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Abstract. Language models are useful adjuncts to optical models for
producing accurate optical character recognition (OCR) results. One fac-
tor which limits the power of language models in this context is the exis-
tence of many specialized domains with language statistics very different
from those implied by a general language model - think of checks, medical
prescriptions, and many other specialized document classes. This paper
introduces an algorithm for efficiently generating and attaching a domain
specific word based language model at run time to a general language
model in an OCR system. In order to best use this model the paper also
introduces a modified CTC beam search decoder which effectively allows
hypotheses to remain in contention based on possible future completion
of vocabulary words. The result is a substantial reduction in word error
rate in recognizing material from specialized domains.
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1 Introduction

Optical character recognition (OCR) is a fundamental tool enabling many appli-
cations, such as visual search, document digitization, understanding and trans-
lating scene text, and support for the visually impaired [I8I30/412612219].

OCR systems range from the very general, supporting arbitrary input in
many of the world’s writing systems [23I27/9], to the very specific, for example
for bank checks [I5I§] or license plates [III]. The aim of this paper is to describe
a system which allows general OCR systems to be quickly and easily configured
for specialized tasks at run time, in many cases providing the benefits of a
custom system engineered for a specific application at very small cost. The lever
for making this change is the language model.

It has been clear for decades that language models can improve OCR results
by estimating the prior probability of OCR outputs [5l24]. Originally this was
accomplished by postprocessing the output of OCR systems, in effect applying a
spelling checker of some sort to the output. More recent systems often integrate
language models into their decoders [12/9/20].

Independent of their application in OCR systems, there has been a long
history of creating language models with some specificity. Adaptation of speech
recognition systems and handwriting recognition systems to individual users has
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been studied for a long time, and in many cases modifications to the associated
language models has been part of that [I67]. Many of these systems create an
adapted language model as a sum or interpolation of two models of the same
type.

Standalone language models, used for tasks like question answering or sum-
marization, also benefit from specialization or fine tuning [6II0]. There is, for
example, a language model trained to work well on radiology reports [29].

The combination of task specific language models with successful general pur-
pose OCR engines leads to many specialized applications, such as recognition of
receipts, invoices, tax forms, medical prescriptions or notes, and many others.
Some of the specialized language models used in other applications require ex-
tensive training, but in order to provide fast and simple run time configuration
the models discussed here require only a vocabulary list and some frequency
information for the words in the vocabulary.

The goal of this paper is to define language models and an OCR decoder
architecture which efficiently solves the specialization problem for many appli-
cations. These are our contributions:

— We define simple language models for words and regular expressions which
may contain domain specific vocabularies

— We provide tools to generate these models from domain text, and also allow
flexible user configuration

— These models may be quickly added to existing general purpose language
models at run time

— We modify the CTC decoder to support these models with a limited kind of
lookahead

2 Custom Vocabulary Models

2.1 Baseline System

Test images for this work may be either line images or full page images. In the full
page image case, the full recognition system includes some preliminary material
which finds text lines in the image and feeds those to a line recognizer. If the test
set contains line images, then the line recognizer may consume them directly.
Only the line recognizer varies between the baseline and experimental systems,
so we will focus on that and treat the line segmentation code as a constant part
of the environment.

The baseline line recognizer is a general purpose OCR system using a CTC
[14] beam search decoder [12]. The input line image is divided into frames (pos-
sibly with an overlapping sliding window), and at each frame the beam search
maintains a list of hypotheses, each of which is an assignment of a character label
to each preceding frame. In general multiple frames are mapped to one output
character, with a special blank label to indicate a transition from a character to
an identical character.
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Each hypothesis has a score. At each frame, the decoder accepts the optical
model score for each possible label in that frame. The decoder generates a new
hypothesis for each preceding hypothesis and each possible label for the new
frame. The score for the new hypothesis combines the score for the preceding
hypothesis; the optical score for the proposed new label; the cost of a character
unigram prior; transition costs for new characters, blank labels, and repeated
characters; and, in the first frame for a new character, the cost of a character
language model. The parameter values are optimized to minimize the character
error rate on a development set with a black-box optimization [13].

