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Abstract. A table is an object that captures structured and informa-
tive content within a document, and recognizing a table in an image is
challenging due to the complexity and variety of table layouts. Many
previous works typically adopt a two-stage approach; (1) Table detec-
tion(TD) localizes the table region in an image and (2) Table Structure
Recognition(TSR) identifies row- and column-wise adjacency relations
between the cells. The use of a two-stage approach often entails the con-
sequences of error propagation between the modules and raises training
and inference inefficiency. In this work, we analyze the natural charac-
teristics of a table, where a table is composed of cells and each cell is
made up of borders consisting of edges. We propose a novel method to
reconstruct the table in a bottom-up manner. Through a simple process,
the proposed method separates cell boundaries from low-level features,
such as corners and edges, and localizes table positions by combining the
cells. A simple design makes the model easier to train and requires less
computation than previous two-stage methods. We achieve state-of-the-
art performance on the ICDAR2013 table competition benchmark and
Wired Table in the Wild(WTW) dataset.

Keywords: Table reconstruction · Table recognition · Split-Merge · sep-
arator segmentation.

1 Introduction

Tables are structured objects that capture informative contents and are com-
monly found in various documents, such as financial reports, scientific papers,
invoices, application forms, etc. With the growth of automated systems, the need
to recognize tables in an image has increased. The table recognition task can be
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(a) Previous two-stage approach

Document image Table detection

(b) Proposed bottom-up approach

Document image
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Edges

Table reconstruction

Table structure recognition

Fig. 1. Comparison of our bottom-up approach with previous two-stage ones.

divided into two sub-tasks: Table Detection (TD) and Table Structure Recogni-
tion (TSR). TD is a task to localize tabular objects in an image, and TSR is a job
to identify the adjacency relationship between cells (or contents in cells) within
the corresponding table area[7]. In the past, the two tasks were conducted using
heuristics after extracting the encoded meta-data in the PDF format [32,38].
The rule-based approach is out of our scope, and this paper focuses on fully
image-based table recognition.

Recognizing a table in an image is very challenging because tables have com-
plex layouts and styles. It usually consists of ruling lines, but cells in borderless
tables should be semantically separated. Cells and tables have specific consid-
erations as opposed to general objects; there are many empty cells, vast spaces
between cells (or contents), extreme aspect ratios, and various sizes.

With the recent advancement of Deep Learning, TD and TSR performances
have been significantly improved [8]. Most previous methods take the two-stage
approach: performing TD and TSR independently, as shown in Fig. 1(a). This
approach inevitably has two weaknesses. The first is the high training and infer-
ence costs. Creating a table recognition system requires more effort since TD and
TSR models must be trained separately. Moreover, the overall table recognition
system should serve two models in a row, which causes inefficiencies within the
inference process. The second is a constrained end performance bounded by the
TD’s results. Although TD and TSR are highly correlated and are complemen-
tary tasks, there is no interaction between the models to improve each model’s
performance. In summary, handling TD and TSR with a single model is highly
desirable from a practical point of view. To the best of our knowledge, only two
such researches [27,28] have been studied so far.
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Toward an end-to-end approach, we analyzed the essential elements consti-
tuting tabular objects. A table comprises cells; each cell can be represented using
corners and edges. This insight led us to think in the opposite way. Once corners
and edges are found, we can reconstruct cells and tables in a bottom-up manner,
as depicted in Fig. 1(b). Consequently, we propose a novel table reconstruction
method called TRACE (Table Reconstruction Aligned to Corners and Edges).
In TRACE, a single segmentation model predicts low-level features (corners and
edges) rather than the bounding box of cells or contents. After that, simple
post-processing can reconstruct the tabular structure.

Using a single model significantly increases the time efficiency in the training
and inference phases. We made it possible to reconstruct complex tables by
classifying the edges into explicit and implicit lines. Our method shows robust
and stable performance on public datasets, including ICDAR2013 and WTW,
with state-of-the-art performance.

The main contributions of our paper are summarized as following:

– We propose a novel end-to-end table reconstruction method with a single
model solely from an image.

– In a bottom-up manner, we propose a table reconstruction method starting
from the basic elements of cells, such as corners and edges.

– The proposed method reconstructs complex tables by classifying edges into
explicit and implicit lines.

