
ar
X

iv
:2

30
6.

15
57

2v
1

 [
cs

.S
C

]
 2

7
Ju

n
20

23

Generating Elementary Integrable Expressions

Rashid Barket1[0000−0002−9104−4281], Matthew England1[0000−0001−5729−3420],
and Jürgen Gerhard2

1 Coventry University, Coventry, United Kingdom
{barketr,matthew.england}@coventry.ac.uk

2 Maplesoft, Waterloo, Canada
jgerhard@maplesoft.com

Abstract. There has been an increasing number of applications of ma-
chine learning to the field of Computer Algebra in recent years, including
to the prominent sub-field of Symbolic Integration. However, machine
learning models require an abundance of data for them to be successful
and there exist few benchmarks on the scale required. While methods to
generate new data already exist, they are flawed in several ways which
may lead to bias in machine learning models trained upon them. In this
paper, we describe how to use the Risch Algorithm for symbolic integra-
tion to create a dataset of elementary integrable expressions. Further, we
show that data generated this way alleviates some of the flaws found in
earlier methods.

Keywords: Computer Algebra · Symbolic Integration · Machine Learn-
ing · Data Generation.

1 Introduction

1.1 Machine Learning and Computer Algebra

A key feature of a Computer Algebra System (CAS) is its exactness: when
prompted for a calculation, a CAS is expected to return the exact answer (or no
answer if the calculation is not feasible), as opposed to an approximation to an
answer. Due to this restraint, it seems as though Machine Learning (ML) and
Computer Algebra do not work well together due to the probabilistic nature of
ML: no matter how well-trained an ML model is, it can never guarantee perfect
predictions. However, rather than trying to use ML to predict a calculation in
place of a CAS, we can instead use ML in conjunction with a CAS to help op-
timize and/or select the symbolic computation algorithms implemented within.
Such a combination of ML and symbolic computation preserves the unique sell-
ing point of a CAS. The earliest examples of such ML for CAS optimisation
known to the authors are: Hunag et al. [3] which used a support vector ma-
chine to choose the variable ordering for cylindrical algebraic decomposition;
and Kuipers et al. [5] which used a Monte-Carlo tree search to find the repre-
sentation of polynomials that are most efficient to evaluate.

http://arxiv.org/abs/2306.15572v1

2 Barket et al.

1.2 Symbolic Integration Meta-Algorithms

Our interest is the integrate function of a CAS, which takes an integrand and
produces an integral (either definite or indefinite). In most CASs, and certainly in
Maple where the authors focus their work, the integrate function is essentially a
meta-algorithm: it accepts a mathematical expression as an input, does some pre-
processing on the expression, and then passes the processed problem to one of a
selection of available sub-algorithms. In Maple, the function will try a list of such
sub-algorithms in turn until one is found that can integrate the expression, in
some cases first querying a guard as to whether that sub-algorithm is applicable
to the input in question. If none of these methods work, the function simply
returns the input back as an unevaluated integral (implying that Maple cannot
integrate it).

Currently, as of Maple 2023, these sub-algorithms for int are tried in the
same pre-set order for every input, and outputs the answer of the first sub-
algorithm that works. There are currently 11 sub-algorithms to choose from.
The list of sub-algorithms is available on the Maple help page3 for the function.

The first use of ML is to improve the integrate function’s efficiency. A similar
approach was taken by Simpson et al. [9] for the resultant function (see Defi-
nition 3 later). After applying a neural network to classify which algorithm (of
four possible choices) to use, the authors test their model on a random sample
of several thousand inputs. Maple’s existing meta-algorithm took 37,783 seconds
to finish its computations, whereas the sub-algorithm choices from neural net-
work took only 12,097 seconds-a significant improvement with a 68% decrease
in runtime. There were also gains against Mathematica with a 49% decrease in
runtime. We hope to achieve similar results with the integrate function.

The second motivation to use ML is in optimizing the output. To gain a better
understanding of this, consider what happens in Figure 1 when you integrate the
function f(x) = x sin(x) in Maple and ask it to try all possible sub-algorithms.
When f(x) is integrated, there are three successful outputs that come from
three different sub-algorithms. Each output is expressed differently but are all
mathematically correct and equivalent. We wish to choose the simplest output,
which in this case is

∫

f(x) = sin(x) − x cos(x).

1.3 Motivation

The goal of the data generation method described in this paper is to be able
to produce many integrable expressions to train a ML model on. There is not
enough benchmark/real-world data to train a model on, hence why these data
generation methods are needed. There does currently exists data generation
methods. Lample & Charton [6] produce three methods for developing integrable
expressions: FWD, BWD, and IBP (described in detail in Section 2.1). These
methods have drawbacks which the data generation method we propose will
handle.

3 www.maplesoft.com/support/help/maple/view.aspx?path=int%2fmethods+

www.maplesoft.com/support/help/maple/view.aspx?path=int%2fmethods+

Generating Elementary Integrable Expressions 3

Fig. 1: The output of
∫

x sin(x) from each successful sub-algorithm. The main
output chosen in this case is the shortest expression chosen by an ML model,
from sub-algorithm 2.

