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Abstract. In recent years, the field of document understanding has pro-
gressed a lot. A significant part of this progress has been possible thanks
to the use of language models pretrained on large amounts of docu-
ments. However, pretraining corpora used in the domain of document
understanding are single domain, monolingual, or nonpublic. Our goal
in this paper is to propose an efficient pipeline for creating a big-scale,
diverse, multilingual corpus of PDF files from all over the Internet using
Common Crawl, as PDF files are the most canonical types of documents
as considered in document understanding. We analyzed extensively all
of the steps of the pipeline and proposed a solution which is a trade-off
between data quality and processing time. We also share a CCpdf corpus
in a form or an index of PDF files along with a script for downloading
them, which produces a collection useful for language model pretraining.
The dataset and tools published with this paper offer researchers the
opportunity to develop even better multilingual language models.

Keywords: Natural Language Processing, language models, dataset con-
struction, document understanding.

1 Introduction

Natural Language Processing (NLP) in recent years has made significant progress
thanks to using language models such as GPT-3 [6] or T5 [23]. Usually these
models are trained in a two-step process. The first part is pretraining, which
utilizes a large corpus of text, and the second step is finetuning on a final task.
Recent works demonstrate a considerable impact of pretraining on the final per-
formance of a model [10,17,27]. For instance, GPT-3 was pretrained on a com-
bination of texts from Common Crawl, WebText2, two book corpora, and the
English Wikipedia (499 billion tokens in total)[6] while T5 was pretrained on
the C4 corpus, which is 750 GB of data[23].

⋆ work done while at Applica.ai, later acquired by Snowflake
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Fig. 1: The full flow of the process. Cylinders represent data, rectangles represent
processing steps, and arrows represent data flow. A solid line indicates that the
information is always used, and a dashed line represents data usage dependent
on the processing strategy.

The recent progress in document understanding (defined as “capacity to con-
vert a document into meaningful information” [5]) has been possible thanks to
2D language models such as LayoutLM [30,29], LAMBERT [9], or TILT [21].
Similarly to the models mentioned above, they also need large amounts of data
for pretraining. The input to these models is a multi-modal representation of a
document, e.g. tokens with their positions and images of pages.

The World Wide Web abounds in multi-modal documents, which contain
enormous amounts of information. This information can be used in multiple
domains: NLP, law, knowledge extraction, history, and many more. Yet, this
aspect of the Internet remains relatively unexplored. So far, attempts of docu-
ment dataset creation have been focused on either single domain (e.g. medical3,
academic [3], or industrial [14]), while there has been no all-over-the-Internet

3 www.ncbi.nlm.nih.gov/pmc/tools/openftlist/

www.ncbi.nlm.nih.gov/pmc/tools/openftlist/


CCpdf: Building a High Quality Corpus for Visually Rich Documents. . . 3

approach. On the other hand, existing all-over-the Internet corpora (e.g. Web
1T 5-gram4) were focused on text only, not on multi-modal documents.

A document is a multi-modal form of communication: to interpret documents
properly, we have to understand not only text, but also the layout and graphical
elements. The most popular and portable multi-modal document format is PDF.
In this study, we aim to describe a carefully designed pipeline for PDF corpus
creation. We investigated numerous possible processing techniques and described
their impact on the final data, which allowed us to achieve satisfactory trade-off
between data quality, computing time, and monetary cost. The dataset itself
(in the form of an index of PDF files and a script for downloading them) is
also available at our website5. We share a corpus of 14.5M pages. It is useful
as a dataset for 2D language model pretraining, but may also be employed as a
source for derived datasets, in the same way as the IIT-CDIP dataset [14] was
used to create many diverse challenges. Finally, analysis of the collected PDF files
themselves yields helpful insight for language model creators, but also enhances
our understanding of the World Wide Web as a source of PDF documents.