The decoder maintains a list of the best scoring hypotheses, keeping only the
best N, and also pruning those too far away from the best. N is called the beam
width, and is typically 30 for the baseline recognizer.

The subject of this paper is the last component, the language model score.
The baseline system includes a character based language model which estimates
the probability of each possible next character in the search, given the left context
of the characters already present in the hypothesis. At the frame in which the
CTC search transitions to a new character, a weighted negative log probability
of the new character is added to the score. In the baseline system the same
pretrained language model is applied to all input.

2.2 Custom Vocabularies

We wish to specify a set of words which are likely to appear in input images,
and boost the score of any hypothesis in the beam search which contains one.
There are a number of properties of the vocabulary to specify:

The algorithm supports both literal words and regular expressions.

The literal words may be case sensitive or insensitive.

Vocabulary entries may optionally be anchored to the start or end of word.
Each vocabulary entry has a weight.

There are two reasons for drawing a distinction between literal words and
regular expressions. The first is just implementation efficiency. The second is
that the scoring algorithms, which we will discuss below, work better for fixed
length vocabulary items. In the current system that is just the literal words, but
this should be applied to other fixed length regular expressions as well.

As we will see the scoring algorithm includes a number of hyperparameters
as well. A vocabulary with these items specified is the essential information a
user must supply, along with the input data, to benefit from this algorithm.
Vocabulary sizes in tests so far have ranged from a handful of items to a few
tens of thousands of items.

The tools used in the tests below can generate the vocabulary from sample
text, so in general this should not be a burdensome requirement. The user is
free to specify some or all of the vocabulary if there are words of particular
importance in an application.

Ideally one would retune the CTC parameters and language model weights
after adding a custom vocabulary, but that would not be consistent with the
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goal of adding new vocabularies at runtime with low latency, and in practice
good results appear not to require this.

2.3 Designing appropriate vocabularies

In some applications the vocabulary may be clear. In processing prescriptions,
the medication names are the words the user is most concerned to recognize
correctly. In other applications the user may have a body of data from a specific
domain, but the appropriate vocabulary is not clear.

The essential element of designing a vocabulary is choosing appropriate
weights for the words. If the user already has a specific vocabulary this is all
that is required. Otherwise, we may process a body of text from the domain,
finding the common words and calculating their weights, and use some cutoff on
the weight values to choose the vocabulary. We use three factors in choosing the
weight for a word.

1. The length of the word. The scoring formula adds a value proportional to
the length of the word, to give a per-character change in the score, but this
does not fully capture the effect of word length. Short words tend to have
many more possible confusions in the text than long words, so if short and
long words have the same per-character score delta there will be more short
false positives than long ones. Thus the weight for longer words should be
higher. In the PubMed dataset below “palmitoylation” is a common word
which is not easily confusable with others - it benefits from a high weight.

2. The empirical word distribution. A body of text produces an empirical prob-
ability distribution for the words. Frequent words should get higher weights.

3. The language model distribution. We have a base language model which can
estimate the probability distribution for the next character, given the left
context. For each word in a body of text this leads to a language model score
for the word.

We have experimented with a number of functions of these factors and settled
on a simple form:

(co+ c1 - length + ¢ - (frequency/lm_score)), (1)

where the ¢,, are parameters chosen to minimize the OCR error rate. That is, the
weight is higher for long words, and for words which are frequent in the domain
text but do not score well in the baseline language model.

We have done a black-box optimization [I3] to choose these parameters in
a number of data sets and chosen values which work well in a variety of cases,
although there is some difference in the optimal values for different kinds of
tasks. Ideally one would do a fresh training for each data set, but that may
not be feasible with fast run time configuration. In the future weight formulas
which account for the coverage by the vocabulary of the target text and the
confusability of the vocabulary items may provide more precise choice of the
parameters.
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2.4 Language model state

The language model represents regular expressions and literal words separately
as finite state machines. Classes available in the OpenFST toolkit [3] represent
the machines. The regular expressions in the vocabulary are separately com-
piled, with final state weights representing the weight of the expression in the
vocabulary. These are then combined into a single state machine and optimized.
Each state has two scores: one is the weight of the regular expression with that
as a valid final state, if any; and the other is the best weight for which the state
represents a prefix.