The FWD method, which generates a random expression and calculates its
integral, tends to produce short integrands and long integrals. Furthermore, the
FWD method will typically not have an elementary integral. This is especially
evident for longer randomly generated expressions and/or expressions with de-
nominators. This means the FWD method will take numerous attempts before
finding a valid (integrand, integral) pair. The BWD method, which generates an
expression and calculates its derivative, has the opposite problem of long inte-
grands and short integrals. The IBP, or integration by parts method, produces
expressions that are too similar (meaning that the expressions only differ by
their coefficients) which is discussed in Section 2.1. Hence, a dataset of (inte-
grand, integral) pairs is needed for this method to work.

We propose generating (integrand, integral) pairs based on the Risch Algo-
rithm. For one, the method will always produce an elementary integrable ex-
pression, something FWD cannot guarantee. This data generation method also
does not have the issue of varied lengths between the integrands and integrals
because of various parameters available from the data generation method, allevi-
ating the length issues in the FWD and BWD methods. Lastly, this method does
not require a dataset of known integrals and also does not produce expressions
too similar to the rest of the dataset, which IBP suffers from. Data generation
based on the Risch algorithm produces a variety of non-trivial, unique expres-
sions that current data generation methods do not offer. Further discussion of
current methods and the new method presented are discussed in Sections 2.1
and 5.

1.4 Contributions and Plan

This paper will focus on how to generate sufficient data to make our planned
application of ML. In Section 2, we overview the existing methods of data gen-
eration for the problem that we found in the literature, explaining why they are
not suitable alone for our needs. Then in Section 3, we review the classical Risch
algorithm which will be the basis of our new data generation method introduced
in Section 4 which identifies constructive conditions for an integrand to be ele-
mentary integrable. We finish in Section 5 with a discussion on the advantages

4 Barket et al.

of this approach over the existing methods and what future steps still need to
be undertaken.

2 Existing Datasets and Data Generation Methods

An important aspect of a successful ML model is that it is generalisable. That
is, the model should perform well on all inputs it receives and not just inputs
that look very similar to the training data. There are existing datasets and data
generation methods for symbolic integration. However, each comes with its own
sets of limitations that prevent an ML model trained on them to generalise well
on all real-world data.

2.1 Deep Learning For Symbolic Mathematics

In their paper (with the same name of this subsection), Lample and Charton [6]
experiment on using deep learning to perform the tasks of symbolic integration
and solving ordinary differential equations directly. To achieve this, they used a
seq2seq model − a neural network architecture used in natural language process-
ing for mapping sequences of tokens (usually words to another such sequence)
− in the form of a transformer4.

There are different classes of integrals that can be output based on its com-
plexity.

Definition 1 (Elementary Function). A function that is defined as the sum,
product, root, or composition of finitely many polynomial, rational, trigonomet-
ric, hyperbolic, and exponential functions (and their inverses) is considered ele-
mentary.

An expression that, when integrated, produces an elementary function is
said to be elementary integrable. Most expressions one encounters in a first-year
calculus class will be elementary integrable. An example of an expression that
is not elementary integrable is f(x) = 1

log x
. When f(x) is integrated, the result

usually produced is li(x), a non-elementary function known as the Logarithmic
Integral special function5.

The authors of [6] created a novel way of generating data to train a trans-
former. Expressions are viewed as trees, where the internal nodes are operators
or function names (+, sin, etc.), and the leaves are constants and variables as
exemplified in Figure 2. An algorithm is developed to generate trees of varying
length so that these expressions can be used for training the model. They added
structure to the trees in the form of restriction on internal nodes and leaves such
that every random tree created is a valid symbolic expression.

They treated this as a supervised learning problem, generated the following
three methods to take such symbolic expressions and produced labelled training
pairs:

4 the same model which is the basis for ChatGPT
5 https://dlmf.nist.gov/6.2

https://dlmf.nist.gov/6.2

Generating Elementary Integrable Expressions 5

– FWD: Integrate an expression f through a CAS to get F and add the pair
(f, F) to the dataset.

– BWD: Differentiate an expression f to get f ′ and add the pair (f ′, f) to the
dataset.

– IBP: Given two expressions f and g, calculate f ′ and g′. If
∫

f ′g is known
then the following holds (integration-by-parts):

∫

fg′ = fg −

∫

f ′g.

Thus we add the pair (fg′, fg −
∫

f ′g) to the dataset.

While these three methods can generate plenty of elementary integrable ex-
pressions, they come with many limitations that can cause an ML model to
overfit on the training data. For both the FWD and BWD methods, they tend
to create expressions with patterns in the length. For FWD, the integrand is
on average shorter than the resulting integral. BWD suffers from the opposite
problem: long integrands and short integrals. Individually, these cause problems
when training the transformer as the model is fitted too closely to these pat-
terns, leading to overfitting. For example, the results from Lample & Charton
show that when a model is trained on only FWD data and tested on BWD data,
it only achieves an accuracy of 17.2%, and similar results are shown for training
on BWD and testing on FWD. They of course train the model on all three data
generation methods, but it is not clear if this addresses all the overfitting or
simply encodes both sets of patterns.

Furthermore, these data generation methods suffer from producing expres-
sions that are far too similar between the training and testing data. Piotrowski
et al. [7] perform a simple analysis of substituting all coefficients with a sym-
bolic CONST token. They examine how many expressions show up in the training
set that are also the same in the testing set modulo constant and sign. For the
FWD, BWD, and IBP methods, the percentage of unique data were 35%, 75%

Fig. 2: Tree representation for 3x2 + cos(2x) − 1 and 2 + 3 × (5 + 2) from [6].
With some restrictions as to how the trees are constructed, there is a one-to-one
mapping between an expression and its tree.

