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Abstract. Visual information extraction (VIE), which aims to simul-
taneously perform OCR and information extraction in a unified frame-
work, has drawn increasing attention due to its essential role in various
applications like understanding receipts, goods, and traffic signs. How-
ever, as existing benchmark datasets for VIE mainly consist of document
images without the adequate diversity of layout structures, background
disturbs, and entity categories, they cannot fully reveal the challenges of
real-world applications. In this paper, we propose a large-scale dataset
consisting of camera images for VIE, which contains not only the larger
variance of layout, backgrounds, and fonts but also much more types of
entities. Besides, we propose a novel framework for end-to-end VIE that
combines the stages of OCR and information extraction in an end-to-end
learning fashion. Different from the previous end-to-end approaches that
directly adopt OCR features as the input of an information extraction
module, we propose to use contrastive learning to narrow the semantic
gap caused by the difference between the tasks of OCR and information
extraction. We evaluate the existing end-to-end methods for VIE on the
proposed dataset and observe that the performance of these methods has
a distinguishable drop from SROIE (a widely used English dataset) to
our proposed dataset due to the larger variance of layout and entities.
These results demonstrate our dataset is more practical for promoting
advanced VIE algorithms. In addition, experiments demonstrate that
the proposed VIE method consistently achieves the obvious performance
gains on the proposed and SROIE datasets. The code and dataset will
be available at https://github.com/jfkuang/CFAM.
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· Document Semantics Extraction.
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Fig. 1. The overview of the existing framework and our framework. The existing frame-
work directly adopts OCR features as the input of an information module, while our
framework additionally proposes a contrast-guided feature adjustment module to the
existing framework.

Table 1. Statistics of the representative VIE datasets and our proposed dataset.

Dataset Year
Number of images Number

of entities
Number

of instance
Language Scene Type

Train Test Total

SROIE [7] ICDAR2019 626 347 973 4 52,316 EN Receipt
EPHOIE [30] AAAI2021 1,183 311 1,494 10 15,771 CN Examination Paper
POIE (Ours) - 2,250 750 3,000 21 111,155 EN Product

1 Introduction

Visual Information Extraction (VIE), automatically extracting structured infor-
mation from visually-rich document images, is an essential step towards docu-
ment intelligence [42,31,9]. It involves extracting values of entities from images
and reasoning about their relations, which is a challenging cross-domain problem
that requires both visual and textual understanding, such as table comprehen-
sion and document analysis [10,32,39,29]. This task becomes more difficult in
real-world scenarios where diverse layouts, noisy backgrounds, and large vari-
ances of entities exhibit in the wild.

Datasets play an essential role in data-driven problems. In the document
VIE area, a number of datasets [7,21,30,2], have been proposed. Specifically,
SROIE [7] is the most widely used dataset, in which the images are scanned
receipts printed in English. EPHOIE [30] is collected for Chinese document VIE,
which is thus unsuitable for assessing previous methods for English VIE. These
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(a)

Entities Forms of entities

CE-PS Calories per serving, 

Energy per serving,…

CAR-PS Total Carb. per serving,

Total Carbohydrate per serving,…

PRO-PS Protein per serving,

Protein per bottle,…

SO-D Sodium % Daily Value*,

Sodium %DV*,…

… …

… …

TF-D Total Fat %Daily Value*,

Total Fat %DV*,…

CE-P1 Calories per 100g,

Calories per 100ml,…

CAR-P1 Total Carb. per 100g,

Total Carbohydrate per 100ml,…

PRO-P1 Protein per 100g,

Protein per 100ml,…

(b)
Our dataset Other datasets

Fig. 2. (a) exhibits a few typical examples from our dataset and others. (b) shows
some typical entities and their different forms in our dataset. Note that the actual
entity name is very long, so we use the abbreviation of the entity name. More details
of our POIE dataset can be found at https://github.com/jfkuang/CFAM

datasets are composed of only document images with moderate scale. For more
general scenarios, like VIE in the wild, the captured images have larger variances
in layouts, backgrounds, and fonts, as well as various entities. Consequently, the
available datasets cannot fully reveal the challenges of real-world applications.

