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Abstract. Text image machine translation (TIMT) aims to translate
texts embedded in images from one source language to another target
language. Existing methods, both two-stage cascade and one-stage end-
to-end architectures, suffer from different issues. The cascade models
can benefit from the large-scale optical character recognition (OCR) and
MT datasets but the two-stage architecture is redundant. The end-to-
end models are efficient but suffer from training data deficiency. To this
end, in our paper, we propose an end-to-end TIMT model fully making
use of the knowledge from existing OCR and MT datasets to pursue
both an effective and efficient framework. More specifically, we build
a novel modal adapter effectively bridging the OCR encoder and MT
decoder. End-to-end TIMT loss and cross-modal contrastive loss are uti-
lized jointly to align the feature distribution of the OCR and MT tasks.
Extensive experiments show that the proposed method outperforms the
existing two-stage cascade models and one-stage end-to-end models with
a lighter and faster architecture. Furthermore, the ablation studies verify
the generalization of our method, where the proposed modal adapter is
effective to bridge various OCR and MT models. 5

Keywords: Text image machine translation · Modal adapter · Cross
modal contrastive learning

1 Introduction

Text image machine translation (TIMT) is the core research of many applica-
tions, such as scene text translation, document image translation, and photo
translation. Approaches to TIMT are mainly divided into two categories: two-
stage cascade method [1,3,7,10,26] and one-stage end-to-end method [5,20,29].

? Corresponding author.
5 Our codes are available at: https://github.com/EriCongMa/E2TIMT
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The cascade model deploys recognition and translation models sequentially,
which benefits from training with existing large-scale optical character recog-
nition (OCR) and machine translation (MT) datasets. However, the task gap
between OCR and MT models might hurt the performance because translation
models are vulnerable to recognition errors. Furthermore, the cascade model is
two-stage, i.e. the sequential integration of OCR and MT models, thus is re-
dundant in parameters and has a slow decoding speed. To alleviate the error
propagation problem, some studies turn to exploring one-stage end-to-end ar-
chitecture with fewer parameters and faster decoding speed [20]. However, the
scarcity of end-to-end TIMT data limits the performance of end-to-end models.
Although the multi-task learning enhanced end-to-end TIMT model incorpo-
rates external OCR datasets [5, 29] or MT datasets [19], the huge potential of
fully benefiting from the knowledge of existing OCR and MT datasets or their
corresponding pre-trained models is seldom explored. RTNet [29] is proposed to
link the OCR encoder and MT decoder, but it ignores the task gap between
recognition and translation tasks, causing limited performance. In summary, the
following three major challenges are usually faced in the TIMT study:

• Task Gap. There is a large domain gap between the OCR/MT tasks, which
indicates the direct connection of the recognition and translation models is
not optimal.

• Cascade Redundancy. It leads to model/complexity redundancy when
directly cascading existing OCR and MT models without any optimization.

• End-to-end Data Scarcity. The dataset for end-to-end TIMT is scarce.
It is critical to transfer knowledge from existing OCR and MT datasets or
pre-trained models, which is seldom explored by previous methods.

In this paper, we propose a novel modal adapter architecture to improve the
end-to-end TIMT model by eliminating task gaps and making full of the knowl-
edge from pre-trained OCR and MT models. Furthermore, the modal adapter
can is a parameter efficient fine-tuning method, which just optimizes parame-
ters of modal adapter by frozen pre-trained encoder and decoder. Thus, modal
adapter based TIMT model has much fewer parameters to update compared
with end-to-end models and has a faster inference speed than cascade mod-
els. In detail, a self-attention based modal adapter is incorporated between the
pre-trained OCR encoder and MT decoder. Different from vanilla adapter tun-
ing [24], which is just fine-tuned on downstream tasks, the task gap is bridged
in our framework by a cross-modal contrastive loss that aligns the distributions
between the OCR and MT features of the same sentence content. Two types of
modal adapters are studied to validate the effectiveness of bridging various OCR
and MT modules. Embedding modal adapter (EmbMA) is proposed to bridge
OCR image encoder and MT sequential encoder, while sequential modal adapter
(SeqMA) is inserted between OCR Sequential encoder and MT decoder. Finally,
the MT decoder generates the translation from the features transformed by the
modal adapter. Our contributions are summarized as follows:
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Fig. 1. Architectures of OCR, MT, and Modal Adapter for TIMT Model. The solid
arrow lines represent the data flow in the model. The dotted arrow lines denote the
parameters of encoder and decoder in modal adapter based TIMT are inherited from
pre-trained OCR/MT models.