6 Barket et al.

and 24%, respectively. A key principle of machine learning is that the testing
data should be independent of the training data but this casts doubt on whether
this is possible through the partition of a dataset containing such similar exam-
ples. This may be considered an example of ML “data leakage”. Data leakage is
a significant issue in machine learning. It happens when the training data we
use contains the information that the model is trying to predict. This can result
in unpredictable and poor predictions once the model is deployed.

2.2 Other Existing Datasets

Currently, there are not that many (public) benchmark datasets in the field of
symbolic integration, or indeed Computer Algebra more broadly. Maplesoft has
an in-house test suite of integrable functions that they use to ensure software
quality is maintained when making changes to int. There are 47,745 examples
in the Maple test suite. Of these, only 8,174 had elementary integrands with
elementary integrals which we currently study. We provide some information
from the remaining (integrand, integral) pairs in Table 1.

Integrand Integral

Average Number of Operands 2.59 6.52

Largest Number of Operands 16 300

Is a Polynomial 996 1221

Average Polynomial Degree 1.80 2.79

Largest Polynomial Degree 199 200

Contains Exponentials 932 1072

Contains Logarithms 756 3136

Contains Trig or Arctrig functions 2080 2512

Contains Radicals 2024 2274

Contains Complex Numbers 558 685

Table 1: A summary of the (integrand, integral) pairs in the Maple test suite
(total 8174). We only kept functions with elementary integrands which had ele-
mentary integrals

These number of examples would not be sufficient to train a deep learning
model; for reference, Lample and Charton [6] have access to 88 million examples
in Deep Learning for symbolic Mathematics. One great property about the Maple
dataset is that it was partly developed as a continuous response to feature re-
quests and bug reports that users would make when using int in Maple. Thus, it
can be said to represent the range of examples of interest to Maple users. Using
this dataset to evaluate any models trained would help provide evidence that
the model generalizes well for our planned use.

Rich et al. [8] developed a Rule-Based Integrator, more commonly known as
RUBI. RUBI integrates an expression by applying a collection of symbolic inte-
gration rules in a systematic way. Along with RUBI, the authors have compiled

Generating Elementary Integrable Expressions 7

a dataset of 72,000 integration problems. There are 9 different main categories
of functions that exist in the dataset with many examples coming from various
textbooks and papers. Similar to the Maple test suite, this dataset would be
good for evaluating a model but due to the size of the dataset, it would not be
sufficient for training a model, at least not a deep learning based model. We thus
use the rest of our paper describing a new method.

3 The Risch Algorithm

The data generation method in this paper is based on the Risch algorithm. To
explain the entire Risch algorithm would need us to introduce a lot of theory
before even getting to the algorithm explanation. Instead, we will focus on the
key parts of the algorithm to help the reader get an intuitive understanding of
how it works and refer to [2] or [4, Ch. 11, 12] for a more detailed explanation.

For the Risch algorithm to work, we allow elementary extensions over a dif-
ferential field K. A differential field is a field with the derivative operator D
such that D(a+ b) = D(a) +D(b) and D(ab) = aD(b) + bD(a). A constant c is
defined as Dc = 0. We usually write the derivative Da = a′.

Let G be an extension field of a differential field F . For an element θ ∈ G,
We say that G is an elementary extension of F if θ is one of the following:

1. logarithmic: θ = log(u), u ∈ F .
2. exponential: θ = eu, u ∈ F .
3. algebraic: ∃p ∈ F such that p(θ) = 0.

An arbitrary amount of extensions are allowed. Rather than using G to rep-
resent the extension, we instead denote Fn−1 = K(θ1, · · · , θn−1) as the previous
differential field and Fn = Fn−1(θn) as the current elementary extension. Typi-
cally, we have K = Q(x) as the base differential field.

This paper will focus solely on logarithmic and exponential extensions. We
now introduce Liouville’s theorem that states exactly what the form of the in-
tegral will be, if it exists.

Theorem 1 (Liouville’s Theorem: Thm 5.5.1 in [2]). Let K be a differen-
tial field and f ∈ K. Let E be an elementary extension of K. If

∫

f ∈ E exists,
then there are v0, · · · , vm ∈ K and constants c0, · · · , cm ∈ K such that

∫

f = v0 +

m
∑

i=0

ci log(vi)

Liouville’s Theorem gives an explicit representation for the integral of f if it
is elementary integrable. The Risch algorithm and the subsequent algorithms for
computing an integral are based on Liouville’s Theorem. The Risch algorithm
will divide the input into two different parts. Then, the integral for both parts
will take the form of Theorem 1.

8 Barket et al.

Risch Algorithm (Chapter 12 in [4]): Let Fn = Fn−1(θn) be a differential
field of characteristic 0 where θn is elementary over Fn−1, and θ′i 6= 0, 1 ≤ i ≤
n. For any rational function f = g/b with respect to θn, you can divide the
numerator with remainder g = Pb + R where degθn(R) < degθn(b), and have

f = P + R
b
. If f is elementary integrable, it follows that

∫

f =
∫

P+
∫

R
b
. We call

P the polynomial part and R
b

the rational part. We study these two parts for
the rest of the section and then develop ways to generate elementary integrable
expressions from both these parts in Section 4.

3.1 The Rational Part

Suppose we wish to integrate R
b
, R, b ∈ F = K(x)(θ1, · · · , θn). There are two

algorithms used to compute this integral: Hermite Reduction and the Trager-
Rothstein (TR) method. Which algorithm is used depends on whether the de-
nominator b is square-free or not.