The literal words are handled similarly, with the vocabulary compiled into a
trie, or prefix tree. Each node in the trie has two numbers attached: one is the
weight of the word which ends at that node, or 0 if there is none; and the other
is the weight of the best word for which the node is a prefix. These two state
machines, plus the baseline character model and a number of hyperparameters,
comprise the custom vocabulary model.

Each hypothesis in the beam search includes a language model state, which
depends just on the textual transcription of that hypothesis, not the way it is
divided into frames. The essential properties of the state are that it can generate
a score, and that appending a new character leads us to a new state. The state
includes independent components for the states of the base character model, the
regular expressions, and the literal words.

Given a hypothesis which contains a sequence of characters “abcd” in its
transcript, we must consider that a vocabulary word may start with the character
a, or with the character b, and so on. Thus the decoder state for the literal words,
for example, will be a vector of trie states from the trie representing the literal
vocabulary. If we use Trie(“abed”) to represent the state of the trie we get by
traversing the string “abced” from the start state, then the literal word portion
of the decoder state will be [Trie(“abed”), Trie(“bed”), Trie(“cd”), Trie(“d”)].
As we decode many of these strings will be invalid - that is, not a valid prefix
for any of the vocabulary words - so the vector will in practice be pretty small.
Thus the full decoder language model state contains the state of the character
model, whatever that may be; a vector of states from the literal vocabulary trie;
and a vector of states from the regular expression state machine:

(C, VL, VRr) (2)

where C is the character model state, V7, is the vector of valid trie states, and
Vg is the vector of valid regular expression states.

If the model configuration anchors the vocabulary words to the word start
position there will be many fewer valid states active at any one time. For the
literal words we could also use the Aho-Corasick algorithm [2/17] to generate a
single state machine valid for any starting position in the string.

2.5 Scoring the language model

Suppose we have a hypothesis in the beam search and we wish to transition to
a new character ¢. We have the language model state for the hypothesis and
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Fig. 1: State transition for the literal word part of the language model state. In
this example the vocabulary contains can, cat, any and not. The first box is the
literal word state after seeing “ca”, and the second box after we accept “n”. In
the second state “can” contributes to the base score, and all the other words in
contention contribute to the best score.

$4:

the new character, and we must produce the new language model state and the
score, containing both the base score for the material we have seen and the best
score representing possible future word completions.

The underlying character model produces a score which is part of both base
and best scores, and transitions its part of the state C' to a new character model
state however it chooses.

For the word part of the state, each element of V}, transitions to a new trie
state with the addition of the character c. In some cases the transition will be
invalid and the state will drop out; in the other cases the trie generates both a
base and a best score. If it is consistent with the model configuration, we may
also add a new state to the vector by transitioning from the start state of the
trie with the character c. All these actions together generate the word part of
the next state.

The base score for this word transition is the optimal value among all the
base values for valid trie transitions. It represents the most valuable word in the
vocabulary completed by the new character c. Similarly, the best score is the
optimal value among all the best scores for the valid transitions, reflecting the
most valuable partially completed vocabulary word. These word base and best
scores are part of the base and best scores for the whole model. Figure [1| shows
an example.

The actions for the regular expression state list is similar. Adding this part
in, at the end we have a new language model state, containing a new character
model state and new word and regular expression state vectors; and we have
base and best scores for all the parts together.
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2.6 Dual criterion beam search

We have seen that there are two scores we attach to a hypothesis during the
beam search, representing what we have seen and what we hope to see. Because
beam search capacity is a limited resource, neither alone is a reliable guide to
which hypotheses we should keep. If we rely only on the current scores we may
eliminate a vocabulary word because of some poorly formed characters in the
middle, reducing the recall on the in vocabulary words in the image. If we rely
only on the hopeful scores we may force out some hypotheses with mediocre
current scores, and then the hopeful hypotheses may drop out anyway if the
data goes in a different direction. Fig [2| visualizes this problem. Thus we keep
hypotheses in the beam search if the base score is good, or if the best score is
good.
The dual criterion beam search is is presented in algorithm

Algorithm 1 Dual criterion beam search for one frame

Input: hypotheses from the previous frame, and candidate characters for this frame

1. Generate a new set of hypotheses using the scoring algorithm outlined above, based
on the hypotheses from the previous frame and the possible characters for the new
frame. Each hypothesis will have a base score and a best score.