• We propose a modal adapter based TIMT model to unify cascade and end-to-
end models by bridging the pre-trained recognition encoder and translation
decoder.

• Cross-modal contrastive learning is incorporated to align the distribution of
image features and text features encoded by an OCR encoder and an MT
encoder respectively, which alleviates the OCR-MT task gap and improves
the performance of text image machine translation.

• Extensive experiments show our method outperforms both the existing cas-
cade models and end-to-end models with a lighter and faster architecture.
Furthermore, the modal adapter has a good generalization when bridging
various recognition encoders and translation decoders.

2 Preliminary

To unify the processing progress of recognition and translation models, we divide
both the OCR and MT encoders into two submodules: image/text encoder for
embedding encoding, and sequential encoder for contextual feature extraction.
We will introduce the processing flow of OCR and MT models individually.

2.1 OCR Model

As shown in Figure 1 (a), given an input image I, a convolutional neural network
(CNN) based image encoder extracts the image embedding EI by transforming
image pixels into feature vectors:
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EI = CNN(I) (1)

where I ∈ RH×W×C and EI ∈ RlI×c. H, W , and C denote the height, width,
and channel of the input image respectively. lI represents the length of image
embedding, which is calculated as lI = h × w, where h, w, and c denote the
height, width, and channel of the encoded feature map separately.

The image encoder mainly extracts the local features of the input images,
while the image sequential encoder aims to model contextual information by
considering the whole input sequence:

SI = SeqI(EI) (2)

where SeqI(·) represents the image sequential encoder and transformer encoder [32]
is utilized in our implementation. SI ∈ RlS×dS denotes the sequential features in
OCR model. lS and dS denote the length and dimension of sequential features
respectively.

Finally, the OCR decoder generates recognized tokens auto-regressively given
sequential features:

DI = DecI(SI);

P (X|I) = Softmax(WIDI)
(3)

where DecI(·) represents the OCR decoder, and transformer decoder [32] is uti-
lized in our implementation. DI denotes the outputs of the decoder. WI ∈
R|VX |×dI represents the linear transformation that maps the decoder features
into corresponding recognized tokens, VX is the recognition vocabulary, and dI
is the dimension of decoder hidden states.

2.2 MT Model

MT model translates the source language into the target language as shown in
Figure 1 (b). Given a source language sentence T , the text encoder first maps
the input words into a sequence of word embeddings:

ET = Embedding(T ) (4)

where ET ∈ RlE×dE denotes the text embedding. lE and dE represent the se-
quence length and the dimension of text embedding respectively.

Text sequential encoder further extracts contextual features based on text
embeddings:

ST = SeqT (ET ) (5)

where SeqT (·) represents the text sequential encoder, which is a transformer
encoder in our implementation. ST denotes the encoded text sequential features.

MT decoder finally generates the target tokens auto-regressively given se-
quential features:
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Fig. 2. Diagram of (a) Embedding Modal Adapter and (b) Sequential Modal Adapter.
Black, red and blue arrow lines denote the pre-trained OCR/MT, modal adapter train-
ing and TIMT inference flows respectively. The green box refers to trainable parameters
and the blue box refers to frozen ones.

DT = DecT (ST );

P (Y |T ) = Softmax(WTDT )
(6)

where DecT (·) represents the MT decoder, and the transformer decoder is uti-
lized in our implementation. DT is the output of the decoder and WT ∈ R|VY |×dT

is the linear transformation. VY represents the target language vocabulary and
dT denotes the dimension of the hidden states.

3 Methodology

To bridge the pre-trained OCR encoder and the MT decoder, the modal adapter
is proposed to transform the OCR features into the MT feature space as shown
in Figure 1 (c).