– The proposed method achieves superior performance in both clean document
datasets (ICDAR13) and natural image benchmarks (WTW).

2 Related Work

There are two input types for table recognition; PDF and image. The PDF file
contains content data, including textual information and coordinates, which are
leveraged by the table analysis methods in the early stage [4]. These rule-based
methods rely on visual clues such as text arrangement, lines, and templates. The
conventional method only works on PDF-type inputs. As technology advanced,
image-input table recognizers have been proposed mainly based on a statistical
machine learning approach as listed in [12]. However, it still requires much human
effort to design handcrafted features and heuristics. In the era of deep learning,
many methods have been studied, showing superior performance compared to
the conventional ones [8]. In this paper, we mainly address deep-learning-based
related works.

Table detection(TD) TD methods are roughly divided into two categories;
object detection-based, and semantic segmentation-based.

The object detection-based approaches adopt state-of-the-art generic object
detectors to table detection problems. For example, Faster R-CNN was adopted
by [37,6,42,36,44], and YOLO was used in [11]. Recently, thanks to its instance
segmentation ability, Mask R-CNN-based methods [28,1] were studied. These
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methods invented techniques such as data augmentation, image transformation,
and architecture modification to mitigate a discrepancy between the nature of
tables and objects in terms of aspect ratio and sparse visual features.

There were several attempts to apply the semantic segmentation method
FCN[23] on table localization, such as [47,9,13,27]. However, differing from the
object segmentation task, the unclear boundary and sparse visual clues in the
table region limit the capabilities of these approaches to find accurate table
segments.

Table structure recognition(TSR) The primary purpose of TSR is to iden-
tify the structural information of cellular objects. Structure information can be
(1) row, column coordinates, and IDs, (2) structural description, (3) connections
between contents. According to the problem definition, TSR methods can be cat-
egorized into three approaches; detection-based, markup generation-based, and
graph-based.

Firstly, many studies have utilized a detection-based approach. However,
detection targets are different; row/column regions, cell/content bounding boxes,
and separators. Researchers in [37,41,40] have proposed to detect row/column
regions based on segmentation and off-the-shelf object detectors. Several studies
have proposed detectors for detecting cells or their contents [28,31,30,49]. In
recent years, a split-merge approach has emerged as a popular technique for TSR,
in which the separators between cells are initially detected and then subsequently
merged [45,14,48,19,25]. This strategy is particularly effective in representing the
complex layout of tables.

Secondly, markup generation-based approaches try to generate LaTex code
or HTML tag directly rather than identifying the coordinates of cellular ob-
jects. Collecting LaTex and HTML tags of the table is beneficial for synthetic
data generation. Therefore, a large size synthetic table datasets by rendering
from the tags have been released such as Table2Latex[3], TableBank[17], and
PubTabNet[50] In general, the encoder-decoder architecture converts images into
markup tags. TableFormer differs from other generation methods in that it de-
codes not only structural tags but also cell box coordinates [26]. However, these
approaches need a relatively large dataset and are difficult to handle complex
tables in natural scenes.

Lastly, graph-based methods that treat words or cell contents as nodes have
been proposed. They analyze the connection between cell relationships using
a graph neural network [29,2,34,18]. When a node pair is found, it determines
whether two nodes are the same row or column and further performs table
localization. However, the biggest problem with this method is that it requires a
content detection process or additional input from PDF to acquire content. At
the same time, it is difficult to deal with empty cells.

End-to-end table recognition A few researchers proposed end-to-end ta-
ble analyses that include TD and TSR. Most used the two-stage pipeline us-
ing two separate models for TD and TSR. DeepDeSRT[37] adopted Faster-
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Fig. 2. Schematic illustration of our network architecture.

RCNN[33] as a table detector, and SSD[21] as a cell detector. RobusTabNet[25]
used CornerNet[16] for TD, and proposed line prediction model for TSR. Re-
cently, Zheng et al. proposed Global Table Extractor (GTE)[49] that used two
separate table and cell detectors based on Faster-RCNN.

We found only a couple of literature using a single model so far. TableNet[27]
identifies table and column region. The limitation to separate rows was solved
using additional heuristics. CascadeTabNet[28] proposed a novel approach to
classify table and cell regions simultaneously even though they used a single
model. However, the method still has difficulties handling the blank cell, which
needs separated branches for handling bordered and borderless tables after model
prediction.