2. Pick out the top up to N hypotheses, using the base score, subject to a constraint
on the width of the beam. These will remain in the beam for the following frame.
In the base system these are all the hypotheses kept by the algorithm.

3. Pick out up to M additional hypotheses, based on the best score, subject to the
constraint that the best score is no worse than the worst base score hypothesis in
the original set of V. The union of these two sets is the set of hypotheses presented
to the next frame.

Most of the benefit of the custom vocabulary comes from the language model,
but in some cases the dual criterion beam search provides an additional improve-
ment.

2.7 Performance considerations

This algorithm is useful in the context of a running OCR service, for which users
wish to specify at run time a custom vocabulary which applies to some group of
input images. As such, there are two latency figures of concern.

The additional computation required to maintain the additional beam hy-
potheses and to score the finite state machines associated with the custom vocab-
ulary is negligible for common vocabulary sizes compared to the effort required
to generate the optical model scores. If at some point greater efficiency becomes
important the Aho-Corasick algorithm could be used to simplify and streamline
the processing.
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Fig.2: Conceptual diagram to show the need of dual criterion beam search.
The black solid line is the best hypothesis without the cost bonus. The red
and blue dashed lines are hypotheses with a cost boost at frame t'. If we use a
single criterion, the decoding can successfully find the best hypothesis for (a) but
could fail for (b) because the hypotheses expanded for the boosted hypothesis
can easily dominate the beam. The proposed algorithm keeps the top-N and M
hypotheses for each case to deal with the problem.

The more important latency value is for initialization - given a configuration
file containing the vocabulary and associated parameters, and a running baseline
OCR service, how long does it take until the service is ready to use the model?
Constructing the appropriate state machines from a textual representation is
straightforward, and times in the range 2 - 10 ms. on common desktop hardware
are typical. This initialization time would be amortized over as many images as
are used with the custom model.

3 Experimental Results

We explore these algorithms with a number of data sets, with different char-
acteristics and different levels of information available. None of these data sets
is perfect. The PubMed set has the most complete and accurate ground truth
information, and is large enough to use better quality statistical tests in val-
idating the algorithm. The other data sets don’t have enough information for
real statistical rigor, but give at least a qualitative sense of how the algorithm
performs in other situations.

3.1 PubMed research papers

The PubMed data set This data set is synthetic, based on a set of related
biomedical research papers from PubMed, https://pubmed.ncbi.nlm.nih.gov [28§].
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Fig. 3: Sample images from the PubMed dataset

IFITM3 (Interferon induced transmembrane protein 3, https://www.ncbi.nlm.nih.gov/gene/10410)
[21] is implicated in the immune response to influenza, Sars-Cov-2, and other

viruses, and is an active current research topic. We took 19 research papers from

PubMed related to this topic and used the Pango (https://pango.gnome.org/)

[25] typesetter program to generate text line images with random fonts and

styles from their text. We then used two different levels of random degradation

on the initial images to generate images more challenging for OCR. Figure

shows typical images generated in this manner.

This synthetic data set is not an exact model for real images one might see
as OCR input, but it provides an excellent experimental platform for judging
the relative efficacy of different algorithms. The original images are too easy for
this test, with word error rates under 0.5% for the baseline OCR system, but
the other two versions were used for much of the development and tuning of the
system. At each degradation level the data set contains 40898 lines and 183619
words.

All text In vocabulary Out of vocabulary

Vocab|coverage WER h WER h WER h
Base|Custom| "8 [Base[Custom|*""&°[Base|Custom| 2 1&°
200 | 0.223 6.34 [-10.7%|6.00| 1.96 |-67.4%|7.42| 7.60 | 2.4%
400 | 0.287 710 6.28 |[-11.6%|5.14| 1.66 |-67.7%|7.89| 8.14 | 3.2%
800 | 0.365 | - 6.19 [-12.9%(4.51| 1.45 |-67.8%(8.59| 8.91 | 3.8%
1200 | 0.424 6.12 [-13.9%(4.29| 1.39 [-67.6%(9.17| 9.60 | 4.7%

Table 1: Heavily degraded PubMed recognition results as a function of vocabu-
lary size

First Line of Antivirsl Defense.