Specifically, features of the OCR encoder are transformed by the stacked
modal adapter layer:

Ĥn
MA = LN(MSA(Hn−1

MA )) +Hn−1
MA

Hn
MA = LN(FFN(Ĥn

MA)) + Ĥn
MA

(7)

where Hn
MA denotes the output of the n-th modal adapter layer, and H0

MA is
the feature from the OCR encoder. MSA(·), FFN(·), and LN(·) represent multi-
head self-attention, feed-forward, and layer norm modules respectively. After
transformation by the modal adapter, features encoded by the OCR encoder are
further fed into the MT decoder to generate translation results.

Since there are two submodules in the OCR encoder (image encoder and
sequential encoder) as introduced in Section 2.1, we propose two types of modal
adapters. The first one is the embedding modal adapter (EmbMA), which aims
at aligning the image embedding and text embedding. The second one is the
sequential modal adapter (SeqMA), which transforms the sequential features
encoded by the image sequential encoder to the sequential feature space of the
MT task. We will introduce our proposed EmbMA and SeqMA in detail.
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3.1 Embedding Modal Adapter

The embedding modal adapter is placed in the middle of the OCR image encoder
and the text sequential encoder as shown in Figure 2 (a). First, the EmbMA
transforms the image embedding into the text embedding space. Second, to
better meet the feature distribution of the MT processing flow, the output of
EmbMA is constrained by the text embedding through a cross-modal contrastive
loss LEmbMA

CMC . As so, the output of EmbMA given i-th image embedding should
be similar to the i-th text embedding, and apart from the other text embeddings
in the mini-batch:

H
(i)
EmbMA = EmbMA(E

(i)
I )

L
EmbMA
CMC = −

K∑
i=1

log
exp(d(H

(i)
EmbMA, E

(i)
T )/τ)∑K

j=1 exp(d(H
(i)
EmbMA, E

(j)
T )/τ)

(8)

where EmbMA(·) utilizes the same modal adapter architecture as in Equation

7. H
(i)
EmbMA represents the output of the EmbMA. E

(i)
I and E

(i)
T denote the

image and text embedding of i-th sample respectively. K denotes the size of the
mini-batch. τ stands for the temperature parameter and d(q, k) represents the
similarity metric which we utilize cosine similarity in our implementation.

Aligned with text embedding, the outputs of EmbMA are further fed into

the text sequential encoder to obtain the contextual feature S
(i)
EmbMA. Through

EmbMA, the image embeddings are transformed into the MT processing flow,
and MT decoder finally generates target translation:

S
(i)
EmbMA = SeqT (H

(i)
EmbMA)

D
(i)
EmbMA = DecT (S

(i)
EmbMA)

P (Y (i)|I(i)) = Softmax(WTD
(i)
EmbMA)

(9)

3.2 Sequential Modal Adapter

Different from EmbMA, SeqMA is designed to align the sequential features of
the OCR and MT models. As shown in Figure 2 (b), SeqMA first transforms
the image sequential features into text sequential feature space. Then, the MT
decoder generates target language tokens given transformed image sequential
features:

H
(i)
SeqMA = SeqMA(S

(i)
I )

D
(i)
SeqMA = DecT (H

(i)
SeqMA)

P (Y (i)|I(i)) = Softmax(WTD
(i)
SeqMA)

(10)

where SeqMA(·) uses the same structure as in Equation 7. H
(i)
SeqMA denotes the

output of the sequential modal adapter and S
(i)
I represents the output of the
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image sequential encoder of the i-th sample in the mini-batch. D
(i)
SeqMA denotes

the output of text decoder given the hidden states from SeqMA.
Since the hidden states of the SeqMA are further fed into the MT decoder,

the feature distribution of H
(i)
SeqMA should be similar to the hidden states of

S
(i)
T . To bridge the feature gap between the OCR and MT tasks, a cross-modal

contrastive loss is utilized to align the feature distribution of the transformed
image sequential feature and text sequential feature:

L
SeqMA
CMC = −

K∑
i=1

log
exp(d(H

(i)
SeqMA, S

(i)
T )/τ)∑K

j=1 exp(d(H
(i)
SeqMA, S

(j)
T )/τ)

(11)

where d(·) and τ are the same similarity metric and temperature parameter as
introduced in Equation 8.