Definition 2 (Square-free). We say a ∈ K[x] is square-free if a has no re-
peated factors i.e. ∄b ∈ K[x] such that deg(b) > 0 and b2|a. Equivalently,
gcd(a, a′) = 1

When our denominator is not square-free, we use Hermite Reduction.

Theorem 2 (Hermite Reduction: Thm 5.3.1 in [2]). Suppose we want to
integrate

∫

R
b
, where R,b ∈ F [θ] and degθ(R) < degθ(b). Use the square-free

factorization b = b1b
2
2 · · · b

k
k where bi is square-free. Let T = b/bkk. Let σ and τ

be the solutions to the diophantine equation

σb′kT + τbk = R.

Then Hermite reduction tells us that
∫

R

b
=

−σ(k − 1)

bk−1
k

+

∫

τ + σ′

k−1T
b
bk

.

The main part to notice is that the resulting integral on the right hand
side of the equation has a denominator that is at least one degree less than
the input denominator (because we divide b with its highest degree factor bk).
This algorithm is used recursively until the resulting integral’s denominator has
degree one, allowing us to conclude that it is square-free. When this point is
reached then the TR-method is used on the remaining integral. This method
makes use of the following tool from computational algebra.

Definition 3 (Resultant). Suppose we have the following two polynomials with
roots αi and βj , αm 6= 0 6= βn:

A = a0 + · · · amxm = am

m
∏

i=1

(x− αi)

B = b0 + · · · bnx
n = bn

n
∏

j=1

(x− βj)

Generating Elementary Integrable Expressions 9

Then their resultant is defined as resx(A,B) = (−1)mnbmn anm
n
∏

j=1

m
∏

i=1

(βj − αi)

This implies that

1. res(A,B) = ±res(B,A)

2. res(A,BC) = res(A,B)res(A,C)

for all nonzero polynomials A,B,C.

Note that the resultant can be calculated without finding the roots of each
polynomial by using Sylvester’s Matrix described on page 285 of [4].

Given an integral with square free denominator
∫

R
b
, we define the Trager-

Rothstein resultant polynomial (TR-resultant) as resθ(R−zb′, b). We will forego
the details of the rest of the algorithm and focus on a key theorem involving the
TR-resultant polynomial.

Theorem 3 (Thm 12.7 in [4]). Suppose we are integrating
∫ R(x)

b(x) , where

R(x), b(x) ∈ F [x] and b(x) is square-free. Then we have that
∫

R(x)
b(x) is elemen-

tary integrable if and only if all the roots in z of the TR-resultant are constants.

Theorem 3 is the key theorem that tells us whether a rational expression will
be elementary integrable or not, either in application to itself if the denominator
is square free, or in application to the final integral from Hermite reduction if
not. This theorem will also be the key theorem to create the data generation
method for rational expressions.

3.2 The Polynomial Part

Suppose we are integrating P , a polynomial in F [θ]. We again only focus on
logarithmic and exponential extensions from our field. There are two different
procedures to integrate P based on if the extension is logarithmic or exponential.

Logarithmic extension: Let P = p0+p1θ+· · ·+plθ
m where θ = log(u), u, pi ∈

Fn−1. It can then be shown that

∫

p0 + · · ·+ pmθm = q0 + · · ·+ qm+1θ
m+1 +

k
∑

i=1

ci log(vi), (1)

where qm+1 ∈ K, qi ∈ Fn−1(1 ≤ i ≤ m), cj ∈ K, vj ∈ Fn−1(1 ≤ j ≤ k). The
idea behind integrating P is to differentiate Equation (1) and then equate the
coefficients of like powers of θ to solve for each qi. The details of this can be
found in [4, page 540].

10 Barket et al.

Exponential extension: The exponential case is similar to the logarithmic
case, however a couple of adjustments need to be made. The first adjustment is
that polynomial exponents are allowed to be negative for exponential extensions.
Thus, P = p−lθ

−l + · · ·+ p0 + · · ·+ pmθm and Equation (1) becomes:

∫

p−lθ
−l+· · ·+p0+· · ·+pmθm = q−lθ

−l+· · ·+q0+· · ·+qmθm+
k
∑

i=1

ci log(vi). (2)

Note that in Equation (2), the answer has a highest degree of m instead of
m+ 1. The steps for equating like powers of θ differ between Equation (1) and
(2), and we will see an example of this difference soon in Section 4.1.

4 Data Generation based on the Risch Algorithm

In order to generate elementary integrable expressions, we will do what the Risch
algorithm does as an initial step: generate polynomial expressions and rational
expressions separately. Polynomial expressions and rational expressions can then
be combined together through the additive property of integrals. We first focus
our attention on the simpler case: the polynomial part. Then, we will show how
to generate rational expressions.

4.1 Polynomial Integrable Expressions

Generating polynomial expressions (in θ) that are elementary integrable requires
choosing the coefficients qi from Equation (1) or (2) ourselves. We differentiate
the equation and equate coefficients of like powers of θ, resulting in a system of
differential equations. The randomly chosen qi’s are substituted into this system
to generate the integrable expression.

It turns out that this is no better than just using the BWD method, i.e., we
select a random polynomial in θ with random coefficients in Fn−1 and take its
derivative. This is not as general as it could be; one would also have to generate a
random integrable expression in the smaller field Fn−1. For the sake of simplicity,
we omit this step here, which could be done recursively or by using the BWD
method. We provide a small example of the BWD method for polynomials in θ
to show how the data is generated.