2 Related works

The general problem of creating a large-scale corpus of documents has been
studied extensively in recent years. IIT-CDIP [14] is a 40M pages (but according
to the authors of OCR-IDL [4] only 35.5M of them are still reachable) dataset of
reports from the Legacy Tobacco Documents Library6 collection, which was later
reused to prepare a 400k page document classification dataset [12]. Also, OCR-
IDL [4] reused IIT-CDIP to publish a 26M page dataset with high-quality OCR
output. DoRe [19] is a French dataset of 2350 annual reports from 336 companies,
unfortunately the data weren’t shared publicly. There are also two layout analysis
datasets based on scientific articles: Docbank [15] and Publaynet [33]. Their
volumes are 500k and 360k pages, respectively. In addition, Ammar et al. [3]
provided corpora of scientific documents together with a literature graph (defined
as “a directed property graph which summarizes key information in the literature
and can be used to answer the queries mentioned earlier as well as more complex
queries”[3]). The National Library of Medicine has shared a PMC Open Access
Subset7 which is a corpus of open-access, open-licensed medical publications.
Allison et al. [2] proposed a pipeline for creating a corpus of PDFs sourced from
the Internet. The goal of this work is to “identify key edge cases or common
deviations from the format’s specification”. They also provide analyses of files in
their corpus. All of these datasets are single-domain or single-language collections
(usually both), while our aim is to create a diverse, multilingual dataset. There
exists only one publication presenting such a dataset [31], but the authors limited

4 https://catalog.ldc.upenn.edu/LDC2006T13
5 https://github.com/applicaai/CCpdf
6 https://industrydocuments.ucsf.edu/tobacco/
7 https://ncbi.nlm.nih.gov/pmc/tools/openftlist/

https://catalog.ldc.upenn.edu/LDC2006T13
https://github.com/applicaai/CCpdf
https://industrydocuments.ucsf.edu/tobacco/
https://ncbi.nlm.nih.gov/pmc/tools/openftlist/
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themselves to describing the data processing pipeline without analyzing their
decisions. Also, their dataset was not shared.

Attempts have also been undertaken to create diversified corpora of texts
sourced from the Internet. For instance, in CCNet [28], Common Crawl was
used to create curated monolingual corpora in more than 100 languages. Also
Schwenk et al. used Common Crawl in CCMatrix [24], but their purpose was
to extract parallel sentences in different languages. The result was 10.8 billion
parallel sentences in 90 languages. Another study in this vein is Smith et al. [25],
whose method allowed to extract a 278 million token corpus of parallel English-
French, English-Spanish, and English-German texts. In CCQA [13], a method
for composing multilingual question-answering task using Common Crawl was
proposed. The authors shared 130 million question-answer pairs. Liu and Cur-
ran [16] used Open Directory Project8 to extract a topic-diverse English corpus
of 10 billion words. To pretrain the T5 language model [23], the authors ex-
tracted a 750 GB English text corpus, called C4, employing Common Crawl.
Dodge et al. [7] explored this dataset further and analyzed the effects of the
applied filtering. A similar pipeline to that used for C4 was applied to create the
mT5 [32] training corpus, which is a multilingual version of T5. The proposed cor-
pus has 6.3 trillion tokens. Qi et al. [22] crawled 10 million images with captions
from the Internet and used it to pretrain the multi-modal ImageBERT model.
C4Corpus [11] (not to be confused with C4 proposed by Raffel et al., described
above) utilized Common Crawl resources to provide multilingual (more than 50
languages) over 10 billion token corpus to the community. The Pile [8] is a 885
GB text corpus composed of 22 different datasets, and one of its subparts are
texts from Common Crawl. Abadji et al. [1] proposed a document-oriented mul-
tilingual 12 GB corpus of texts from Common Crawl with quality annotations. It
must be noted that the authors define the term “document” as a long, coherent
piece of text, not as a PDF file, as we do in this study. Luccioni and Viviano [18]
analyzed Common Crawl in terms of undesirable content, including hate speech
and sexually explicit content, and investigated different filtering methods.

Dataset Documents Pages Avg pages
per doc

Languages Domains Years

IIT-CDIP 6.5M* 35.5M* 5.5 1 Industry documents 1990s
OCR-IDL 4.6M 26M 5.7 1 Industry documents 1990s
CCpdf 1.1M 14.5M 12.9 11 Multi-domain Mostly 2010–2022

Table 1: Comparison of existing publicly available corpora. *Numbers of valid
documents/pages according to the authors of OCR-IDL [4].