3.3 Training of Modal Adapter

During model training, only parameters in modal adapters are updated, while
the parameters in the OCR and MT models are all fixed. Through parameter-
efficient modal adapter tuning, the pre-trained OCR encoder and MT decoder
are able to transfer to the TIMT task with ease. Specifically, multi-task learning
is utilized by optimizing end-to-end text image translation loss and cross-modal
contrastive loss. Formally, the end-to-end text image translation loss and the
overall loss functions are:

LTIMT = −
|DTIMT|∑

i=1

logP (Y (i)|I(i))

LAll = (1− λCMC)LTIMT + λCMCLCMC

(12)

where LCMC is introduced as in Equation 8 and Equation 11. λCMC denotes the
hyper-parameter, which balances the weight of end-to-end text image translation
loss and cross-modal contrastive loss. Note that the P (Y (i)|I(i)) in end-to-end
text image translation loss LTIMT and cross-modal contrastive loss LCMC are
calculated based on the corresponding training workflow of SeqMA and EmbMA.

3.4 Inference

During model inference, as the blue arrow lines shown in Figure 2, the input
images are first fed into the OCR encoder to obtain the image features. Second,
the modal adapter transforms the image features into the MT feature space,
and the MT decoder finally generates translation results. Note that the OCR
decoder and the MT encoder are not utilized during inference resulting in a fast
decoding speed with the end-to-end processing architecture as shown in Figure 1
(c). By bridging OCR encoder and MT decoder, modal adapter based method
can take full advantage of pre-trained OCR and MT models.
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4 Experiments

4.1 Datasets

OCR, MT, and end-to-end TIMT datasets are utilized in our experiments. OCR
and MT datasets are used to train the OCR and MT models respectively. While
the TIMT dataset is used to train the parameters in the modal adapter.

OCR Datasets. OCR datasets are composed of text images and corresponding

text pairs {(Ii, Ti)}|DOCR|
i=1 . Three OCR datasets are considered in our experi-

ments. MJSynth (MJ) [12]6 is a synthetic word box image recognition dataset
designed for English scene text recognition containing 8.9M synthetic word box
images. SynthText (ST) [9]7 is another synthetic dataset containing 5.5M word
box images, which renders the texts onto real-world scene images. Synthetic
Text Line Dataset is a customized text line recognition dataset that is con-
structed with the rule-based synthetic method8. 1M English and 1M Chinese
synthetic text line recognition pairs are synthesized in our experiments.

MT Datasets. Parallel sentences from the Workshop of Machine Translation
2018 9 are utilized to train the text machine translation models. Specifically,
three translation directions are considered in our experiments: English-to-Chinese
(En⇒Zh), English-to-German (En⇒De), and Chinese-to-English (Zh⇒En). Af-
ter pre-processing and filtering, 5,984,287 En⇔Zh and 20,895,771 En⇒De trans-
lation pairs are finally obtained to train MT models.

End-to-End TIMT Datasets. A public end-to-end TIMT dataset proposed by [19]
is utilized to train end-to-end TIMT models. This dataset is a synthetic text
image translation corpus by synthesizing the text image through a rule-based
toolkit given randomly selected background images, font types, and other ren-
dering effects, which is similar to the synthesis method as synthetic text line
recognition dataset. The parallel sentences of the end-to-end text image trans-
lation datasets are extracted from the text translation corpus. In summary, one
million end-to-end TIMT pairs are utilized for each translation direction.