To better study VIE in the wild, we collect a large-scale challenging dataset
called Products for OCR and Information Extraction (POIE), which consists of
camera images from Nutrition Facts label of products in English. Compared with
existing VIE datasets [7,30], POIE has several distinct characteristics. First, it is
the largest VIE dataset with high-quality annotations, where 3,000 images with
111,155 text instances are collected. As indicated in Table 1, it is over 2× larger
than the previous largest public VIE dataset. Second, POIE is particularly chal-
lenging, where the images are in diverse layouts and distorted with various folds,
bends, deformations as well as perspectives. We show some typical examples in
Figure 2 (a). Third, POIE has up to 21 kinds of entities, some of which come in
numerous forms. For example, in Figure 2 (b), several forms of some entities are
given. It is quite common in the real-world applications that each entity presents
in various forms, demonstrating VIE in the wild is more difficult.

We observe that previous end-to-end approaches [40,30] achieve lower perfor-
mance on POIE, especially on the information extraction task, due to complex
layouts and variable entities. Besides, these methods directly adopt OCR fea-
tures as the input of the following information extraction module. We argue
that the reason is there is a severe semantic gap between the tasks of OCR and
information extraction while directly feeding OCR features into the following in-
formation extraction module. Recently, we have witnessed the rise of contrastive

https://github.com/jfkuang/CFAM
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learning in computer vision, which has received extensive attention in various
visual tasks [12,24,1,6,37] while has rarely been noticed in VIE tasks. In this
paper, we propose a novel end-to-end framework for VIE. We adopt contrastive
learning to effectively establish the connections between the tasks of OCR and
information extraction. Specifically, the key component of our framework is a
plug-and-play Contrast-guided Feature Adjustment Module (CFAM), as shown
in Figure 1. In CFAM, we design the feature representation for OCR and in-
formation extraction (i.e., instance features and entity features for OCR and
information extraction). As a result, CFAM constructs a similarity matrix re-
flecting the relations between entity features and instance features to adjust the
instance features more appropriately for the following information extraction
task.

In summary, the main contributions of this paper are two-fold: 1) we pro-
pose a large-scale dataset consisting of camera images with variable layouts,
backgrounds, fonts, and much more types of entities for VIE in the wild. 2) we
design a novel end-to-end framework with a plug-and-play CFAM for VIE, which
adopts contrastive learning to narrow the semantic gap caused by the difference
between the tasks of OCR and information extraction.

2 Related Works

2.1 VIE Datasets

Currently, a few datasets [7,26,21,30,2] are proposed for VIE on document im-
ages. Specifically, SROIE [7] is the most widely used dataset, which significantly
promotes the development of this field. The images of SROIE are scanned re-
ceipts in printed English. Each image is associated with complete OCR annota-
tions and the values of four key text fields. Besides, EPHOIE [30] is collected for
Chinese document VIE, where the images have complex backgrounds and diverse
text styles. The details of these datasets mentioned above are shown in Table
1. We can observe that these existing datasets are composed of only document
images with moderate scale. To better explore VIE in the wild, a large-scale
dataset with more entities and larger variances in layouts, backgrounds, and
fronts is urgently required.

2.2 VIE Methods

According to the pipeline of VIE, existing approaches [34,38,2,27,16] can be
divided into two categories: methods in two-stage and end-to-end paradigms.
Most works with a two-stage pipeline focus on the second stage for information
extraction. In these methods, the OCR results are first obtained via an individ-
ual OCR extractor. In Post-OCR parsing [8], the coordinates of text bounding
boxes are applied during the second stage. To better model the layout structure
and visual cues of documents, LayoutLM [34] employed a pre-training strategy
inspired by BERT. GraphIE [23] and PICK [38] constructed a graph according
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to the OCR results and applied Graph Neural Networks (GNNs) to extract the
global representation for further improvement. In CharGrid [11], CNN is used to
integrate semantic clues and the layout information. MatchVIE [27] noticed the
importance of modeling the relationships between entities and text instances.
However, it required additional annotations of all key-value pairs. All of these
methods concentrated on the context modeling between OCR results in the sec-
ond stage but ignored the accumulative errors from the preceding OCR module.