Example 1. Suppose we want to generate a degree 2 polynomial in Q(x)[θ] where
θ = ln(1

x
). The coefficients in θ must be in the previous field Q(x). For simplic-

ity, the logarithms in Equation (1) are omitted. The following coefficients are
generated randomly:

– q0 = −7 + 8x+ 2
x

– q1 = −5 + 4x− 6
x

– q2 = 1 + 2x

Generating Elementary Integrable Expressions 11

which results in the polynomial

P = (1 + 2x) ln

(

1

x

)2

+

(

−5 + 4x−
6

x

)

ln

(

1

x

)

− 7 + 8x+
2

x
.

When differentiated, we get

P ′ = 2 ln

(

1

x

)2

+

(

−
2 (1 + 2x)

x
+ 4 +

6

x2

)

ln

(

1

x

)

−
−5 + 4x− 6

x

x
+ 8−

2

x2

and the pair (P ′, P) is added to our dataset.

4.2 Rational Integrable Expressions

As we will see in a moment, generating rational integrable expressions is more
complex than the polynomial case. We will introduce some strategies to generate
integrable expressions with square-free denominators (using the TR-method) as
well as non square-free denominators (using a combination of Hermite reduction
and the TR-method). Note that most of the examples shown here will be using
the extension θ = log(u) as this is the harder case to solve. However, extensions
with θ = eu will also appear in the dataset produced.

Square-Free Denominators: In the normal use of the TR-method, the input
is a rational elementary function R

b
such that degθ(R) < degθ(b) and b is square-

free. The method then outputs the elementary integral of R
b
, or fails if Theorem 3

does not hold. Our goal is to discover polynomials R, b ∈ F [θ] such that R
b

is
guaranteed to be elementary integrable. The main idea behind the process is to
fulfill the conditions of Theorem 3 so that we know for sure that the expression
is elementary integrable. To accomplish this, the general outline is as follows.

1. Randomly generate the denominator b in its square-free factorization, and
keep that fixed.

2. Create a partial fraction decomposition where the denominators are all fac-
tors of b, and the numerators are polynomials in θ of degree 1 less than the
denominator, with symbolic coefficients.

3. Compute the TR-resultant.
4. The symbolic coefficients of R must be chosen in a way that ensures the

roots of the resultant are constant.

(a) If the resultant only has factors of degree 2 or less, solve directly for the
roots and set each root equal to a constant.

(b) Otherwise, the resultant has irreducible factors of degree 3 or higher. Di-
vide the resultant by the leading coefficient to make it monic. Then, the
symbolic coefficients must be chosen in such a way that each coefficient
of this is constant.

12 Barket et al.

We first put our input into partial fraction form with symbolic coefficients
because when the resultant is calculated, the TR-resultant factors in a way
similar to how b factors (See Definition 3). We can see this with the following
example.

Example 2. Let b = θ4 − 2θ2 − 2θ3 − 2θ− 3 where θ = log(x), F = Q(x)(log(x))
and we have only done a single extension so n = 1. We wish to discover a class
of numerators R so that R

b
integrates.

– Note that b factors into b = (θ + 1)(θ − 3)(θ2 + 1).
– We create the partial fraction representation of our input:

a(x)
θ+1 + b(x)

θ−3 + c(x)θ+d(x)
θ2+1 ,

where a, b, c, d ∈ Fn−1 = Q(x).
– The factored form of the TR-resultant of R

b
is

−(a(x)x− z)(b(x)x− z)(c(x)2x2 − 4c(x)xz+ d(x)2x− 2d(x)xz+ xz2 +4z2).

– Recall that by Theorem 3, we need the roots of the resultant to be constant.
Setting each factor of the resultant equal to a constant and solving for the
symbolic coefficients, we get that a(x) = C1

x
, b(x) = C2

x
, c(x) = C3

x
, and

d(x) = C4

x
for any C1, C2, C3, C4 ∈ Q.

– Therefore, R
b
= C1

x(θ+1) +
C2

x(θ−3) +
C3θ+C4

x(θ2+1) is elementary integrable for any

choice of those constants. We find that:

∫

R

b
=

C3 log
(

log(x)
2
+ 1

)

2
+ C4 arctan(log(x))

+ C1 log(log(x) + 1) + C2 log(log(x)− 3) .

In Example 2, take note that the factored form of the resultant is similar to
the factored form of the denominator b: that is, the degree in z of each factor
of the resultant is the same as the degree in θ of each factor of b. As well, each
symbolic coefficient in the numerator of each partial fraction were also the same
unknowns that show up in each factor of the resultant.

Example 2 only had linear and quadratic irreducible factors. These are quite
easy to solve by just isolating the unknown or using the quadratic formula. In
general, degree 3 and higher irreducible factors in the resultant will be much
harder to solve. Trying to solve for the roots of an irreducible degree 3 resultant
means using the Cardano formula, which produces huge answers for the root.
We find that when trying to equate any of the roots to a constant and solving
for the conditions of R like in Example 2, the expression size blows up and the
solution starts to involve many radicals. Since radicals do not lie within our field,
the symbolic coefficients then need to be chosen in a way such that the radicals
disappear which adds an extra layer of complexity. The formulae size is even
worse in degree 4 and then there is not even any such formula in surds for higher
degree. So instead when the resultant has factors of degree higher than two, we
look at two alternative options: assume the numerator to be of a specific form or
analyse the resultant qualitatively to figure out the conditions of the numerator.
We show the former with the following example.