Evaluation Datasets. Evaluation sets constructed by [19] are used to measure
the performance of various models. Three domains are considered, including
synthetic, subtitle, and street-view evaluation domains. The synthetic evaluation
dataset contains 2,502 En⇔Zh and 2,000 En⇒De translation pairs, which are
synthesized as the synthetic training dataset. For real-world evaluation datasets,
the En⇔Zh subtitle dataset contains 1,040 translation pairs, while the En⇒Zh
street-view dataset contains 1,198 translation pairs.
6 https://www.robots.ox.ac.uk/vgg/data/text/
7 https://www.robots.ox.ac.uk/vgg/data/scenetext/
8 https://github.com/Belval/TextRecognitionDataGenerator
9 http://www.statmt.org/wmt18/
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Table 1. Comparison of end-to-end, cascade and modal adapter tuning based text
image machine translation models.

Architecture
Synthetic Subtitle Street

En⇒Zh En⇒De Zh⇒En En⇒Zh Zh⇒En Zh⇒En

End-to-End Models

TRBA [2] 9.61 7.36 4.77 12.12 5.18 0.36

CLTIR [5] 18.02 15.55 10.74 16.47 9.04 0.43

CLTIR+OCR [5] 19.44 16.31 13.52 17.96 11.25 1.74

RTNet [29] 18.91 15.82 12.54 17.63 10.63 1.07

RTNet+OCR [29] 19.63 16.78 14.01 18.82 11.50 1.93

MTETIMT [19] 19.25 16.27 13.16 17.73 10.79 1.69

MTETIMT+MT [19] 21.96 18.84 15.62 19.17 12.11 5.84

MHCMM [4] 22.08 18.97 15.66 19.24 12.12 5.87

Cascade Models

CRNN + Transformer 14.43 11.27 10.52 17.88 10.06 3.25

TRBA + Transformer 17.59 13.86 12.79 18.22 10.53 4.08

TRT + Transformer 20.46 16.48 15.12 19.12 12.08 5.78

Modal Adapter Tuning Models

Sequential Modal Adapter 20.90 19.02 15.22 19.31 12.03 5.81

Embedding Modal Adapter 22.53 19.67 16.25 19.46 12.39 6.24

4.2 Experimental Settings

We implement the image encoder based on the code release by [2]. The MT
model is utilized the same architecture proposed in [32]. The OCR and MT
models are firstly trained with OCR and MT datasets respectively. Parameters
of OCR and MT models are then frozen during fine-tuning. The implementation
of the modal adapter is utilized a similar architecture as the transformer encoder
with the hidden dimensions of 512, 8 attention heads, and a dropout rate of 0.1.
The initial learning rate is set to 2e-3, the batch size is 64, and the training step
is set to 300,000. Parameters of the modal adapter are initialized with Xavier
initiation method [8] and optimized with Adam optimizer [15] on single NVIDIA
V100 GPU. Detokenized BLEU [21] calculated by sacre-BLEU 10 is utilized as
the metric to evaluate the performance of text image translation models.

4.3 Comparison of Various Text Image Translation Models

Table 1 shows the BLEU scores of text image translation models on various
evaluation datasets. Three OCR models are utilized in the cascade models:
CRNN [27], TPS+ResNet+BiLSTM+Attention (TRBA) [2], and TPS+ResNet+
Transformer (TRT). While transformer-base [32] is utilized for MT model. The
performance of the OCR and the MT models are shown in Section 4.4. Five
architectures are compared in end-to-end TIMT setting. TRBA [2] represents

10 https://github.com/mjpost/sacrebleu
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Table 2. Performance of text image recognition models. Metric of scene text recogni-
tion (Rec.) is word accuracy and character error rate is utilized for text line recognition
evaluation. Tr.E and Tr.D represent transformer encoder and decoder respectively.

Architecture
Image

Encoder

Image
Sequential
Encoder

Decoder

Scene Text Rec. Text Line Recognition

IIIT SVT SP Synthetic Subtitle Street

3000 647 645 2502 1040 1198

CRNN [27] VGG BiLSTM CTC 81.3 79.0 66.7 13.90 4.95 56.82

TRBA [2] ResNet BiLSTM Attention 86.6 87.8 76.9 12.29 3.01 51.67

TRT ResNet Tr.E Tr.D 87.9 87.2 78.6 10.89 2.33 49.83

Table 3. Performance of text translation models. BLEU score is utilized as the metric
of text translation task.