Recently, an increasing number of VIE methods have been proposed in an
end-to-end fashion. EATEN [3] first generated feature maps from input images
and attached several entity-aware decoders to predict all entities. However, it can
only handle documents with a fixed layout. TRIE [40] was an end-to-end train-
able framework to solve the VIE task, which focused more on the performance
of entity extraction. VIES [30] improved each part of VIE, like text detection,
recognition, and information extraction, but incurred obvious costs. Donut [13]
can directly extract information from the input images without text spotting,
while it needed massive data for pre-training. All of the above methods directly
took OCR features as the input of the following information extraction module.
Different from the previous end-to-end approaches, we propose a novel frame-
work in an end-to-end manner to establish the connections between the tasks of
OCR and information extraction.

2.3 Contrastive Learning

Contrastive learning [12], a typical way for visual representation learning, has
attracted lots of attention in many fields and obtained great progress [24,36,1].
Contrastive learning allows samples of positive pairs to lie close together in the
latent space, while samples belonging to negative pairs are repelled in the latent
space. CLIP [24] is a representative work for vision-language pre-training via
contrastive learning on image-text pairs. Since then, plenty of multi-modal con-
trastive learning methods have been proposed [22,25,41,15,28,35]. However, to
the best of our knowledge, contrastive learning has not been thoroughly studied
in the VIE field. In this paper, we propose to use contrastive learning to su-
pervise the construction of relations between the tasks of OCR and information
extraction. Different from the above approaches, where the image features and
text features are taken as inputs, only the features of text instances are fed into
the information extraction module in the VIE task. Therefore, how to represent
OCR features as well as entity features, and construct the relations between
them to narrow the semantic gap should be of great importance for end-to-end
VIE.

3 POIE Dataset

3.1 Data Collection

Products for OCR and Information Extraction (POIE) dataset derives from
camera images of various products in the real world. The images are carefully
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selected and manually annotated. Our labeling team consists of 8 experienced
labelers. We first crop the nutrition tables from product images and adopt mul-
tiple commercial OCR engines (Azure and Baidu OCR) for pre-labeling. Then
we use LabelMe ⋆ ⋆ ⋆ to manually check the annotation of the location as well
as transcription of every text box, and the values of entities for all the text in
the images and repaired the OCR errors found. After discarding low-quality and
blurred images, we obtain 3,000 images with 111,155 text instances.

3.2 Data Characteristics

To the best of our knowledge, POIE is the largest dataset with both OCR and
VIE annotations for the end-to-end VIE in the wild. The images in POIE contain
Nutrition Facts labels from various commodities in the real world, which have
larger variances in layout, severe distortion, noisy backgrounds, and more types
of entities than existing datasets. The comparison of dataset statistics is shown
in Table 1. Existing datasets mainly consist of document images with insufficient
diversities of layout, background disturbs, and entity categories. Therefore, they
cannot fully illustrate the challenges of some practical applications, like VIE on
the Nutrition Facts label. Compared with these datasets, POIE contains images
with variable appearances and styles (such as structured, semi-structured, and
unstructured styles), complex layouts, and noisy backgrounds distorted by folds,
bends, deformations, and perspectives (typical examples are shown in Figure 2
(a)). Moreover, the types of entities in POIE reach 21, and a few entities have
different forms (some typical entities with various forms are shown in Figure 2
(b)), which is very common and pretty challenging for VIE in the wild. Besides
there are often multiple words in each entity, which appears zero or once in every
image. These properties mentioned above can help enhance the robustness and
generalization of VIE models to better cope with more challenging applications.

3.3 Data Split and Evaluation Protocol

POIE is divided into training and testing sets, with 2,250 and 750 images, re-
spectively. We use the performance of detection (DET), recognition (REC), and
information extraction (IE) in the end-to-end pipeline to evaluate all methods
on the proposed POIE. Following the settings of SROIE [7] and EPHOIE [30],
F1-Score is applied as the evaluation metric for the three tasks.