3 Methodology

3.1 Overview

Our method predicts corner and edge segmentation maps that form cells using a
deep learning model. The model outputs five segmentation maps; the first chan-
nel is used to detect cell corners and the other four channels are used to detect
horizontal and vertical edges of a cell box. We define an edge as a separation
line between cells, and we predict four types of edges since each edge could rep-
resent an explicit or implicit line, either vertically or horizontally. Following the
binarization process of the aggregated edge maps, a candidate table region is
obtained through connected component labeling. This approach enables the re-
construction of multiple tables with a single inference. In the cell reconstruction
step, we simply calculate the position of the separation by projecting horizontal
edges to the y-plane and vertical edges to the x-plane for each table candidate re-
gion. Here, corners are also used in the search for the separation lines. Then, the
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spanned cells are merged if there is no edge between the cell bounding boxes.
Finally, the table regions are localized through the combination of individual
cells. An overview of the pipeline is illustrated in Fig. 2. Note that as shown
in the legend, the four types of edges are indicated by different colors; explicit
horizontal edges in blue, explicit vertical edges in green, implicit horizontal edges
in yellow, and implicit vertical edges in purple.

3.2 Corner and Edges Prediction Model

The required corner and edge information are trained using a CNN-based seg-
mentation model. We adopted ResNet-50 [10] as the feature extraction backbone,
and the overall architecture is similar to that of U-Net [35], which aggregates low-
and high-level features. The final output has five channels; a corner map, explicit
horizontal/vertical edge maps, and implicit horizontal/vertical edge maps.

For ground truth label generation, we need the cell bounding boxes and
properties of each edge. For the corner map, we render a fixed sized Gaussian
heatmap centered on every corner point of the cell. For the edge map, a line
segment is drawn with a fixed thickness on every side of the cell. Here, horizontal-
and vertical- edge ground truths are generated on the different channels. Also,
a property of the edge indicates whether the line segment is visible or not. If
visible, we use the Explicit Edge channels, if not, the Implicit Edge channels are
used.

We use the MSE loss for the objective L, defined as,

L =
∑
p

∑
i

||Si(p)− S∗
i (p)||22, (1)

where Si(p) denotes the ground truth of i-th segmentation map, and S∗
i (p) de-

note the predicted segmentation map at the pixel p.
Note that the TRACE method has two notable features that set it apart

from traditional cell detection methods relying on the off-the-shelf object de-
tectors. Firstly, TRACE detects low-level visual features rather than high-level
semantic elements such as cell bounding boxes or content bounding boxes. This
approach allows for easier learning due to the distinctiveness of low-level vi-
sual cues and enables the effective handling of empty cells, which is challeng-
ing for other methods. Secondly, TRACE is capable of identifying both explicit
and implicit edges when generating separators. The distinction between visible
and non-visible lines helps to find separators from the table image. The table
reconstruction is achieved through a series of heuristic techniques in the post-
processing after the low-level features have been obtained.

3.3 Data preparation

As explained in the previous section, we need cell bounding box data with at-
tributes. Unfortunately, public datasets only have two types of bounding box
annotation; content bounding box [7,5,2] and wired cell bounding box [24]. Some
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Fig. 3. Post-processing of TRACE.
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public datasets for structure recognition do not provide any coordinates for con-
tent or cell, but structure markup such as HTML tags or LaTex symbols [17,50].
This lack of available data for our approach motivated us to collect our own
dataset.

We collected document images from the web including invoices and com-
monly used goverment documents. Also, some came from TableBank [17]. The
dataset includes complicated tables with visible and invisible separation lines.
The annotators were asked to annotate line segments and its attributes for us
to create cell bounding boxes with properties.

It is easy to maintain data consistency of explicit edges since the visual cues
are clear. However, data inconsistency issue arise when dealing with implicit
edges because it is not clear where to form a line between the cells. To alleviate
this issue, the annotators were guided to construct an equidistant bisector line
that equally separates the cells.

3.4 Post-processing for reconstruction

The procedure for table reconstruction by TRACE is illustrated in Fig. 3. Given
an input image, the TRACE model predicts corner and edge maps, which are
then processed in the following steps.