Architecture
Synthetic Subtitle Street

En⇒Zh En⇒De Zh⇒En En⇒Zh Zh⇒En Zh⇒En

Transformer-Base [32] 25.38 20.97 17.56 19.64 13.78 15.17

Transformer-Big [32] 26.41 22.15 19.04 20.39 14.66 16.93

the OCR architecture trained with end-to-end TIMT dataset. CLTIR [5] model
trains end-to-end TIMT with auxiliary OCR task. RTNet [29] utilizes a feature
transformer to link OCR encoder and decoder but ignores the task gap mod-
eling. MTETIMT [19] represents the machine translation enhanced end-to-end
TIMT model, which utilizes multi-task learning with auxiliary translation task.
While MHCMM [4] proposes a multi-hierarchy cross-modal mimic framework for
the end-to-end text image translation, which incorporates external text transla-
tion corpus and utilizes text MT model as teacher guidance for TIMT model.
The modal adapter in Table 1 bridges the pre-trained TRT OCR encoder and
transformer MT decoder. Experimental results show that our proposed sequen-
tial and embedding modal adapter outperforms two-stage cascade models on
three translation domains with an average improvement of 1.01 BLEU scores.
Meanwhile, modal adapter improves the TIMT performance on various language
directions (En⇒Zh and En⇒De), revealing the method is robust to different lan-
guage settings. For Zh⇒En translation direction, modal adapter based method
achieves similar results as the previous machine translation enhanced multi-task
training model, indicating modal adapter method can take full advantage of the
pre-trained MT model without multi-task training.

Furthermore, the embedding modal adapter performs better than the sequen-
tial modal adapter, and we attribute that EmbMA retains the cross-attention
flow between the original text sequential encoder and decoder. This shows it is
vital not only to eliminate the gap between the OCR and MT tasks but also to
maintain the consistency of structures within each task.

4.4 Performance of OCR and MT Models

OCR and MT models in cascade models are firstly trained with corresponding
OCR and MT datasets. Parameters in pre-trained OCR and MT models are
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(a) OCR Models + Transformer-Base (b) OCR Models + Transformer-Big

Fig. 3. Performance of various OCR and MT combinations with modal adapter.
CRNN, TRBA, and TRT represent three OCR models. While MT Models include
transformer-base (Tr.Base) and transformer-big (Tr.Big).

then frozen during modal adapter training. Three OCR models CRNN, TRBA,
and TRT are all trained with the same scene text recognition and synthetic
text line recognition datasets introduced in section 4.1. Table 2 shows the per-
formance of various OCR models. Transformer based TRT model achieves the
best recognition performance, indicating the strong sequential encoder is essen-
tial for optical character recognition. For MT models, the transformer-base and
the transformer-big [32] are utilized to translate the source language into the
target language. Table 3 shows the performance of text translation, and the
transformer-big achieves better translation BLEU.

4.5 Generalization of Modal Adapter on Various OCR and MT
Combinations

To evaluate the generalization of our proposed method, the modal adapter is
studied by bridging various OCR encoders and MT decoders. As shown in Fig-
ure 3, modal adapter tuning outperforms the cascade models on different OCR
and MT combinations, revealing the good generalization of modal adapter tun-
ing methods. Figure 3 (a) shows the text image translation results by combining
different OCR models and transformer base MT model. Better OCR image en-
coder can extract more information into image features, leading to better text
image translation performance.

Figure 3 (b) depicts various OCR models with transformer big MT models.
Similar to Figure 3 (a), better OCR models achieve better results with trans-
former big MT models. Furthermore, stronger MT decoders can further improve
the translation performance in Figure 3 (b) compared with Figure 3 (a). As
a result, our proposed modal adapter tuning method has strong scalability by
bridging better OCR and MT models.

4.6 Analysis on Model Size and Decoding Speed of TIMT Models

Cascade models have redundant parameters and slow decoding speed. By remov-
ing the OCR decoder and the MT encoder, the modal adapter tuning method
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Table 4. Comparison of model size and decoding speed among various models on
English-to-Chinese translation direction. The unit of parameters is million (×106),
while the unit for speed is sentence per second. BLEU score is utilized to show the
performance of synthetic and subtitle text image translation.