4 Our Method

The overall pipeline of our method is illustrated in Figure 3. Different from other
methods, we introduce contrastive learning into the end-to-end trainable frame-
work for effectively bridging the modules of OCR and information extraction.
Specifically, it is composed of a text detector, a Contrast-guided Feature Ad-
justment Module (CFAM), a recognizer module, and an information extraction
module. Given an input image,

⋆ ⋆ ⋆ https://github.com/wkentaro/labelme
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Fig. 3. The overall framework of our method. It consists of a text detector, a contrast-
guided feature adjustment module, a recognition module, and an information extraction
module.

– The CNN-based text detector not only localizes all text instances but also
yields visual feature maps F for subsequent modules. The text detector de-
tects at the line level.

– With RoIAlign, the visual features of each instance I are obtained from F .
Then, I is simultaneously fed into CFAM and a recognition module to gener-
ate a similarity matrix S and the recognition features T . In the recognition
module which is two-layers transformer decoder, we use the intermediate
features in transformer as recognition features T and obtain the recognition
results of all text. In the CFAM, I is first encoded to E. Meanwhile, we
use a serial of learnable vectors as the entity features L′. Subsequently, the
pair-wise similarity between L′ and E is calculated.

– Finally, the recognition features T , the encoded features E, and similarity
matrix S are added, and the results are fed into the following information
extraction module (LSTM-CRF) to predict the structural outputs.

4.1 Contrast-guided Feature Adjustment Module

Contrastive learning is first proposed to bridge the tasks of OCR and informa-
tion extraction. The major difficulty is how to design proper representations
on behalf of the two tasks. Therefore, we propose CFAM, the key component
of our framework, as shown in Figure 4. Given visual features of each instance
I ∈ RN×C , the encoded features E ∈ RN×C are obtained via context modeling
between I, where N and C indicate the number of instances and the channel of
features, respectively. Then E is used to guide the generation of entity features
L′ ∈ RM×C , where M indicates the number of entity categories. Next, we take
E and L′ as inputs and calculate a similarity matrix S ∈ RN×M between them.
To supervise the generation of S, we use the ground truth S̃ of correspondences
between instances and entity categories, which is obtained from the ground truth
of the entity. Finally, the outputs of CFAM are S and E.

Generation of encoded features. The visual features of each instance I usually
are discrete among instances. Thus, we use three Self-Attention (SA) layers
to encode I ∈ RN×C and generate the encoded features E ∈ RN×C , which can
effectively establish connections among instances and transfer rich visual features
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I from the text detection to the information extraction. The SA consists of three
inputs, including queries (Q), keys (K), and values (V ), defined as follows:

SA(Q,K, V ) = softmax(
Q ·KT√
C/m

) · V, (1)

where Q, K, and V are obtained from the same input I (e.g., Q=IWQ). Par-
ticularly, we use the multi-head self-attention (MSA) to construct the complex
feature relations, MSA = [SA1;SA2; ..;SAm]WO, where WO is a projection
matrix and m is the number of attention heads, set as 8.

Generation of entity features. It is crucial to design the entity features L′ ∈
RM×C , which represents the information extraction task. The natural way is
directly adopting the learnable entity embeddings L ∈ RM×C as entity features.
However, the entity features are almost the same among all samples for the same
initialization of learnable entity embeddings and cannot fully use the informa-
tion from OCR. Additionally, simply using encoded features E as entity features
causes lower generalization for information extraction. Thus, based on this con-
sideration, we adopt E and L together to generate the entity features L′. Given
the encoded features E, which are first transposed as ET , then the ET are fed
into FC layer, which results in E′ ∈ RC×M :

E′ = FC(ET ) (2)

Next, we transform the E′, then use E′ to guide the generation of the entity
features L′ ∈ RM×C by adding the E′ to learnable entity embeddings L ∈ RM×C ,
defined as follows:

L′ = L+ E′T (3)

Generation of similarity matrix. The correspondences between encoded features
E and entity features L′ are significant for establishing the relations between
the tasks of OCR and information extraction. Hence, we take E and L′ jointly
as inputs to construct the relations between them via calculating the product of
the two matrices, which results in a similarity matrix S ∈ RN×M reflecting the
relations between encoded features E and entity features L′:

S = E · L′T (4)

Moreover, we use the ground truth S̃ that is obtained from the annotated
labels of the entity to supervise the generation of S.

