. An example of transition-based catalog tree construction. Elements in red
bold represent the current stack top s, and elements in blue underline represent the
input text q. $ means the terminal of Q and the finale of action prediction.

Step Catalog Tree Stack S Input Queue Q Predicted Action

1 Root Credit Rating Report, . . . Sub-Heading

2 Root [ Credit Rating Report ] Debt Situation, . . . Sub-Heading

3
Root [ Credit Rating Report [ Debt
Situation ] ]

The balance, . . . Sub-Text

4
Root [ Credit Rating Report [ Debt Sit-
uation [ The balance ] ] ]

was 474 billion yuan., . . . Concat

5
Root [ Credit Rating Report [ Debt Sit-
uation [ The balance was 474 bil-
lion yuan. ] ] ]

Security Analysis, . . . Reduce

6
Root [ Credit Rating Report [ Debt
Situation [ The balance was 474 bil-
lion yuan. ] ] ]

Security Analysis, . . . Reduce

7
Root [ Credit Rating Report [ Debt
Situation [ The balance was 474 billion
yuan. ] ] ]

Security Analysis, . . . Sub-Heading

8
Root [ Credit Rating Report [ Debt Sit-
uation [ The balance was 474 billion
yuan. ] Security Analysis ] ]

Texts, $ Sub-Text

9

Root [ Credit Rating Report [ Debt Sit-
uation [ The balance was 474 billion
yuan. ] Security Analysis [ Texts ] ]
]

$ $

node cannot be recognized as a text node simply by the number of children,
which makes the CED task more complicated.

4 Transition-based Catalog Extraction

In this section, we introduce details of our proposed TRAnsition-based Cata-
log trEe constRuction method TRACER. We first describe the transition-based
process, and then introduce the model architecture.

4.1 Actions & Transition Process

The transition-based method is designed for parsing trees from extremely long
texts. Since the average length of our CreRat documents is approximately 15k
Chinese characters, popular global optimized tree algorithms are apparently too
costly to be utilized here.

Action design plays an important role in our transition-based method. There
are two buffers here: 1) the input queue Q providing one text segment q at
each time; and 2) the tree buffer S that records the final catalog tree, where
the current stack top points to s. Actions are obtained by comparing s and q
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Fig. 2. Framework of the transition-based catalog extraction.

continuously, which results in the buffer changing. As the comparison process
continues, actions compose a control sequence to build the target catalog tree
simultaneously.

To solve the mentioned challenges, actions are designed to distinguish be-
tween headings and texts. Our actions can also capture the difference between
headings from adjacent depth levels. In this way, we construct the catalog tree
without regard to its depth and complexity. Additionally, we propose an addi-
tional action for text segment concatenation. Based on these facts, we design 4
actions as follows:

– Sub-Heading: current input text q is a child heading node of s;
– Sub-Text: current input text q is a child text node of s;
– Concat: current input text q is the latter part of s and their contents should

be concatenated;
– Reduce: the level of q is above or at the same level as s, and s should be

updated to its parent node.

An example is provided in Table 2. To start the prediction, a Root node is
given in advance. The first heading Credit Rating Report is regarded as a child of
Root. Then, Debt Situation becomes another heading node. After that, the Sub-
Text action suggests that The balance is the child node of Debt Situation as the
body text. Action Concat concatenates two body text. Next, action Reduce
leads to the second layer from the third one. We can eventually build a catalog
tree with such a sequence of actions. Furthermore, we present two constraints to
avoid illegal results. The first one is that the action between Root node and the
first input q can only be Sub-Heading or Sub-Text; Another constraint restricts
text nodes to be leaf nodes in the tree, and only Reduce and Concat actions are
allowed when s is not a heading. If the predicted action is illegal, we take the
second-best prediction as the final result.

4.2 Model Architecture

As Figure 2 shows, the given inputs s and q are encoded via a pre-trained lan-
guage model (PLM). Here, we use a light version of Chinese whole word masking
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RoBERTa (RBT3) [2] to obtain encoded representations s and q. After concate-
nation, g = s||q is fed into Feed-Forward Networks (FFN). The FFN is composed
of two linear transform layers with ReLU activation function and dropout. Fi-
nally we adopt the softmax function to obtain the predicted probabilities as
shown in Equation 1.

o = FFN(g),

p(A|s, q) = softmax(o), (1)

where A denotes all the action candidates. In this way, we can capture the
implicit semantic relationship between two nodes.