In the image rectification step, we apply binarization to the inferred segmen-
tation maps, and then use the combination of all binary edge maps to approx-
imate the location of each table. The Hough line transform is used to detect
lines in the binary edges. We rectify the table image by making horizontal and
vertical lines perpendicular. This rectification is not necessary for most scanned
document images.

TRACE employs a split-merge strategy, inspired by SPLERGE [45], to re-
construct tables. The split process is demonstrated in the Fig. 4. It begins by
projecting explicit horizontal edge maps onto the y-plane and explicit vertical
edge maps onto the x-plane. The midpoint of the projected edge group on the
plane is considered to be the location of each separation line.

In the case of implicit horizontal lines, the projection may not clearly separate
them. When a row in the table includes empty cells, the implicit horizontal lines
may be combined due to the ambiguity of the content borders. To resolve this
issue, we use the corner map. We apply the same binarization and projection
processes to the corner map. If the projected line group is thick, with more than
two peak points of corners, the final split point is calculated based on the peak
points of the corner groups, rather than the midpoint of the line group.

After the split process, the cell merge process is initiated. This process utilizes
both explicit and implicit edge maps. The basic rule applied in this process is
that if two adjacent cells lacked a binary edge map in the midpoint of their
separator, the separator is removed, and the cells are merged.

Finally, the quadrilateral of the table location is determined by computing
the coordinates of the top-left, top-right, bottom-left, and bottom-right corners
of all detected cells. If the table image is transformed due to the rectification
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Fig. 4. The split process in TRACE is performed to separate the cells of a table. After
the binarization of the edge maps, the mid-point of the grouped binary edge maps
is determined as the separator. This process is repeated for both the horizontal and
vertical axes. To address the issue of ambiguity in implicit horizontal lines, the peak
positions of the projected corner map are also utilized.

process, the cell coordinates and table coordinate are unwarped to the image
coordinate system.

It is important to note that while the basic post-processing for TRACE is
relatively straightforward, the requirements may vary depending on the dataset.
For instance, the WTW dataset does not provide annotations for implicit lines,
but some images in the dataset contain inner tables with invisible edges. Thus,
heuristics may need to be designed based on the end task. This will be discussed
in the experiment section, where examples will be presented.

4 Experiments

We conducted experiments on public benchmarks, including the ICDAR2013
table competition dataset and Wired Table in the Wild (WTW) dataset, to
validate the proposed method.

4.1 Dataset and evaluation

To train TRACE, we need cell bounding box data with visibility flags. However,
there is no public dataset that satisfies this condition. We collected document im-
ages from the web, and manually annotated tables. Our in-house dataset mainly
consists of financial and scientific documents. The number of total images is
9717, which are divided into 7783 training images, 971 validation ones, and 963
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testing ones. We will soon make a portion of our in-house dataset available to the
public. The dataset will include an adjacency relation-based evaluation metric
for assessing performance.

ICDAR2013 Table Competition benchmark [7] is the table dataset that is
commonly evaluated. The dataset is composed of 156 tables in PDF format
from the EU/US government website. We only tested our method on this dataset
without finetuning. We used the official evaluation protocol. For table detection,
we calculated the character-level recall, precision and F1-score along with Purity
and Completeness. Purity increases if a detected table does not include any
character that are not also in the GT region, Completeness counts whether a
table includes all characters in the GT region. For the table structure recognition
evaluation, we used adjacency relations-based recall precision measures.

WTW dataset [24] contains not only document images but also images of
scenes from the wild. Therefore, it has a variety of tables in terms of types, lay-
outs, and distortions. There are 10,970 training images and 3,611 testing images.
WTW only focuses on wired tables. We follow the evaluation metric by the au-
thors; (1) for cell detection, cell box-level recall/precision with IoU=0.9 are used,
(2) for structure recognition, cell adjacency relationship-level recall/precision
from the matched tabular cells with IoU=0.6 are used.

Our method is unable to evaluate widely-used table datasets for tag genera-
tion, such as SciTsr[2] and TableBank[17] since evaluation metrics cell content
with text attributes. This necessitates the use of additional OCR results, which
beyond the scope of image-based table reconstruction.

4.2 Implementation detail

In the training process, we used a ResNet50 backbone pretrained on ImageNet.
The longer side of the training images are resized to 1280 while preserving the
aspect ratio. The initial learning rate is set to 1e-4, and decayed at every 10k
iteration steps. We train the model up to 100k iterations with a batch size of
12. The basic deep learning techniques such as ADAM [15] optimizer, On-line
Hard Negative Mining [39] and data augmentations including color variations,
random rotations, and cropping are applied.