4.2 Information Extraction Module

Information extraction requires both visual and textual understanding to auto-
matically assign visual elements to various entities. Therefore, the recognition
features T , encoded features E, and similarity matrix S, indicating the visual,
textual and correlative information are used for information extraction. Follow-
ing previous representative methods [30,40], we adopt LSTM-CRF[14] as an
information extraction module to predict entity categories for all characters at
the character level and output the final structure results.
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Fig. 4. The structure of the proposed contrast-guided feature adjustment module
(CFAM).

4.3 Loss Function

In the training phase, our proposed framework can be trained in an end-to-end
manner with the weighted sum of the losses generated from four parts of text
detection, recognition, information extraction, and contrastive learning, which
are defined as follows:

L = αLdet + βLrec + γLie + λLc, (5)

where α, β, γ, and λ are hyper-parameters that control the tradeoff between
losses.

Ldet is the same loss as Mask R-CNN [4] for text detection. Lrec is the cross
entropy loss for character recognition as follows:

Lrec = CE(R, R̃), (6)

where CE indicates the cross entropy loss, R̃ denotes the ground truth of each
character.

Lie is also the cross entropy loss for entity classification as follows:

Lie = CE(A, Ã), (7)

where CE indicates the cross entropy loss, Ã denotes the ground truth of entity
category.

Lc indicates the loss for contrastive learning. Due to the imbalanced distri-
bution of the number of entities, we adopt the focal loss [19] for Lc as follows:

Lc = FL(S, S̃), (8)

where FL indicates the focal loss, S̃ denotes the actual entity category of each
character.
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Table 2. Performance comparison of the SOTA algorithms on the SROIE and POIE
datasets. For text spotting, the results contain two parts (the left and right parts
indicate the results of text detection and recognition, respectively). The ∆ means the
drop of results from SROIE to POIE dataset. * indicates our reproduced results. Note
that all results are exhibited in F1-Score.

Setting Method SROIE POIE ∆

Text Spotting Mask Textspotter [17]* 97.38/91.23 97.68/91.03 0.30/-0.20

Pure IE
VIES [30] 96.12 84.08* -12.04
PICK [38] 96.12 83.23* -12.89
TRIE [40] 96.18 82.45* -13.73

LayoutLMv2 [33] 96.25 84.18 -12.07

End-to-End IE
TRIE [40] 82.06 76.37* -5.69
VIES [30]* 83.44 77.19 -6.25

5 Experiments

5.1 Implementation Details

Our proposed method is implemented in Pytorch. We use four TITAN Xp with
12GB RAM to train our model with batch size four and the Adadelta optimizer.
The learning rate starts from 2e-4 and decays to 2e-6 following the linear decay
schedule. For the SROIE dataset, the total training epoch is set to 600 for a
fair comparison. The total training epoch for the POIE is set to 200 for a fair
comparison. We adopt Mask R-CNN [4] as our text detector with ResNet-50 [5]
followed by FPN [18]. The hyper-parameters α and β are set to 1.0 while γ and
λ are set to 10.0. We choose the best results of all methods in total epoch as the
final results. Besides, we use bounding boxes and transcripts for all the text in
the images.

5.2 Analysis of Our Proposed Dataset

In this part, to verify the practical utility of our POIE dataset, we make com-
prehensive comparisons between the POIE dataset and the SROIE [7] dataset.
Although SROIE is the most widely used English dataset in the field of VIE,
there exists a large number of errors in the annotations of SROIE. Additionally,
the SROIE mainly focuses on document images with a single scene layout and
few entities, which cannot fully reflect the challenges of information extraction
in the wild. The comparisons are from three aspects: 1) We first explore the
performance of popular text spotting method [17] on these two datasets. The
aim of this setting is to verify the differences between the OCR task and VIE
task. 2) Then, we evaluate the performance of a few typical methods for the
pure IE task (i.e., directly using the ground truth of bounding boxes and texts
as the inputs for information extraction). This setting can effectively reveal the
difficulty of variable layouts and entities for information extraction. 3) Finally,
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Table 3. Performance comparison of the state-of-the-art algorithms on SROIE and
POIE datasets. * indicates our reproduced results. Backbone of all algorithms is
ResNet50. Note that all methods are evaluated in F1-Score without post-processing.