During prediction, we take the action with maximal probability p as the
predicted result:

ai = argmax
a∈A

p(A|s, q),

where ai ∈ A is the predicted action. As discussed in § 4.1, we use two extra
constraints to help force decoding legal action results. If ai is an illegal action,
we sort the predicted probabilities in reverse order, and then find the legal result
with the highest probability.

As for training, we take cross entropy as the loss function to help update the
model parameters:

L = −
∑
i

Iya=ai
log p(ai|s, q),

where I is the indicator function, ya is the gold action, and ai ∈ A is the predicted
action.

5 Experiments

5.1 Datasets

We further split the datasets into train, development, and test sets with a pro-
portion of 8:1:1 for training. To fully utilize the scale advantage of the Wiki
corpus, we use it to train the model for 40k steps and subsequently save the
PLM parameters for transferring experiments.

5.2 Evaluation Metrics

We use the overall micro F1 score on predicted tree nodes to evaluate perfor-
mances. Each node in a tree can be formulated as a tuple: (level, type, content),
where level refers to the depth of the current node, type refers to the node type
(either Heading or Text), and content refers to the string that the node carries.
The F1 score can be obtained by comparing gold tuples and predicted tuples.

P =
Nr

Np
, R =

Nr

Ng
, F1 =

2PR

P + R
,

where Nr denotes the number of correctly matched tuples, Ng represents the
number of gold tuples and Np denotes the number of predicted tuples.
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Table 3. Main results on ChCatExt. The scores are calculated via the method de-
scribed in § 5.2. Please beware the overall scores are NOT the average of Heading
and Text scores. Heading and Text scores are obtained from a subset of predicted tu-
ple results, where all the node types are “Heading” or “Text”. The overall scores are
calculated from the universal set, so they are often lower than the Heading and Text
scores. WikiBert represents the PLM that is trained on the wiki corpus in advance.

Methods
Heading Text Overall

P R F1 P R F1 P R F1

Pipeline 88.637 86.595 87.601 81.627 82.475 82.047 76.837 77.338 77.085
Tagging 87.456 88.241 87.846 81.079 81.611 81.344 77.746 78.800 78.269

TRACER 90.634 90.341 90.486 83.031 85.673 84.328 81.017 83.818 82.390
w/o Constraints 89.911 89.713 89.811 82.491 84.948 83.698 80.216 83.035 81.596

TRACER w/ WikiBert 88.671 89.785 89.221 83.308 85.025 84.156 80.820 83.357 82.063

5.3 Baselines

Few studies focus on the catalog extraction task, thus we propose two baselines
for objective comparisons.

1) Classification Pipeline: The catalog extraction task can be formulated
in two steps: segment concatenation and tree prediction. For the first step, we
take the text pairs as input and adopt the [CLS] token representation to predict
the concatenation results. Suppose the depth of a tree is limited, the depth level
can be regarded as a classification task with MaxHeadingDepth+1 labels, where
“1” stands for the text node label. We use PLM with TextCNN [9] to make level
predictions.

2) Tagging: Inheriting the idea of two-step classification from above, the
whole task can be formulated as a tagging task. The segment concatenation
sub-task reflects the BIO tagging scheme, and the level depth and node type are
tagging labels. We use PLM with LSTM and CRF to address this tagging task.

5.4 Experiment Settings

Experiments are conducted with an NVIDIA TitanXp GPU. We use RBT39,
a Chinese RoBERTa variation, as the PLM. We use AdamW [10] to optimize
the model with a learning rate of 2e-5. Models are trained for 10 epochs. The
training batch size is 20, and the dropout rate is 0.5. We take 5 trials with
different random seeds for each experiment and report average results on the test
set with the best model evaluated on the development set. For the classification
pipeline and the tagging baselines, we set the maximal heading depth to 8.

5.5 Main Results

From Table 3, we find that our proposed TRACER outperforms the classification
pipeline and tagging baselines by 5.305% and 4.121% overall F1 scores. The

9 https://huggingface.co/hfl/rbt3

https://huggingface.co/hfl/rbt3
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Table 4. Transferring F1 results: train on the source set, evaluate on the target set.
Training on Wiki is the process of obtaining the WikiBert, so results in TRACER w/
WikiBert are absent since the experiments are duplicates.

tgt ↓ src → TRACER TRACER w/ WikiBert
BidAnn FinAnn CreRat Wiki BidAnn FinAnn CreRat Wiki

BidAnn 88.076 25.557 8.400 2.703 88.200 25.260 11.741 -

FinAnn 7.391 69.249 15.543 11.388 8.100 68.588 20.174 -

CreRat 2.361 14.420 92.790 14.029 7.000 30.821 92.290 -

Table 5. Transfer F1 results: train on k documents from the source set, evaluate on
the whole target set.