Architecture Finetuned Params. Total Params. Speed Synthetic Subtitle

Cascade - 195.1M 3.07 20.46 19.12

End-to-End - 121.9M (↓37.52%) 5.21 (↑1.70x) 19.63 18.82

Fine-tuning 121.9M 121.9M (↓37.52%) 5.21 (↑1.70x) 20.18 19.04

SeqMA
13.2M 135.1M (↓30.75%) 5.12 (↑1.67x)

20.90 19.31

EmbMA 22.53 19.46

Table 5. Comparison of adapter tuning and modal adapter tuning on English-to-
Chinese translation.

Architecture Synthetic Subtitle

Adapter Tuning 16.72 15.87

SeqMA (Bottleneck) 18.25 16.80

EmbMA (Bottleneck) 21.82 19.35

SeqMA 20.90 19.31

EmbMA 22.53 19.46

has fewer parameters and a faster decoding speed. As shown in Table 4, the
end-to-end model, which is trained from the scratch, has fewer parameters and
a faster decoding speed compared with the cascade model. Fine-tuning model is
also an end-to-end model, which is initialized with the OCR encoder and MT
decoder. Then the fine-tuning model is trained with the end-to-end text image
translation dataset. Since the modal adapter bridges the OCR encoder and the
MT decoder directly, it has a faster decoding speed than the cascade model.
Meanwhile, after removing the OCR decoder and MT encoder, modal adapter
models have fewer parameters than the cascade model. For the comparison of
fine-tuning methods, modal adapter tuning outperforms fine-tuning model, be-
cause modal adapter models the task consistency between the OCR encoder and
MT decoder, which alleviates the gap between OCR and MT tasks.

4.7 Comparison with Adapter Tuning

Adapter tuning [24] is an effective parameter-efficient fine-tuning method. Dif-
ferent from adapter tuning, which inserted bottleneck modules inside the pre-
trained transformer layers, the modal adapter is designed outside the pre-trained
models by bridging the separated OCR encoder and the MT decoder. As shown
in Table 5, the modal adapter significantly outperforms adapter tuning with 5.81
BLEU for the synthetic domain and 3.59 BLEU for the subtitle domain. To offer
a more similar architecture, we also put the bottleneck-based adapter outside
the pre-trained models, which is similar to our proposed modal adapter tun-
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Fig. 4. Analysis on the amount of end-to-end TIT datasets on synthetic English-to-
Chinese validation set.

ing. Bottleneck-based modal adapter tuning also outperforms the vanilla adapter
tuning, revealing the effectiveness of explicitly modeling the transformation map-
ping from the OCR feature space to the MT feature space. Finally, self-attention
based modal adapter outperforms the bottleneck-based modal adapter, which we
attribute to the strong encoding ability of stacked self-attention layers.

4.8 Analysis on the Amount of End-to-End TIMT Dataset

Parameters of the modal adapter are trained on the end-to-end TIMT dataset
and the amount of end-to-end data has a great impact on performance. Figure 4
shows the performance of modal adapter tuning with different amounts of end-
to-end TIMT datasets. When the end-to-end data is low-resource (around 200
thousand image-text pairs), the performance of modal adapter tuning is limited.
We attribute the reason to the non-convergence of modal adapter given low-
resource end-to-end data. As the amount of end-to-end TIMT data increases,
the modal adapter achieves better results, revealing the modal adapter needs
enough data to learn the transformation from the OCR feature space to the
MT feature space. When the end-to-end image-text translation data achieves
more than 800 thousand pairs, the TIMT results tend to be stable and perform
the best translation results. Thus, one million end-to-end text image translation
pairs are suitable to train a good end-to-end TIMT model.