Fig.4: A win: corrected “First Line of Antivirel Defenso.”

PubMed results Table[I]shows figures of merit for these models as a function of
vocabulary size. These results used the more heavily degraded version of the data
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Vocab size|All text ratio|In vocabulary ratio
200 3.62 14.45
400 3.74 14.48
800 4.10 14.88
1200 4.44 14.83

Table 2: Heavily degraded PubMed win ratios

All text In vocabulary Out of vocabulary
Vocab|Coverage WER h WER h WER h
Base|Custom| "8°[Base[Custom| - &°[Base|Custom]| 8¢
200 0.223 1.47 [-11.0%|1.32| 0.16 |[-88.2%|1.74| 1.85 | 6.3%
400 0.287 1.65 1.46 [-11.7%][1.08] 0.14 [-86.9%]|1.88| 1.99 5.9%
800 0.365 ’ 1.46 [-11.8%[0.86| 0.12 |[-86.5%|2.10| 2.23 | 6.2%
1200 | 0.424 1.46 |-11.6%|0.75| 0.11 [-84.7%|2.31| 2.45 6.1%

Table 3: Lightly degraded PubMed recognition results as a function of vocabulary
size

Vocab size|All text ratio|In vocabulary ratio
200 4.50 22.64
400 4.72 17.53
800 4.52 17.10
1200 4.11 13.62

Table 4: Lightly degraded PubMed win ratios

R signifcant change in the
membrane sormal) throughout the

Fig.5: Losses: changed correct “signifcant” to “significant” and “normal” to
“formal”

set. These figures were generated using a jackknife protocol, with one paper at a
time left out, and the vocabulary automatically generated. At each vocabulary
size we see the vocabulary coverage, the word error rates and the relative change
in error rate. The coverage is the portion of all the words in the document which
are in vocabulary. The figure includes these values for the entire documents, and
just for the in vocabulary words or out of vocabulary words. We see that there is
some price in terms of lower accuracy for out of vocabulary words, but a much
stronger positive effect for the in vocabulary and whole document sets.

Note that the in vocabulary baseline accuracy changes with different vocab-
ulary sizes. This is because the set of in vocabulary words changes from line to
line. Each word will get exactly the same baseline results on each line, but the
set of included words changes.
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Table [2] shows the win ratio at each vocabulary size for the heavily degraded
data, for all the text and for the in vocabulary text. The win ratio is the ratio
of the number of errors corrected by the model to the number of words which
were correct in the base model but changed to an incorrect value in the custom
vocabulary model.

The model configuration anchored the vocabulary items to word start, and a
word is considered in vocabulary if it benefits from the algorithm. For example,
if “with” is in the vocabulary, then “within” is considered an in vocabulary word
in the data set.

Tables [3land [4 show the same results with the more lightly degraded version
of the data set, with baseline word error rate 1.65. The baseline in vocabulary
error rate varies with the vocabulary size, but is generally lower than the overall
error rate.

Figures [] and [5] show some wins and losses on this data set.

3.2 Handwritten prescriptions

The prescription data set This data set contains full page images of hand-
written prescriptions. A sample is shown in figure 6] The ground truth for these
images contains only the list of medications mentioned in each prescription, and
not the other text elements or the locations of the medication words. This limits
the available options for analyzing OCR, performance on these images, but the
Jaccard Index can be used as an important measure of algorithm quality.

The Jaccard Index will be a perfect 1 if the OCR system finds all the medica-
tions in a prescription, without introducing any false positives. Given an image,
if GT is the set of ground truth vocabulary words in the image, and R is the set
of recognized vocabulary words in the image, then the index is

_[RNGT|

J(R,GT) = RUCT| 3)

The Jaccard Index has important limitations, but it is an appropriate metric
for this application. It provides no information on location or order, but none is
required in the output. This data set also has the property that each vocabulary
word appears at most once in an image, which is helpful in interpreting the
metric.