tgt ↓ src →
TRACER

BidAnn FinAnn CreRat
k=3 5 10 k=3 5 10 k=3 5 10

BidAnn 63.033 10.969 7.242 0.713 20.798 9.164 0.000 11.490 39.264
FinAnn 63.460 17.758 10.613 0.815 28.177 11.755 0.047 11.337 48.543
CreRat 77.259 14.363 14.845 1.725 25.110 12.636 3.255 10.768 70.277

TRACER w/ WikiBert

BidAnn 66.644 14.578 18.719 2.355 21.482 18.385 1.024 12.781 30.626
FinAnn 67.040 15.509 15.467 3.515 32.568 14.125 1.765 25.285 56.192
CreRat 79.029 16.424 14.936 4.517 27.528 12.398 18.659 19.238 67.775

pipeline method requires two separate steps to reveal catalog trees, which may
accumulate errors across modules and lead to an overall performance decline.
Although the tagging method is a stronger baseline than the pipeline one, it still
cannot match TRACER. The reason may be the granularities that these methods
focus on. The pipeline and the tagging methods directly predict the depth level
for each node, while TRACER pays attention to the structural relationships
between each node pair. Besides, since the two baselines need a set of predefined
node depth labels, TRACER is more flexible and can predict deeper and more
complex structures.

As discussed in § 4.1, we use two additional constraints to prevent TRACER
from generating illegal trees. The significance of these constraints is presented
in the last line of Table 3. If we remove them, the overall F1 score drops 0.794%.
The decline is expected, but the variation is small, which shows the robustness
of the TRACER model design.

Interestingly, the PLM trained on the Wiki corpus does not bring perfor-
mance improvements as expected. This may be due to the different data distribu-
tions between Wikipedia and our manually annotated ChCatExt. The following
transferring analysis section § 5.6 contains more results with WikiBert.

5.6 Analysis of Transfer Ability

One of our motivations for building a model to solve the CED task is that we
want to provide a general model that fits all kinds of documents. Therefore, we
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Table 6. Transfer F1 results: train on the source set, further train on k target docu-
ments, evaluate on the target set.

src ↓ tgt →
TRACER

BidAnn FinAnn CreRat
k=3 5 10 k=3 5 10 k=3 5 10

BidAnn - 87.995 74.630 26.640 - 29.607 37.991 56.658 -
FinAnn - 87.991 75.921 24.502 - 35.672 38.560 68.287 -
CreRat - 88.923 79.061 27.988 - 43.066 52.139 72.954 -

TRACER w/ WikiBert

BidAnn - 91.400 76.626 25.709 - 29.729 29.762 53.406 -
FinAnn - 93.608 76.106 28.035 - 33.698 36.217 65.825 -
CreRat - 88.777 81.020

32.345
- 45.488 57.580 73.519 -

Table 7. Transfer F1 results: concatenate the source set with k target documents,
train on the merged set, evaluate on the target set.

src ↓ tgt →
TRACER

BidAnn FinAnn CreRat
k=3 5 10 k=3 5 10 k=3 5 10

BidAnn - 80.924 73.703 27.237 - 29.528 45.813 56.273 -
FinAnn - 88.902 76.137 24.800 - 31.989 32.173 22.583 -
CreRat - 88.310 82.551 31.768 - 45.847 61.107 73.933 -

TRACER w/ WikiBert

BidAnn - 78.647 79.606 28.243 - 33.735 45.226 55.887 -
FinAnn - 83.227 76.556 30.823 - 34.878 36.559 62.070 -
CreRat - 83.823 76.442 29.587 - 35.086 59.217 71.713 -

conduct transfer experiments under different settings to find the interplay among
different sources with diverse structure complexities. The results are listed in
Table 4 to 7.

We first train models on three separate source datasets and make direct
predictions on target datasets. From the left part of Table 4, we can obtain a
rough intuition of the data distribution. The model trained on BidAnn makes
poor predictions on FinAnn & CreRat, and gets only 7.391% and 2.361% F1
scores, which also conforms with former discussions in § 3.2. BidAnn is the
easiest one among the three sources of datasets, so the generalization ability is
less robust. FinAnn is shallower in structure, but it contains more variations.
The model trained on FinAnn only obtains a 69.249% F1 score evaluated on
FinAnn itself. However, it gets better results on BidAnn (25.557%) and CreRat
(14.420%) than the others. The model trained on CreRat gets 92.790% on itself.
However, it does not generalize well on the other two sources. We also provide the
zero-shot cross-domain results from Wiki to the other three subsets. Although
the results are poor under the zero-shot setting, the pre-trained WikiBert shows
great transfer ability. Comparing results horizontally in Table 4, we find that
the pre-trained WikiBert could provide good generalization and outperforms



12 Zhu et al.

the vanilla TRACER among 6 out of 9 transferring data pairs. The other 3
pairs’ results are very close and competitive.