In our methodology, the parameters for post-processing were determined em-
pirically. Specifically, binary thresholds were set to 0.5 for explicit edge maps and
0.2 for implicit edge maps. And, if the length of a vertical or horizontal edge was
less than 25% of the corresponding table height or width, the edge was deemed
not suitable for the split process and was discarded.

4.3 Result on Document Dataset(ICDAR2013)

The table detection results of various methods on ICDAR2013 benchmark are
listed in Table. 1. TRACE’s F1-measure shows competitive performance with
GTE [49], and it achieved a higher score in terms of Purity and Completeness.

Some TD methods are not directly compared here, because 1) CascadeTab-
Net [28] used a subset of test images for evaluation, and 2) CDeC-Net [1] and
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Table 1. Table Detection Results on ICDAR13 dataset.

Method Input type Recall Precision F1 Complete Pure

Nurminen [7] PDF 90.77 92.1 91.43 114 151
Silva [43] PDF 98.32 92.92 95.54 149 137

TableNet [27] Image 95.01 95.47 95.47 - -
Tran et al. [46] Image 96.36 95.21 95.78 147 141
TableBank [17] Image - - 96.25 - -

DeepDeSRT [37] Image 96.15 97.40 96.77 - -
GTE [49] Image 99.77 98.97 99.31 147 146

Ours (TRACE) Image 98.08 97.67 97.53 150 147

other methods [36,11,42] reported their performance using IoU-based metrics.
The results of PDF-based methods are only for reference since they detect table
regions from PDF-metadata, not from images.

Table 2. Table Structure Recognition Results on ICDAR13 dataset.

Method Venue Recall Precision F1 Approach GT PDF

Nurminen ICDAR13 94.09 95.12 94.60 TSR X X
TabStructNet ECCV20 89.70 91.50 90.60 TSR X -

SPLERGE ICDAR19 90.44 91.36 90.89 TSR X -
Split-PDF+Heuristics ICDAR19 94.64 95.89 95.26 TSR X X

GTE WACV21 92.72 94.41 93.50 TD+TSR - -
GTE(with GT) WACV21 95.77 96.76 96.24 TSR X -

LGPMA ICDAR21 93.00 97.70 95.30 TSR X -

Ours(TRACE) - 96.69 98.47 97.46 E2E - -

For the table structure recognition task, TRACE achieved the highest score
when comparing with previous works as shown in Table 2. The important point
we want to emphasize is that TRACE is the only end-to-end approach. TSR-
only methods require the cropped table region in the image, but ours does not.
Performing both TD and TSR tasks simultaneously is difficult since the inaccu-
rate table detection results in lowering the end performance. For example, when
comparing the result with and without table detection in GTE, the performance
dropped by 2.7%. Our bottom-up approach proved its robustness both in TD
and TSR tasks.

As with the TD results, some of previous TSR methods cannot be listed
in the result table directly because the authors randomly chose 34 images for
testing in order to overcome the lack of training images (e.g. [37], [27])

4.4 Result on Wild Scene Dataset (WTW)

The WTW dataset only contains wired tables, so, TRACE was trained on this
dataset without incorporating implicit edge maps. For the experiment on the
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WTW dataset, no additional data was utilized for the training process. The
results on WTW are visualized in Fig. 5.

Fig. 5. Table reconstruction results on WTW datasets.

Table 3. Cell-level detection and adjacency relation-level structure recognition results
on the WTW dataset.

Method
Physical Coordinates Adjacency Relation

Approach GT Table
R P F1 R P F1

Cycle-Centernet [24] 78.5 78.0 78.3 91.5 93.3 92.4 TD+TSR -
TSRFormer [19] - - - 93.2 93.7 93.4 TSR X

NCGM [20] - - - 94.6 93.7 94.1 TSR X
Ours (TRACE) 63.8 65.7 64.8 93.5 95.5 94.5 E2E -

Cell-level evaluation is conducted on WTW instead of table-level detection.
The results on WTW is shown in Table. 3. TRACE achieved the best perfor-
mances in the structure recognition task. It is also noted that we compared the
TSR methods that require GT table regions. TRACE is the result obtained by
performing the task end-to-end without table cropping.