3 Collecting and processing PDFs

In this section we describe how we addressed the challenge of finding, down-
loading, and processing a great volume of PDF documents. The full process is
presented in Figure 1.
8 http://odp.org

http://odp.org
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3.1 Common Crawl

As our input we used web indexes created by Common Crawl9. Common Crawl
is a project of The Internet Archive10 – an organization dedicated to providing a
copy of the Internet to the community. They crawl webpages and save them into
crawls dumps. A crawl dump contains billions of webpages (hundreds of terabytes
of uncompressed data) and a new dump has been published nearly every month
since March 2014. Some earlier, more irregular dumps starting from 2008 are
also available.11 Each dump also contains an index of the crawled pages.

We decided to simply use the latest (and the largest) dump available at the
time of writing this paper — the May 2022 dump.12 It contains 3.45 billion web
pages, which amounts to 462 TB of uncompressed content. It would obviously be
possible to apply the extraction procedure described in this paper to all crawls to
obtain an even larger collection of PDFs, which would also allow for a diachronic
analysis, but we wanted to focus on the most recent documents.

Note that dumps contain only files considered as text files by the Common
Crawl web robot. Mostly these are web pages in the HTML format, but, for-
tunately, PDFs are also treated as text files, being derivative of the PostScript
page description language. This is not the case with, for instance, images, Excel
files, DOCX files. Consequently, such files cannot be amassed using the methods
described in the aforementioned papers.

3.2 PDF links extraction

We experimented with two methods for extracting links to PDF files (step 1 in
Figure 1):

1. using CDX files, i.e., index server files provided by Common Crawl;
2. looking for links to PDF files in WARC, i.e., raw crawl data files.

The first method is simpler, as CDX files are easy to download and take up
only 225 GB in total. The second method might yield more links to PDF files,
but:

– it is impossible for us to download all WARCs. Only a limited number of
them can be processed, though still a significant number of PDF links can
be added even if a small percentage of all WARC files are processed,

– there is lower probability that the file linked is available at all, be it in the
crawl dump or simply at the original address.

In CDX files, the MIME type of a captured file is specified, and we limited
ourselves to the application/pdf type.

Hence, in this paper, we focus on the first method, which allows to speed up
the whole processing pipeline.
9 https://commoncrawl.org

10 https://archive.org/
11 https://commoncrawl.org/the-data/get-started/
12 https://commoncrawl.org/2022/06/may-2022-crawl-archive-now-available/

https://commoncrawl.org
https://archive.org/
https://commoncrawl.org/the-data/get-started/
https://commoncrawl.org/2022/06/may-2022-crawl-archive-now-available/
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3.3 URL-based language detection

We decided to limit our investigation to the following set of 11 languages: Arabic,
Dutch, English, French, German, Italian, Japanese, Polish, Portuguese, Russian,
and Spanish.

When deciding whether to process a given URL, we applied a number of
simple heuristics to determine the language. For example, we assumed that PDFs
from .pl domains are Polish unless there is lang=en inside the URL etc. Note
that this is a preliminary filter; later, when the contents have been downloaded,
we do a proper language detection (see Section 3.9).

In August 2018, Common Crawl added language metadata to CDX files.13
Unfortunately, the Compact Language Detector 2 employed there is applica-
ble only for plain texts or HTMLs, and only a small percentage of PDF links
contained the language metadata; therefore, it was unusable for our purposes.

This step of the pipeline is presented as block 2 in Figure 1.

3.4 Filtering out spam

One of the challenges to be tackled in Web information retrieval or when creat-
ing a massive text corpus sourced from the Web is the problem of (web) spam
and, more generally, low quality pages (step 3 in Figure 1). Web spam is usually
related to black-hat search engine optimization, i.e., creating link farms of web
pages with automatically or semi-automatically generated content. It turns out
that PDF files found on the Internet have the advantage of a relatively low per-
centage of spam, especially when compared to HTML web pages. More generally,
we believe PDF files usually contain more formal content as most of them are
business, legal, or scientific documents.

Still, some spam PDFs were found in Common Crawl dumps. Fortunately,
the way in which spammers operate is rather homogeneous. A typical telltale of a
spammy PDF was a long name composed of lower-case letters interspersed with
hyphens. A regular expression was written to detect suspicious URLs, and if a
domain happened to contain a large percentage of such URLs, it was assumed
to be spammy as a whole and totally discarded. Thanks to this simple heuristic,
in a sample of 1k documents we manually annotated (see Section 3.9) we found
no spam PDFs.