The vocabulary contains 41844 words, consisting of names of medications,
with 6111 of them actually used in at least one image. The data set contains
9647 images, with 47712 in vocabulary words altogether.

Prescriptions results For this data set we have for each image a list of the
medicine names in the image, and we use the Jaccard Index as the figure of merit
for the model. This is a challenging data set, containing images of messy hand-
written prescriptions. As noted, this data set contains full page images rather
than line images, so the error rates may include segmentation errors as well as
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Fig. 6: This prescription contains amitop, migrol, xenadom and cyptan

Vocabulary size|Jaccard Index

0 0.193
500 0.201
1000 0.209
5000 0.271

10000 0.257
41844 0.178
Table 5: Handwritten prescription recognition results as a function of vocabulary
size

recognition errors, but the segmentation material is the same in all experiments
so we will ignore it.

This data set allows us to further explore the results of vocabulary size. The
initial size is 41844 words. This includes some synonyms and abbreviations, but
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is larger than any list of commonly prescribed medications - the mobile version
of the Physician’s Desk Reference, for example, has about 2500 medications. The
images actually use 6111 of the medication names.

Table [5] shows the Jaccard Index achieved by this model as a function of
vocabulary size. For this experiment, to test vocabulary size V' we split the
input images into 5 parts. We used a word list generated by the first four parts
to create a model for evaluating the fifth part. The list contains vocabulary
words actually used in the first 4 parts, filled out to size V' by adding random
words from the master list. If more than V words are actually used in the first 4
parts, we select them by the weight as discussed above. The values in the table
are pooled from evaluating all 5 data slices in this manner.

In this data set we see that including too many words is counterproductive,
and better results are obtained by focusing on the common words. We might
achieve better results if we had truly accurate frequency information for the
whole vocabulary.

3.3 Medicine names

This data set contains medicine names cropped from the handwritten prescrip-
tion data set. This is a useful set for comparing the original single beam search
with the dual beam search. We see in Table [6] that the language model is doing
the heavy lifting, reducing the case insensitive word error rate from 47.45 to
7.64. In this application the dual beam search provides a further 16% drop in
word error rate.

Figure[7]shows an example of a word which was fixed by the dual beam search.
This makes sense - the split between the right and wrong versions happens well
before the end of the word, and so in the single beam search there are many
opportunities to prune the correct result before the end. In other applications,
like the pay stub data set discussed below, the dual beam search is not helpful.

Base WER |Single beam search|Dual beam search|Change due to dual beam search
47.45 7.64 6.43 -16%
Table 6: Effect of the dual beam search on case insensitive word error rate

Fig.7: Fixed by the dual beam search: Meto Pantan — Metosartan
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3.4 Pay stubs

This data set contains images of pay stubs; figure |8 shows a typical example.

For this data set we used a custom vocabulary containing only a few regu-
lar expressions representing different ways of expressing monetary amounts and
dates. One could also reasonably add relevant words, like taxable, federal, de-
ductions and so on, and perhaps further improve the results.

Because we do not have ground truth for this data set we ran the base model
and the custom vocabulary model and examined a random sample of all the
words where the results differed between the two models; the results are shown
in figure 0] We do not have error rates for either set of recognition results,
but since there were 63 instances of words being fixed by the regular expressions
against 1 new error, it is clear the results were broadly positive. Many of the fixes
were humble but nonetheless useful, for example correcting confusions between
commas and decimal points.

The other fixes category contains things that could have been fixed with a
more tightly configured base model, and so do not really redound to the credit
of the custom vocabulary. For example, “PTO” might be interpreted as three
Latin characters or three Cyrillic characters by the base model, but this custom
vocabulary model was constrained to Latin script output.