4.9 Hyper-parameter Analysis

Hyper-parameter λCMC is an important parameter to balance the end-to-end
TIMT optimization object and cross-modal contrastive learning object. Figure 5
shows the evaluation of hyper-parameter λCMC. From this hyper-parameter eval-
uation, the optimal value of λCMC is 0.4 for both embedding modal adapter and
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Fig. 5. Hyper-parameter evaluation of λCMC on English-to-Chinese validation set.

sequential modal adapter. When λCMC = 0, parameters in the modal adapter are
only optimized by the end-to-end TIMT loss, which ignores the task gap between
OCR and MT, leading to performance drop. Specifically, without cross-modal
contrastive learning, SeqMA drops 2.35 BLEU scores and EmbMA drops 2.68
BLEU scores, indicating that cross-modal contrastive learning can effectively
alleviate the feature gaps between the OCR and MT tasks. When λCMC = 1,
the overall loss function becomes LAll = LCMC, and the performance drops,
indicating end-to-end loss is also vital to modal adapter tuning. Thus, the op-
timization of the modal adapter should be guided both from direct translation
object LTIMT and cross-modal contrastive learning object LCMC.

5 Related Work

5.1 Text Image Translation.

TIMT models are mainly divided into the cascade and end-to-end models. Cas-
cade models deploy OCR and MT models respectively [1, 3, 7, 10, 26]. Specifi-
cally, the source language text images are first fed into OCR models to obtain
the recognized source language sentences [2, 13, 14, 27, 28, 35, 36]. Second, the
source language sentences are translated into the target language with the MT
model [31,32,37,38]. Cascade directly connects separated OCR and MT models
leading to model redundancy and slow decoding speed. Furthermore, recogni-
tion errors made by OCR models are further propagated through MT models,
causing severe translation mistakes.

For end-to-end models, the naive approach is to take the OCR model to trans-
late source language text images by training with source language images and
corresponding target sentences like TRBA [2]. Furthermore, multi-task learning
is proposed to incorporate external OCR datasets [5,29] or MT datasets [19] to
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enhance the performance of end-to-end models. MHCMM [4] further improves
the feature representation through cross-modal mimic learning on the basis of
incorporating external MT data.

However, existing methods still have limitations in fusing cascade and end-
to-end models. In this paper, our proposed modal adapter bridges OCR encoder
and MT decoder in cascade method through an end-to-end framework, which can
take advantage of both cascade and end-to-end methods. Experimental results
show modal adapter based TIMT effectively improves translation performance
with efficient architecture and fast decoding speed.

5.2 Methods of Bridging Encoder and Decoder.

Pre-trained models have been explored to achieve good performance after fine-
tuning on down-stream tasks [6, 17, 22, 23]. To simplify and speed up the fine-
tuning process, efficiency tuning methods are proposed by just updating par-
tial parameters of the model [34]. Another parameter-efficient tuning research
keeps the parameters of pre-trained models unchanged and incorporates external
modules to meet the downstream tasks like adapter tuning [24], LoRA [11], Bit-
Fit [33], prefix tuning [18], and so on. These fine-tuning methods just optimize
the parameters of external modules, which makes the fine-tuning process more
efficient.

Except for fine-tuning unified pre-trained models, existing research also tried
to bridge pre-trained encoder and decoder [25]. [30] proposed to bridge pre-
trained mBERT and mGPT through a Graft module to achieve text machine
translation. While [16] explores combining ASR encoder and MT decoder with
vanilla adapter for end-to-end speech translation. Inspired by recent research on
bridging encoder and decoder, we propose a modal adapter to bridge the OCR
encoder and the MT decoder.

6 Conclusion

In this paper, we propose a faster and better modal adapter tuning method for
the TIMT task, bridging the pre-trained OCR encoder and MT decoder. The
sequential modal adapter and embedding adapter are evaluated to verify the
effectiveness of bridging different OCR and MT modules. Extensive experiments
show embedding modal adapter has better performance because it retains the
cross-attention flow between the original MT sequential encoder and decoder.
Meanwhile, with an end-to-end architecture, the modal adapter based method
outperforms the cascade method with faster decoding speed and lightweight
architecture. Furthermore, the modal adapter is effective to bridge various OCR
and MT frameworks, revealing the good generalization of the modal adapter
tuning method. In the next step, we will design more bridge modules for text
image machine translation.
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