3.5 PDF data download methods

In order to ensure diversity, we downloaded at most three PDF files from each
domain for a language in a random but reproducible manner. For English and
German this number was lowered to, respectively, one and two, as PDFs in these
two languages are much more numerous compared to others. This limitation also
serves as a filter against anomalies such as millions of PDFs coming from a single
domain; especially a spammy one, if not detected with the procedure described
in Section 3.4. Balancing is represented as step 4 in Figure 1.
13 https://commoncrawl.org/2018/08/august-2018-crawl-archive-now-available/

https://commoncrawl.org/2018/08/august-2018-crawl-archive-now-available/
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The files were downloaded from the original URLs (step 5 in Figure 1). Op-
tionally, one could extract the file from a Common Crawl dump, especially if the
file is not available at the original site. We provide a script to extract PDF files
directly from the dump; fortunately, one does not need to download the whole
dump to extract a file.

There is, however, one serious issue with extracting PDFs from crawl dumps:
all files are truncated by the crawler to 1 MB. This limit is quite high for HTML
pages, but unfortunately rather low for PDF files. This means that only small-
sized PDF files can be extracted from Common Crawl dumps; larger ones have
to be downloaded from the original sites.

The final and intermediary statistics for the files downloaded are presented
in Table 2.

URLs Anti-spam Domain Language Successfully Successfully
found filtered balanced balanced downloaded processed

ar 65 395 65 374 13 142 13 142 11 710 (89.10%) 10 826 (82.38%)
de 1 661 317 1 659 713 320 978 200 000 182 607 (91.30%) 172 668 (86.33%)
en 11 515 766 11 501 781 952 776 200 000 182 071 (91.04%) 175 440 (87.72%)
es 871 843 871 478 106 143 106 143 93 163 (87.77%) 88 952 (83.80%)
fr 654 250 653 120 143 020 143 020 129 927 (90.85%) 121 905 (85.24%)
it 831 344 831 026 129 610 129 610 119 731 (92.38%) 114 265 (88.16%)
ja 1 160 543 1 160 410 151 686 151 686 139 990 (92.29%) 134 310 (88.54%)
nl 339 519 338 946 92 372 92 372 84 848 (91.85%) 79 720 (86.30%)
pl 438 770 438 531 85 635 85 635 79 668 (93.03%) 75 374 (88.02%)
pt 697 535 697 285 73 130 73 130 64 725 (88.51%) 61 405 (83.97%)
ru 628 473 628 061 105 535 105 535 91 708 (86.90%) 85 552 (81.07%)
all 18 864 755 18 845 725 2 174 027 1 300 273 1 180 148 (90.76%) 1 120 417 (86.17%)

Table 2: Number of documents per processing step and language. Percentage
values show success rates of downloading (in the downloaded column) or down-
loading and processing together (in the processed column). The success rate for
processing a downloaded document equals 94.94%.

3.6 Born Digital scanner

To process correctly all kinds of documents in the document understanding
domain we need to extract tokens from PDF files with their bounding boxes
sorted properly, i.e., according to the reading order. The most common approach
[30,29,9,21] is to process each PDF file with the use of some OCR engine, e.g.
Tesseract [26], Amazon Textract14, Microsoft Azure Computer Vision API,15 or
Google Vision API16. This method simplifies the processing pipeline and removes
the need to understand the complicated PDF file format.

The biggest challenge in direct text and layout extraction lies in processing
image content since there is no easy way to detect whether an image contains
text. On the other hand, some documents lack pictures altogether; instead they
contain textual information in the PDF file structure. We call them documents
that do not require OCR. From such documents text can be extracted along
14 https://aws.amazon.com/textract/
15 https://docs.microsoft.com/en-us/azure/cognitive-services/computer-vision/overview-ocr
16 https://cloud.google.com/vision/docs/pdf

https://aws.amazon.com/textract/
https://docs.microsoft.com/en-us/azure/cognitive-services/computer-vision/overview-ocr
https://cloud.google.com/vision/docs/pdf
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with bounding boxes using dedicated Python libraries, such as pdfminer.six17,
pdfplumber,18 or a DjVu-based tool19. Direct text extraction using these tools
leads to the reduction of the processing time and improvement of the quality of
the extracted data by preventing OCR errors. Therefore, we decided to intro-
duce a mechanism, called the Born Digital detector, for finding these kinds of
documents (step 6 in Figure 1).