EMPLOYEE NAME WEEK ENDING DATE 020219 [ aowce no. 24247791
Dennis Porter g
—_—— EMPLOYEE # | 001769245 HOURLY RATE 42%
RNGS U il o —L_KEEYW —?JEE:]
1ST SHIFT REGULAR 500 131.25 393 75 | FEDERAL TAX 276.83 67269
%gg gH:FT ARy 0.50 13.12 216 56 | EMPLOYEE FICA TAX 149 65 402 14
2D L*éAF‘EgEGULAR 69.00 1811.26 3555 34 | EMP MEDICARE FICA 3500 9405
UNPLANNED ABSEN 1240.31 | CRITICAL ILLNESS 298 894
DIFF REG 2nib e picE 22969 | DENTAL PPO INSURANCE 750 2250
DIFF REG 3RD SHI 1.62 26.80 | HMO EMPLOYEE CONTRIB 51.00 153 00
DEEWERENT Y 345,00 696 25 | TSA(TRANSAMERICA) 12369 33331
110.25 146 25 | VISION EMPLOYEE CONTRIB 1.50 450
WEEKEND 1ST SHIFT IN 375 37
WEEKEND 3RD SHIFT IN 5750 5750
GROSS EARNINGS 247378 6666.20 | TOTAL DEDUCTIONS 648.15 1691.13
FEDERAL TAXABLE GROSS 2290.06 5152.89 | NETPAY $1.825.60 $4,975.07
TOTAL HOURS 74.50 TSATRANSAMERICAICOM i 100.00
BEGIN BALANCE HRS EARNED HRS USED CUR HRS USED YTD ENDING BALANCE | ACCT AMT|ACCT AMT
Disability 82.70 1.7300 0.00 0.00 84.43 [CHK Xxx589581,825.60
Paid Leave 4152 6.8800 0.00 56.00 48.40

Fig. 8: Sample pay stub
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Types of changes induced by the custom model

New errors
1.0%

Neutral changes
14.0%

Other fixes
22.0%

Fixed by regular expressions
63.0%

Fig.9: Changes induced by the custom pay stub model

3.5 Retalil price tags

The price tags data The next data set contains real images of price tags
attached to items in a store. The vocabulary for this data is somewhat limited,
containing a lot of brand names and a number of common phrases (“for a lim-
ited time only”). There are also many elements of the images well described by
regular expressions, like monetary amounts or quantities (32 0z.”). The data
set contains 101 images with 385 annotated lines.

Price tags results The price tag task is different from the previous ones in
several respects.

— The vocabulary covers essentially the whole document.

— Regular expressions are an important part of the vocabulary.

— Because of the small data set size, the training text for vocabulary statistics
is the same as the test set text.

Because of the last item, the results are optimistic, but are suggestive of
results one could obtain in the field.

The vocabulary included a few hand selected regular expressions; future work
may allow us to generate them automatically from sample text, as we do the
literal word lists. They are:

—\$ \d+
— \d+\.\d
— \d+ ?(CT | LB | OZ | EA | ML | MG)

Table[7] shows the results. We see that almost all the changes are corrections.
This table also shows the effects of the dual criterion beam search. The two beam
search columns use the same custom vocabulary language model, but the first
uses the baseline single criterion beam search, and the second the dual criterion
beam search.



16 P. Garst et al.

WER in ratio
Baseline|Single Beam Search|Dual Beam Search W
15.16 10.93 10.45 24.5

Table 7: Recognition results on price tags

4 Conclusions

We observed that in a variety of data sets from different domains, language
models incorporating custom domain specific vocabularies may be leveraged to
substantially improve the accuracy of optical character recognition models. The
language models support both literal words and regular expressions, and have a
number of configuration options which enhance flexibility.

We introduced algorithms which permit these custom models to be automat-
ically derived from a body of text in the target domain. Users may also partially
or completely design their own models in special cases, for example if there is a
list of key words which the user is particularly concerned to recognize correctly.

We also introduced a modified CTC decoder to support these models which
in effect provides in-vocabulary lookahead in order to use information about
partially completed as well as complete words to improve accuracy.

The models discussed here introduce no significant overhead to the recogni-
tion process, and they may be added to an OCR, service at run time with low
latency.

Future work will aim to further improve the algorithms for combining the
models. It would also be useful to better address low information situations, in
effect adapting to specialized input streams rather than designing a model based
on prior knowledge about a domain.
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