Method SROIE POIE

GRAPHIE [23] 76.51 -
Chargrid [11] 78.24 -
GCN [20] 80.76 -
TRIE [40] 82.06 -

TRIE [40]* 82.82 76.37
VIES [30]* 83.44 77.19

Ours 85.87 79.54

to further evaluate the challenges of our dataset, we evaluate some methods
in the end-to-end setting (i.e., using OCR results from text spotting as inputs
for information extraction.) The details comparisons of these three settings are
listed as follows:

Text spotting setting. As shown in the first part of Table 2, we observe that the
performances of the pioneering text spotting algorithm Mask Textspotter [17]
are slightly different on POIE and SROIE, which demonstrates that owing to the
rapid development of text spotting, document and scene texts can be effectively
detected and recognized by the advanced algorithms.

Pure IE setting. As listed in the second part of Table 2, we find that the per-
formance of representative methods [40,30] have a significant drop from SROIE
to our dataset, e.g., the performance of VIES and TRIE from 96.12 to 82.91
and from 96.18 to 81.79 respectively. The reason is that the variable layouts and
entities are much more difficult for information extraction, demonstrating that
our dataset is more practical for promoting advanced VIE algorithms.

End-to-end IE setting. As shown in the third part of Table 2, the performance
of the TRIE [40] and VIE [30] has distinct differences from SROIE to ours,
e.g., the performance of TRIE and VIES from 82.06 to 76.37 and from 83.44 to
77.19, respectively, which further proves our dataset is also more practical for
end-to-end methods.

Qualitative analysis. In this part, we show the qualitative analysis for the dif-
ficulty of our POIE dataset. To extract the values of entities from images, the
method requires adequate semantic understanding, which is very challenging for
algorithms. A typical challenge of our POIE dataset can be seen in Figure 5. We
find that without any clues for the “serving size” (an entity in our dataset), the
algorithm cannot accurately predict the value of “serving size”.
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OursGround-truth

SS: 100g

TF-P1: 1.1g

…

CE-P1: 106

TF-D: 1.6%

SS: 100g

TF-P1: 1.1g

…

CE-P1: 106

TF-D: 1.6%

Fig. 5. Qualitative analysis of the proposed POIE dataset. Red boxes indicate the
predicted detection results. Texts show the results of information extraction. Note that
green texts indicate the false negative results.

Table 4. Ablation study of CFAM on the proposed POIE dataset. SCH indicates a
simple classification head.

SCH CFAM
POIE dataset

F1-Score (DET) F1-Score (REC) F1-Score (IE)

- - 97.50 89.40 75.05
✓ - 97.10 89.01 77.59
- ✓ 97.89 91.68 79.54

5.3 The Comparisons of Our Method and SOTA

In this part, we compare our method with previous state-of-the-art (SOTA)
methods [23,11,20,40,30] on POIE and SROIE datasets. Our method is in an
end-to-end manner, and the core of our approach is to narrow the semantic gap
between the tasks of OCR and information extraction. Consequently, we mainly
compare our proposed method with the end-to-end methods and focus on the
performance of IE (i.e., F1-score of information extraction).

As shown in Table 3, our method achieves SOTA results on POIE and SROIE
datasets, and outperforms other methods by an obvious margin. For the POIE
dataset, our method exhibits superior performance. For the SROIE dataset, most
previous methods do not use post-progress, thus we mainly focus on the results
produced without post-progress. Additionally, our method outperforms other
methods by obvious gains. Moreover, Figure 6 shows some qualitative results of
ours and other methods. We can observe that our method is more precisely to
predict the values of entities.
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Fig. 6. Some visualization results of our method and others on the proposed POIE
dataset. There are results of TRIE, VIES, and ours, from left to right, respectively. Red
boxes indicate the predicted detection results. Texts show the information extraction
results. Note that green and blue indicate the false negative and false positive results,
respectively.