3.7 Born Digital detection heuristics

In order to detect documents that do not need to be processed with an OCR
pipeline, we created a fast, simple heuristic-based classifier:

– Visible Text Length > 100 – Visible text in the document contains more
than 100 characters

– Hidden Text Length = 0 – There is no hidden text in the document
– Image Count = 0 – There are no images in the document

Used statistics (Visible Text Length, Hidden Text Length, Image Count) were
extracted using Digital-born PDF Scanner 20 tool written by us.

Our simple method was able to classify 219 documents out of 967 as born-
digital files that do not require OCR. (In other words, we can skip the time-
consuming OCR process for more than 1 out of 5 PDF files). To check quality of
our heuristic we manually annotated the same sample of documents. The preci-
sion of the proposed method was 93.15%. All errors (15) were caused by adding a
background with logo text to the file. In the future, we can also improve that kind
of cases by extracting metadata information about PDF file background as well.

Gold standard # Born Digital detector

Precision Recall F1-score TP + FP #
born digital, OCR not required 471 (48.71%) 93.15 43.31 59.13 219 (22.65%)
born digital, OCR required 321 (33.20%) - - - -
scan 175 (18.10%) - - - -
all 967 - - - -

Table 3: Results for the Born Digital detector mechanism.

3.8 OCR processing

One of the initial steps of the PDF processing pipeline is the URL based lan-
guage detection method (see Section 3.3). Information about the language of
the document is needed for filtering documents for specific languages and also
17 https://github.com/pdfminer/pdfminer.six
18 https://github.com/jsvine/pdfplumber
19 http://jwilk.net/software/pdf2djvu, https://github.com/jwilk/ocrodjvu
20 https://github.com/applicaai/digital-born-pdf-scanner

https://github.com/pdfminer/pdfminer.six
https://github.com/jsvine/pdfplumber
http://jwilk.net/software/pdf2djvu
https://github.com/jwilk/ocrodjvu
https://github.com/applicaai/digital-born-pdf-scanner
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by the OCR tool. In the next step (see Section 3.7), we select PDF files for
processing either by the DjVu-based tool (if the file is born digital then it does
not require OCR) or by Tesseract OCR [26]. The result is hocr files containing
extracted text with its bounding boxes. This form of data serves as the input to
the subsequent processing and analyzing steps.

Strategy name Processing time (using 1 CPU) Additional cost

1k files in relation to fastest Single page 1k files
DjVu-based tool + Born-digital detector 5.6 h 1x - -
Tesseract + URL based LD 23.7 h 4x - -
Tesseract + Built-in LD mechanism 75.9 h 14x - -
MSOCR + Built-in LD mechanism 16.7 h* 3x $0.001 $13

Table 4: Comparison of resource utilization for different strategies of the text
extraction from PDF files. *for Azure OCR we used 4 CPU (which is minimal
recommendation for container in version 3.2) and multiplied the number by 4.

Possible alternatives In a typical scenario of extracting text with bounding
boxes from a PDF file, researchers use a custom OCR engine [30,29,9,21], e.g.
Tesseract, Microsoft Azure Computer Vision API, Amazon Textract, or Google
Vision API. However, when we want to process millions of PDF files, we need
to think about the utilization of resources in the context of time and money.
Additionally, contrary to previous work, the language of a PDF file that we
want to process is unknown. Therefore, to choose the most economical option,
we tested the following strategies:

1. DjVu-based tool with a born-digital detector – for details, please see Sec-
tion 3.7

2. Tesseract with URL based Language Detection (LD) – described at the be-
ginning of this section

3. Tesseract with a built-in LD mechanism – in this strategy, we use the Tesser-
act OCR [26] engine with a built-in language detection mechanism

4. Azure CV API with a built-in LD mechanism – in this strategy we use
Microsoft Azure Computer Vision API21 with a built-in language detection
mechanism

We achieved the shortest processing time (see Table 4) with the DjVu-based
tool and a born-digital detector (see Section 3.7), which followed from the fact
that we did not need to run any ML models. Also quality of output from the
DjVu-based tool is better than from any OCR engine, because it extracts real
content of a file and does not introduce any processing noise. Azure CV API and
Tesseract with URL based language detection are the slowest OCR engines with
3-4 longer processing time. It turns out that the slowest processing strategy is
Tesseract with built-in LD mechanism, and therefore, we will not apply it in our
final pipeline.