Generating Elementary Integrable Expressions 13

Example 3. Suppose θ = ln(x), F = Q(x)(ln(x)) and b = x(θ3 − x). Note that
b is square-free in F . The first step is to create a partial fraction decomposition
with denominator b and symbolic coefficients for the numerator. Let

R

b
=

a(x)θ2 + b(x)θ + c(x)

x(θ3 − x)
.

The TR-resultant is computed as

(

−x3 − 27x2
)

z3 +
(

27x2a(x) + 9x2b(x) + 3x2c(x)
)

z2

+
(

−9x2a(x)
2
− 3x2a(x) b(x)− 9xb(x) c(x)− 3xc(x)

2
)

z

+ a(x)3 x2 + 3a(x) b(x) c(x) x− b(x)3 x+ c(x)3 .

Finding the solution to the roots explicitly produces huge expressions for
a(x), b(x) and c(x) and involve radicals outside our field. Instead, we assume the
form of the symbolic coefficients to find a set of solutions. We will assume they
are quadratic polynomials (an arbitrary choice). Let

• a(x) = a2x
2 + a1x+ a0,

• b(x) = b2x
2 + b1x+ b0,

• c(x) = c2x
2 + c1x+ c0,

for ai, bi, ci ∈ Q, 0 ≤ i ≤ 2. Since the resultant is cubic in z, it will have three
roots. First, substitute the assumed form of the three coefficients into the resul-
tant. Note the leading coefficient of the resultant is (−x3 − 27x2). Then, let our
resultant be equal to

(−x3 − 27x2)(z − r0)(z − r1)(z − r2), r1, r2, r3 ∈ Q.

Consider the equation formed by setting the TR-resultant computed earlier equal
to the form just above. Let us move the terms to one side so we have an expression
equal to 0. We may now solve for each coefficient of z to be 0 giving the following
solution

{a0 = 3c1 , a1 = 0, a2 = 0, b0 = 0, b1 = 0, b2 = 0,

c0 = 0, c1 = c1 , c2 = 0, r1 = c1 , r2 = c1 , r3 = c1}.

This can now be substituted into R to produce

∫

R
b
=

∫ 3c1 ln(x)2+c1x

x(ln(x)3+x
= c1 ln

(

ln(x)
3
+ x

)

.

In Example 3, we assumed a particular form for the symbolic coefficients
to find a solution. This is a quick way to find a set of solutions, however this
does not mean we have found all the solutions like with the linear and quadratic
cases. Instead, we should try to fulfill the conditions of 4(b). That is, the symbolic
coefficients are chosen in a way such that all of the coefficients of the TR-resultant
are constant. To see why this is true, we give an informal proof.

14 Barket et al.

Let the TR-resultant be f ∈ K[z]. We can assume f is monic because if it
were not, we will divide out the leading coefficient from the resultant to make f
monic. Let F be the algebraic closure of K(x), so that f ∈ F [z]. Factor f over
F to get f =

∏

i(z − ai), ai ∈ F . Each ai is a root of f . If we want the roots ai
to be constant, they should belong to the algebraic closure K̄. In that case, the
coefficients of f should also belong to K̄ because they are the polynomials of
ai, and they belong to K[x] because of how we defined f . Thus, they belong to
K̄ ∩K[x] which is K. Therefore, f must have constant coefficients for the roots
to be constant.

Non Square-Free Denominators: When computing the elementary integral
of a rational function R

b
, the first step is to check whether b is square free or not.

Similarly, what technique used to generate an elementary integrable expression
depends on whether the fixed denominator b starts as square-free or not. Let us
now assume b is not square-free, so the TR-method cannot be used currently.
We first set up the problem just as with the square-free case: put b in partial
fraction form and set symbolic coefficients for each partial fraction. The differ-
ence is that before, we would invoke the TR-method. However, b is not square
free yet. Thus, we use Theorem 2, Hermite Reduction, recursively until we get
a resulting integral whose denominator is square-free. Then, we use Theorem
3 just as before to find the conditions on R that make the whole expression
R
b

elementary integrable. The main benefit of non square-free denominators is
that there will be more choices of freedom in choosing the symbolic coefficients
compared to the square-free case. This is shown with the example below.

Example 4. Let θ = log(x) and F = Q(x)(log(x)). Let

b = θ3 + 2xθ2 + x2θ + θ2 + 2xθ + x2.

We wish to find all R ∈ F such that R
b

is elementary integrable. As with Theorem
2, we first compute the square-free factorization of b to find b = (θ+ 1)(θ+ x)2.
The partial fraction representation in this case will be

R
b
= a(x)

(θ+1) +
b(x)
(θ+x) +

c(x)
(θ+x)2

and we wish to find a, b, c ∈ Fn−1 that makes the entire expression elementary
integrable. Since b is not square-free, one iteration of Hermite Reduction is done
to produce:

∫

R

b
= −

c(x) x

(1 + x) (θ + x)

+

∫

(a(x) + b(x)) θ + a(x)x+ b(x) +

(

(d

dx
c(x))x
1+x

+ c(x)
1+x

− c(x)x

(1+x)2

)

(θ + 1)

(θ + 1) (θ + x)
.