We evaluated our method using official parameters provided by the authors
of the WTW dataset. Here, the IoU threshold was set to 0.9 for cell detection
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evaluation. However, we found false positive cases even for sufficiently reasonable
results, which means 0.9 is too strict parameter for matching of small cells. Also,
some imprecise annotations were found, which is critical for small cell boxes. We
estimate that 0.7 is a more appropriate parameter for IoU threshold based on
the quantitative analysis. For reference, further experiments with various IoU
were conducted as shown in Table. 4.

Table 4. Cell detection result with various IoU thresholds for matching cells on WTW
dataset.

IoU R P F1 Ref

0.9 63.8 65.7 64.8 Parameter for detection
0.8 89.5 92.1 90.8 -
0.7 93.6 96.3 94.9 -
0.6 94.8 97.5 96.1 Parameter for TSR

(a) Input image (b) Result of TRACE
only trained on WTW dataset

(c) Edge segmentation of TRACE
trained on in-house dataset

(d) Final result of TRACE
with implicit edges

Fig. 6. Comparison of TRACE results with and without implicit edge. Even complex
documents like custom declarations are correctly recognized with TRACE.

Figure. 6 visualizes the table reconstruction result of TRACE on WTW
dataset. Most of the images in WTW contain wired tables. Yet, there are docu-
ment images including borderless tables in which product items are listed. The
user’s expectation is to reconstruct cellular objects that are semantically listed
up. Here, we additionally investigate table reconstruction results on customs
declarations through TRACE trained on our in-house dataset. The final result
was qualitatively better than the human annotated ground truth. By showing
correct table reconstruction results on these mixed-type tables, TRACE proved
its high usability and generalization ability.



14 Y. Baek et al.

4.5 Discussion

Bordered and borderless table comparison We separate ICDAR2013 bench-
mark into bordered and borderless tables, and evaluated them separately. We
investigated this to check the difference in difficulty although the number of files
differ: 30 bordered and 31 borderless sheets. In the TSR task, the F1-score on
bordered and borderless tables are 99.4% and 93.85%, respectively. Like this,
the score on bordered tables are quite high, and the main reason for the perfor-
mance drop is with the borderless cases. To improve this, implicit edges could
be counted as separation line candidates, and additional heuristics such as the
existence of content can be applied further.

(a) Ambiguity of implicit edges (b) Two types of edges coexistence

(d) Partial table detection(b) Multiple edges

Fig. 7. Failure cases caused by implicit edges in the ICDAR2013 dataset.

Borderless table failure cases The causes of failure on most borderless tables
are analyzed in detail, as shown in Fig. 7. They are roughly classified into the
following four cases. (a) Two different rows merged due to implicit horizontal
edges, (b) Explicit and implicit edges coexist in the same separation line, (c)
Multiple vertical edges due to a wide interval between cell contents, (d) Partial
table detection due to a large interval. Most of the problems arise from the
ambiguity of the separation line position. To mitigate this, we need to utilize
global attention-based machine learning techniques like SwinTransformer[22] as
a future work.
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5 Conclusion

We have proposed a novel end-to-end table reconstruction method, TRACE,
which performs both table detection and structure recognition with a single
model. This method differs from conventional approaches, which rely on a two-
stage process, as it reconstructs cells and tables from fundamental visual ele-
ments such as corners and edges, in a bottom-up manner. Our model effectively
recognizes tables, even when they are rotated, through the use of simple and
effective post-processing techniques. We have achieved state-of-the-art perfor-
mance on both the clean document dataset (ICDAR2013) and tables in the wild
dataset (WTW). In future work, we plan to address weakly-supervised tech-
niques for training the model with more diverse data.
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5. Gao, L., Huang, Y., Déjean, H., Meunier, J.L., Yan, Q., Fang, Y., Kleber, F.,
Lang, E.: Icdar 2019 competition on table detection and recognition (ctdar). In:
2019 International Conference on Document Analysis and Recognition (ICDAR).
pp. 1510–1515. IEEE (2019)

6. Gilani, A., Qasim, S.R., Malik, I., Shafait, F.: Table detection using deep learning.
In: 2017 14th IAPR international conference on document analysis and recognition
(ICDAR). vol. 1, pp. 771–776. IEEE (2017)
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