To further investigate the generalization ability of pre-training on the Wiki
corpus, we take an extreme condition into consideration, where only a few docu-
ments are available to train a model. In this case, as shown in Table 5, we train
models with only k source documents and calculate the final evaluation results
on the whole target test set. Each model is evaluated on the original source
development set to select the best model and then the best model makes final
predictions on the target test set. TRACER w/ WikiBert outperforms vanilla
TRACER among 23 out of 27 transferring pairs. There is no obvious upward
trend when increasing k from 3 to 10, which is unexpected and suggests that
the model may suffer from overfitting problems on such extremely small training
sets.

In most cases of real-world applications, a few target documents are avail-
able. Supposing we want to transfer models from source sets to target sets with k
target documents available, there are two possible methods to utilize such data.
The first one is to train on the source set, and then further train with k target
documents; the other one is to concatenate the source set and k targets into a
new train set. We conduct experiments under these two settings. The results
are presented in Table 6 and 7. Comparing the vanilla TRACER model results,
we find that concatenating has 10 out of 18 pairs that outperform the further
training method. From k=3 to 10, there are 2, 3, and 5 pairs that show bet-
ter results, indicating that the concatenation method is better as k increases.
WikiBert has different effects under these two settings. In the further training
method, WikiBert is more powerful (11 out of 18 pairs), while it is less useful in
the concatenation method (8 out of 18 pairs).

Overall, we find that: 1) WikiBert achieves good performances, especially
when the training set is small; 2) If there are k target documents available
besides the source set, WikiBert is not a must, and concatenating the source set
with k targets to make a new train set may produce better results.

5.7 Analysis on the Number of Training Data

The left part of Figure 3 shows the average results on each separate dataset with
different training data scales. Although BidAnn is the smallest data, the model
still gets a 63.460% F1 score and surpasses the other datasets. Interestingly, a
decline is observed in BidAnn when the number of training documents increases
from 40 to 80. We take it as a normal fluctuation representing a performance
saturation since the performance standard deviation is 4.950% when the training
data scale is 40. Besides, we find that TRACER has good performance on Cr-
eRat. This indicates that TRACER performs well in datasets with deeply nested
documents if the catalog heading forms are less varied. In contrast, TRACER
is lower in performance on FinAnn than BidAnn and CreRat, and it is more
data-hungry than other data sources. For ChCatExt, the merged dataset, per-
formance grows slowly with the increase of training data scale, and more data
are needed to be fully trained. Comparing the overall F1 performance of 82.390%
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Fig. 3. F1 scores with different numbers training data scales (left) and levels (right).
The scale means the number of documents participating in training. The results with
different levels are evaluated on ChCatExt.

on the whole ChCatExt, the small scale of the training set may lead to a bad
generalization.

5.8 Analysis on Different Depth

From the right bar plot of Figure 3, it is interesting to see the F1 scores are
0% in level 1 text and level 5 heading. This is mainly due to the golden data
distribution characteristics that there are no text nodes in level 1, and there
are few headings in deeper levels, leading to zero performances. The F1 score
on level 2 text is only 43.938%, which is very low compared to the level 3 text
result. Considering that there are only 6.092% of text nodes among all the level
2 nodes, this indicates that TRACER may be not robust enough. Combining the
above factors, we find that the overall performance increases from level 1 to 2
and then decreases as the level grows deeper. To reduce the performance decline
with deeper levels, additional historical information needs to be considered in
future work.

6 Conclusion and Future Discussion

In this paper, we build a large dataset for automatic catalog extraction, including
three domain-specific subsets with human annotations and large-scale Wikipedia
documents with automatically annotated structures. Based on this dataset, we
design a transition-based method to help address the task and get promising
results. We pre-train our model on the Wikipedia documents and conduct ex-
periments to evaluate the transfer learning ability. We expect that this task and
new data could boost the development of Intelligent Document Processing.

We also find some imperfections from the experimental results. Due to the
distribution gaps, pre-training on Wikipedia documents does not bring perfor-
mance improvements on the domain-specific subsets, although it is proven to be
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useful under the low-resource transferring settings. Besides, the current model
only compares two single nodes each time and misses the global structural his-
tories. Better encoding strategies may need to be discovered to help the model
deal with deeper structure predictions. We leave these improvements to future
work.
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