Let us focus on the resulting integral: the denominator is (θ+1)(θ+x) which
is now square-free. Thus, Hermite Reduction is no longer needed and instead,

Generating Elementary Integrable Expressions 15

the TR-method is used on it. When the resultant is calculated and the roots
of the TR-resultant are solved for (so that Theorem 3 is true), we get that the
distinct roots are:

{

xa(x) ,
x((d

dx
c(x))x2+b(x)x2+(d

dx
c(x))x+2b(x)x+b(x)+c(x))

x3+3x2+3x+1 .

}

Setting the first root to a constant is trivial to solve: a(x) = C1

x
, C1 ∈ Q. The

second root condition contains the unknowns b(x) and c(x). This can also be set
equal to a constant and then solved for b(x) obtaining

b(x) =
−(d

dx
c(x))x2

−c(x)x+C2

x
, C2 ∈ Q.

This means c(x) can be any function from Fn−1. Let us demonstrate this by
trying some values that are arbitrarily chosen:

• C1 = 2 =⇒ a(x) = 2
x

• C2 = 4 and c(x) = x2 + 1
5x =⇒ b(x) = −10x4+5x3+60x2+61x+20

5x(1+x)2

• R
b
= 2

x(ln(x)+1) +
−10x4+5x3+60x2+61x+20

5x(1+x)2(ln(x)+x)
+

x2+ 1

5x

(ln(x)+x)2

• Then when we integrate R
b
, we get:

∫

R
b
= − 5x3+1

5(1+x)(ln(x)+x) + 2 ln(ln(x) + 1) + 4 ln(ln(x) + x)

Example 4 gives us a much stronger freedom of choice because unlike with the
square-free case, we actually get that our coefficient c(x) can be any function in
Fn−1. This effectively means that we have three choices of freedom: one for a(x)
(the choice of the constant C1), one for b(x) (the choice of C2), and one for c(x)
(any expression in the previous field). In contrast, the only choices of freedom
we had in the square-free case were the constants. Additionally, Example 4 had
one functional degree of freedom c(x) since one factor from the denominator b
was quadratic. In general, we will have more functional degrees of freedom for
higher degree factors in the denominator.

5 Discussion

The Risch algorithm is an integral part of any CAS (pun intended). This data
generation method discusses how to create expressions that are guaranteed to be
elementary integrable by using the Risch algorithm. To understand the benefit
of this data generation method, we create a simple dataset of 10,000 (integrand,
integral) pairs. To compare against our dataset, we take a sample of 10,000
data points from each of the FWD, BWD, and IBP datasets. Of the 10,000 we
created, a third comes from generating polynomial expressions in Section 4.1,
another third comes from generating rational expressions from Section 4.2, and
the final third comes from combining the two sections together (similar to how
the Risch algorithm separates the two parts from each other).

16 Barket et al.

5.1 Risch Data Generation Benefits

One criticism of the data generation method in [6] was that there were pat-
terns within how the expressions are made, specifically in the FWD and BWD
datasets. Recall from Section 2, the BWD method produced long integrands and
short integrals whereas the FWD had the opposite problem. We take a closer
look by examining the lengths of the integrands and integrals in their testing
datasets. Note that the authors represent the mathematical expression in prefix
(or normal Polish) notation. The length is then just the number of tokens from
this representation. The lengths of the (integrand, integral) pairs are shown for
all three data methods in Figure 3.

(a) FWD (b) BWD

(c) IBP (d) Risch

Fig. 3: Lengths of the Integrands and Integrals from the three test datasets in
[6] as well as our generated dataset.

Based on Figure 3, we can see quite the difference in lengths from the FWD
and BWD methods. Suppose we consider an (integrand, integral) pair close in
length if the absolute value between the length of the integrand and integral
is less than 10. For the FWD and BWD methods, only 29% and 9% of pairs
were considered close respectively. The IBP and Risch methods do considerably
better at generating close pairs with 65% and 86% of pairs being considered close

Generating Elementary Integrable Expressions 17

respectively. As mentioned earlier in Section 2, the presence of these patterns
mean that there is a risk of bias in an ML model trained on such data. Recall
also from Section 2 how much of the data only differed by the choice of constants
in the expression, making IBP a weaker generation method.

However, because of the choices of freedom we have in making our integrable
expressions from the Risch algorithm, we can alleviate the two problems shown.
This is true for both the polynomial expressions, the rational expressions, and
a combination of the two. The only patterns present in our dataset are those
required for the expression to be elementary integrable.

With the dataset generated, Figure 3d shows the lengths of the produced (in-
tegrand, integral) pairs through the Risch algorithm in prefix notation. Figure
3d shows that the lengths between the integrands and integrals are much more
evenly distributed, fixing the problem of the FWD and BWD datasets. Recall
that the FWD method is also not able to generate (integrand, integral pairs)
often, leading to a slow data generation method. Our method guarantees inte-
grands that are elementary integrable 100% of the time, making it more efficient.
Furthermore, we do the same analysis of examining the dataset by substituting
the integer coefficients with a CONST token, and find that 97% of the data re-
mains unique. The reason it did not reach 100% is due to data generated in
Section 4.2, the rational square-free case. The choices of freedom in this case is
usually only the choice of the constant. Some randomly generated denominators
happened to be the same through chance and since the solutions only differ by
a constant, they end up being the same when replaced with a CONST token. If
wanted, these can be removed from the dataset.