21 https://docs.microsoft.com/en-us/azure/cognitive-services/computer-vision/overview-ocr

https://docs.microsoft.com/en-us/azure/cognitive-services/computer-vision/overview-ocr
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Fig. 2: Distribution of the analyzed
sample in terms of creation year.

Fig. 3: Distribution of the analyzed
sample according to PDF version.

3.9 Language Identification

In our final processing pipeline we used two language detection mechanisms:

1. URL-based method. Described in Section 3.3.
2. Content based method. We used the langdetect 22 library to detect language

based on its text content extracted in the previous step.

We tested the quality of our language detection methods on ~1k manually
annotated documents (Table 5). Both of our mechanisms can detect only a single
language but, in reality, we found out that 27 documents had multiple languages
(in 23 cases one of them was English). Fortunately, detecting a single language
allowed us to predict the language correctly for almost all documents (97.3%).

With the use of the URL based method, we achieved a 90.51% F1-score on
average, which seems reasonably good when we take into account the simplicity
of the method. The content based method works better in general with an F1-
score of 94.21% on average. The single exception here is the Japanese language.
Both mechanisms produced the least satisfactory results for two languages: Ara-
bic and English. It turned out that many documents from the .ar domain were
actually in English. Therefore, for the content based mechanism we wrongly
processed the PDF files with the Arabic Tesseract model.

Additionally, we found out that when we used the proper Tesseract model our
results increased drastically to an F1-score of 98.05% on average. The main rea-
son why this happened was the fact that the language identification mechanism
was working on the proper alphabet.

Possible alternatives In Table 6 we present the results for different lan-
guage identification tools. All of them achieved similar F1-scores, of which spacy
(94.33%) and langdetect (94.21%) performed best. When we also take into con-
sideration the processing time, it turns out that gcld3 was the best one with a
huge advantage over the second tool, which was the langdetect library. Therefore,
we decided to balance quality and resource utilization and use langdetect as our
main tool for language identification.
22 https://pypi.org/project/langdetect/
23 https://pypi.org/project/langdetect/

https://pypi.org/project/langdetect/
https://pypi.org/project/langdetect/
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Gold URL based method Content based method

standard # All documents Proper Tesseract lang

Precision Recall F1 Precision Recall F1 Precision Recall F1-score
ar 20 46.51 95.24 62.50 44.19 95.00 60.32 100.0 100.0 100.0
de 94 94.68 92.71 93.68 98.94 98.94 98.94 100.0 100.0 100.0
en 119 80.46 58.82 67.96 94.34 84.03 88.89 98.55 98.55 98.55
es 75 94.52 93.24 93.88 98.65 97.33 97.99 98.57 98.57 98.57
fr 108 93.94 86.92 90.29 100.0 91.67 95.65 100.0 100.0 100.0
it 101 93.20 95.05 94.12 98.97 95.05 96.97 94.79 94.79 94.79
jp 108 100.0 98.10 99.04 100.0 89.81 94.63 92.38 92.38 92.38
nl 90 84.91 100.0 91.84 98.86 96.67 97.75 96.67 96.67 96.67
pl 88 95.56 100.0 97.73 98.86 98.86 98.86 98.86 98.86 98.86
pt 83 94.38 98.82 96.55 97.62 98.80 98.21 98.78 98.78 98.78
ru 78 96.34 98.75 97.53 97.47 98.72 98.09 100.0 100.0 100.0
other 2 0 0 0 0 0 0 0 0 0
no text 3 0 0 0 0 0 0 0 0 0
multi 27 0 0 0 0 0 0 0 0 0
all 996 88.59 92.51 90.51 93.45 94.99 94.21 98.05 98.05 98.05

Table 5: Quality of the language identification methods verified on 996 manually
annotated documents.