5.4 Ablation Studies

The ablation studies are carried out on our POIE dataset. For a complete com-
parison, we show the experimental results of DET, REC, and IE to evaluate the
effectiveness of our proposed modules. Specifically, as described below:

Effectiveness of CFAM. To verify the effectiveness of CFAM, we conduct exper-
iments in the settings: classification and CFAM. Classification indicates directly
classifying visual features to the corresponding entity. As listed in Table 4, we
observe that classification can promote the performance of information extrac-
tion but have a negative impact on text detection and recognition tasks. We
argue that it is because our method is an end-to-end method, where the OCR
and information extraction tasks are joint optimizations. Moreover, compared
with classification, we find that with CFAM, our method achieves superior re-
sults (97.89% in DET, 91.68% in REC, 79.54% in IE) for the reason that CFAM
serves as an auxiliary module to bridge the relations between the tasks of OCR
and information extraction. Additionally, to verify the necessity of using super-
vision for contrastive learning in CFAM, we conduct experiments in the setting:
with Lc and without Lc. As shown in Table 5, we found that the contrastive loss
Lc can promote the performance.

Analysis of generated entity features. In our proposed CFAMmodule, it is impor-
tant to design the entity features representing the information extraction task.
There are three strategies for generating the entity features (i.e., directly us-
ing learnable entity embeddings, adopting encoded features, and combining the
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Table 5. The effectiveness of Lc in CFAM.

Lc
POIE dataset

F1-Score (DET) F1-Score (REC) F1-Score (IE)

- 97.48 91.54 78.69
✓ 97.89 91.68 79.54

Table 6. Analysis of generated entity features. Note that all results are shown in F1-
Score.

Learnable entity embeddings Encoded features
POIE dataset

DET REC IE

✓ - 97.48 90.51 78.86
- ✓ 97.81 91.48 76.25
✓ ✓ 97.89 91.68 79.54

learnable entity embeddings and encoded features). The performance of these
strategies is shown in Table 6. We observe that using learnable entity embed-
dings and encoded features together achieves the best results. However, either
using learnable entity embeddings or encoded features will get lower results. We
argue that the reasons are two-fold: 1) without encoded features, the generated
entity features are almost the same among all entity features and cannot fully
use the information from instance. 2) without learnable entity embeddings, the
generated entity features completely rely on the encoded feature and cannot
fully represent the feature of information extraction.

Generalization of CFAM. To further demonstrate the generalization of our pro-
posed CFAM, we evaluate CFAM by applying it to other SOTA methods [40,30].
As listed in Table 7, the proposed CFAM improves the performance of TRIE
and VIES by a distinguish margin even though they are strong methods. For our
POIE dataset, CFAM improves the SOTA method TRIE and VIES by 2.45%
and 1.92%, respectively. For the SROIE dataset, CFAM enhances the perfor-
mance of TRIE and VIES by an obvious margin. The results demonstrate the
generalization of our proposed CFAM, which can be effectively applied to other
methods.

5.5 Limitation

Our method has achieved superior results on SROIE and ours. However, we find
that the challenges, e.g., different forms for the same entity (Figure 2 (b)), have
not been solved well and still influence the performance of information extrac-
tion. In the future, we will further explore the commonality between different
forms of the same entity and design a new method to effectively solve this prob-
lem.
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Table 7. The effectiveness of CFAM in other methods on the SROIE and POIE
datasets. We reproduce the TRIE and VIES. Note that all results are exhibited in
F1-Score.

Method SROIE POIE

TRIE [40] 82.82 76.37
TRIE [40] + CFAM (ours) 84.25 79.17

VIES [30] 83.44 77.19
VIES [30] + CFAM (ours) 84.32 79.11

6 Conclusion

In this paper, we have proposed a large-scale English dataset (called POIE) con-
sisting of camera images, which can reflect the challenges of the real world. We
have designed a novel end-to-end framework with a plug-and-play CFAM for VIE
tasks, which adopts contrastive learning and properly designs the representation
of VIE tasks for contrastive learning. The experimental results prove that our
dataset is more practical for promoting advanced VIE algorithms. Additionally,
the experiments demonstrate that our proposed framework consistently achieves
the obvious performance gains on SROIE and ours. In the future, we will con-
sider to extend the dataset with more images, entities, and diverse natural scene
disturbances. We hope our proposed dataset and framework can promote further
investigation in VIE.
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