5.2 Future Work

We have presented a novel method of creating elementary integrable functions.
However, there is much work that could still be done. Bronstein [2], when
first introducing the Risch algorithm, separates the algorithm into four differ-
ent cases: logarithmic transcendental, exponential transcendental, pure algebraic
and mixed algebraic / transcendental cases. So far, we have only explored the
first two cases. It would be beneficial to understand the latter two cases as radi-
cals are something that should not be excluded from the dataset. To understand
the latter two cases, one can read [1] or [10]. As with the present paper, the idea
would be to find the conditions in the polynomial and rational cases that make
the entire expression elementary integrable.

Furthermore, the current data generation method proposed can be further
explored in a number of ways. For one, towers of extensions (i.e. Fn, n ≥ 2)
have only been considered for polynomial expressions thus far. This can also be
done with the rational expression generation method to create a greater variety
of elementary integrable expressions. Also, working with irreducible cubic and
higher degree polynomials (in θ) for the rational case should further be examined.
We have shown that when we assume the form of the numerator (Example 3), we
can find solutions. However, it would be desirable to find all possible numerators
that make the entire expression integrable. The key to this would be examining

18 Barket et al.

the TR-resultant and instead of explicitly solving for the roots, qualitatively
analysing the resultant and figuring out the conditions of the generic coefficients
would help overcome the computational cost of explicitly solving for the solution
as discussed at the end of Section 4.2.

Acknowledgements: The authors would like to thank James Davenport and
Gregory Sankaran for helpful discussion on conditions around constant roots of
polynomials. They would also like to thank John May for help understanding
Maple’s integration command and testing data and the anonymous reviewers for
their comments which improved the paper.

Matthew England is supported by EPSRC Project EP/T015748/1, Push-
ing Back the Doubly-Exponential Wall of Cylindrical Algebraic Decomposition
(DEWCAD). Rashid Barket is supported on a scholarship provided by Maple-
soft and Coventry University.

References

1. Bronstein, M.: Integration of elementary functions. Journal of Symbolic Compu-
tation 9(2), 117–173 (1990). https://doi.org/10.1016/S0747-7171(08)80027-2

2. Bronstein, M.: Symbolic integration I: Transcendental Functions, Algorithms and
Computation in Mathematics, vol. 1. Springer Science & Business Media (2005).
https://doi.org/10.1007/978-3-662-03386-9

3. Huang, Z., England, M., Wilson, D., Davenport, J.H., Paulson, L.C., Bridge,
J.: Applying machine learning to the problem of choosing a heuristic to se-
lect the variable ordering for cylindrical algebraic decomposition. In: Intelligent
Computer Mathematics. pp. 92–107. Springer International Publishing (2014).
https://doi.org/10.1007/978-3-319-08434-3_8

4. K. O. Geddes, S. R. Czapor, G.L.: Algorithms for Computer Algebra. Springer
New York, NY (1992). https://doi.org/10.1007/b102438

5. Kuipers, J., Ueda, T., Vermaseren, J.: Code optimization in
FORM. Computer Physics Communications 189, 1–19 (2015).
https://doi.org/10.1016/j.cpc.2014.08.008

6. Lample, G., Charton, F.: Deep learning for symbolic mathematics. In:
Proc. International Conference on Learning Representations (ICLR) (2020).
https://doi.org/10.48550/arxiv.1912.01412

7. Piotrowski, B., Urban, J., Brown, C.E., Kaliszyk, C.: Can neural networks learn
symbolic rewriting? In: Proc. Artificial Intelligence and Theorem Proving (AITP)
(2019). https://doi.org/10.48550/arXiv.1911.04873

8. Rich, A., Scheibe, P., Abbasi, N.: Rule-based integration: An extensive system of
symbolic integration rules. Journal of Open Source Software 3(32), 1073 (2018).
https://doi.org/10.21105/joss.01073

9. Simpson, M.C., Yi, Q., Kalita, J.: Automatic algorithm selection in compu-
tational software using machine learning. In: 15th IEEE International Con-
ference on Machine Learning and Applications (ICMLA). pp. 355–360 (2016).
https://doi.org/10.1109/ICMLA.2016.0064

10. Trager, B.M.: Integration of algebraic functions. Ph.D. thesis, Massachusetts In-
stitute of Technology (1984), https://dspace.mit.edu/handle/1721.1/15391

https://doi.org/10.1016/S0747-7171(08)80027-2
https://doi.org/10.1016/S0747-7171(08)80027-2
https://doi.org/10.1007/978-3-662-03386-9
https://doi.org/10.1007/978-3-662-03386-9
https://doi.org/10.1007/978-3-319-08434-3_8
https://doi.org/10.1007/978-3-319-08434-3_8
https://doi.org/10.1007/b102438
https://doi.org/10.1007/b102438
https://doi.org/10.1016/j.cpc.2014.08.008
https://doi.org/10.1016/j.cpc.2014.08.008
https://doi.org/10.48550/arxiv.1912.01412
https://doi.org/10.48550/arxiv.1912.01412
https://doi.org/10.48550/arXiv.1911.04873
https://doi.org/10.48550/arXiv.1911.04873
https://doi.org/10.21105/joss.01073
https://doi.org/10.21105/joss.01073
https://doi.org/10.1109/ICMLA.2016.0064
https://doi.org/10.1109/ICMLA.2016.0064
https://dspace.mit.edu/handle/1721.1/15391

	Generating Elementary Integrable Expressions