Tool name F1-scores for content based method Processing time

ar de en es fr it jp nl pl pt ru all 1k files 1M files
langdetect23 60.32 98.94 88.89 97.99 95.65 96.97 94.63 97.75 98.86 98.21 98.09 94.21 0.28min 4.67h
lingua-py24 60.32 97.90 88.79 96.69 94.74 95.92 98.59 96.77 99.44 98.18 97.47 94.05 2.57min 42.8h
spacy25 60.32 98.94 87.33 97.99 94.79 97.49 98.59 97.18 100.0 98.18 97.47 94.33 3.62min 60.3h
gcld326 59.01 98.94 89.91 97.96 96.15 97.49 92.16 97.73 99.44 98.78 98.07 94.08 0.03min 0.33h

Table 6: Comparison of the quality and processing time of different language
identification tools.

3.10 Produced index

As a result of our pipeline, we created an index of successfully downloaded and
processed files. We decided to download up to 200k documents per language to
share a reasonably sized corpus, with a good diversity of languages. It gives an
acceptably good trade-off between the balance of languages and the size of the
dataset. Statistics about the index are presented in Table 2.

A comparison of our dataset to existing corpora is presented in Table 1.
The corpus we provided is smaller than the previous ones considering the total
number of documents and pages. Still, language models will benefit in many
aspects, (1) understanding long-distance relationships as the dataset has, on
average, the longest documents compared to previous works, (2) multi-language
training as we selected 11 different languages, (3) multi-domain training as we
sourced documents from different websites all over the Internet, (4) document
understanding of recently created documents (which may differ from the old ones
in terms of language, layout, and graphical style) as the majority of files in our
corpus were produced after 2010 (in IIT-CDIP, the most popular corpus so far,
all the documents were created in the 90s).

24 https://github.com/pemistahl/lingua-py
25 https://spacy.io/universe/project/spacy_fastlang
26 https://pypi.org/project/gcld3/

https://github.com/pemistahl/lingua-py
https://spacy.io/universe/project/spacy_fastlang
https://pypi.org/project/gcld3/
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Fig. 4: Distribution of word
count per document.

Fig. 5: Distribution of word
count per page.

Fig. 6: Distribution of the num-
ber of lines per page.

Fig. 7: Distribution of text cov-
erage of page.

4 Exploration of PDFs

Since we provide a large scale, highly diversified collection of PDFs downloaded
from all over the Internet, we want to provide some insight into the properties
of PDF files which are accessible on the Internet. To do so we randomly picked
1k documents in each of the languages in our corpus (11k documents at total)
and analyzed them in terms of various properties.

Firstly, we analyzed them in terms of their creation date, the outcome of
which is presented in Figure 2. For this analysis we used the CreationDate
field of metadata. Since most documents come with this field filled in, we were
able to read the creation date for more than 99.4% of our sample. However,
sometimes unreasonable values such as 1442 occurred as the creation year. As
we can see, our corpus contains relatively new documents. It is an important
point, because language evolves constantly, and three years ago terms such as
“lockdown” or “post-pandemic” were absent from documents. Since we want our
language models to represent current language and document types correctly,
hence a distribution like that in Figure 2 is desired. The spike for the year 2021
was probably caused by the use of the Common Crawl dump from May 2022.
We assume that crawlers from Common Crawl usually tend to find files that are
a few months old, which often means that they are from the previous year.

We also analyzed the documents in terms of the exact version of PDF stan-
dard used. The data is presented in Figure 3. As we can see, the majority of
our sample (above 76%) are PDFs prior to the 1.7 version. It is an important
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property, because versions 1.7 and 2.0 are defined by an ISO standard, while the
older ones were defined only by Adobe proprietary standards. Some of the issues
that we experienced during processing may have been caused by problems with
older standards.

A PDF file contains metadata about the tool used to create it (Figure 8).
There are many different tools, and often the same tool was described by differ-
ent values (for instance Microsoft Word has different names in many languages
despite being the same program). The two most popular providers of PDF tools
found in our corpus are Microsoft (29.8% of the sample) and Adobe (21.3% of
the sample).

Fig. 8: Tools used to create
PDFs.

Other properties that we were interested
in were the length of the documents in terms
of word count (Figure 4), their word count per
page (Figure 5), and line count per page (Fig-
ure 6). As we can see, there is great variabil-
ity in terms of these parameters. For instance,
there are many documents and pages with al-
most no text. Up to our manual check, most of
the documents with little text are graphically
rich, for instance, technical drawings, or info-
graphics. The typical value of words per page
is between 0 and 500, and the typical value of
lines per page is between 0 and 55.

To provide some insight into the layout
of the documents, we checked to what extent
each page was covered by bounding boxes of

tokens. We may look at it as part of the text coverage parameter. Distribution
of this value is presented in Figure 7. 76.2% of our sample fell into the range of
5% to 40% with respect to that parameter. Similarly to the previously described
properties, once again we see a peak for empty pages. There is also a peak for
pages fully or almost fully covered by text.

We were also interested in the ratio of page dimensions. 99.7% of x/y ratios
were in the range of 0.4 to 2; the smallest value being 0.09, and the largest – 4.79.
In our sample, 65.0% were pages with the dimension ratio close to

√
2, which is

a standard ratio for the A, B and C paper series. 86.9% of them were vertical
pages, and 13.1% – horizontal ones. Also, the LETTER format was popular; it
comprised 10.6% of the sample: 92.9% documents were vertical, and 7.1% hori-
zontal. In total, the A, B, C, and LETTER series comprised 75.5% of the sample.

To gather more information about the layout of the documents, we created
heatmaps of token bounding boxes for vertical and horizontal pages (Figures 9
and 10, respectively). As we can see, layouts with two columns of text are fairly
popular, especially for horizontal pages. Also, text occurs more frequently on the
left side of a page.
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Fig. 9: Heatmap for vertical
pages (brighter means more
tokens, darker – fewer tokens).

Fig. 10: Heatmap for horizontal pages
(brighter means more tokens, darker –
fewer tokens).

5 Discussion

In this study we analyzed a pipeline for creating a corpus of documents. Ac-
cording to our experiments, the most effective way of OCR processing of PDF
files is a two-step procedure. The first step consists in the classification of the
files according to whether they need an OCR engine or simple text extraction
is sufficient. In the second step, we process the file with either an OCR engine
(in our case Tesseract) or an extraction tool (in our case the DjVu-based tool).
In the former scenario, we also discovered that predefining the OCR language
speed up the process substantially; unfortunately, this comes at some cost in
terms of data quality. However, this cost may be mitigated by a simple heuristic
which filters out documents where the predefined OCR language did not match
the one discovered by the language detector. We also analyzed different language
detection tools in terms of output quality and processing time, and discovered
that the langdetect tool offered the best trade-off between these values.

One of the limitations of this research study was that we focused only on
the processing pipeline without analyzing the impact of each project decision on
the final language model. However, this kind of study would be very expensive,
as it would require multiple pretrainings of a language model. Language model
pretraining is a costly process in terms of money, time, and environmental impact
[20].

Also, conclusions drawn from the analysis of our sample can hardly be gener-
alized to the whole content of the Internet and only provide some insight, rather
undisputed knowledge. This follows from the filtering procedure: we decided to
down-sample document-rich domains and languages, therefore, statistics calcu-
lated on the whole content of the Internet may differ from the ones presented in
this work.

The approach which we used to create the dataset may be reused to all of the
previous Common Crawl dumps in the WARC format, of which there are 84 in
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total. We decided to limit ourselves to one dump only due to computational and
storage limitations. One with enough computing resources may easily reproduce
our pipeline and create a corpus up to 84 times larger.

6 Conclusions

Large corpora of documents are crucial for 2D language model pretraining. Re-
cent approaches to their creation have had limitations in terms of diversity and
multilinguality. Diversity of the dataset is a crucial property, as data used in the
training phase impact the biases of the model. Efficient design of a pipeline for
creating such a corpus has not been studied before. In this work we addressed
those limitations by designing a process of downloading diversified samples of
PDFs and their efficient processing. To obtain documents we used Common
Crawl, which is a popular source of data for language model pretraining, but
has rarely been used in the context of 2D language models. The PDF files used
for this project were balanced across languages and domains, which guarantees
diversity with respect to layouts and topics. To make the processing pipeline
efficient in terms of computing time and data quality, we tested different strate-
gies of OCR processing, i.e. usage of the embedded textual layer for documents
not requiring OCR, and predefining the OCR language. The language detection
step was also carefully analyzed.

The result of this work is an index of PDF files with their URL addresses and
metadata, and the script for downloading it is available at our repository27. The
supplied data were analyzed in terms of not only document length and layout,
but also metadata connected to the PDF format (i.e., the PDF version and the
creator tool), which can help understand better the dataset itself, but also give
an insight into the content of the Internet.
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